Harnessing a Safe Novel Lipid Nanoparticle: Targeted Oral Delivery to Colonic Epithelial and Macrophage Cells in a Colitis Mouse Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Instruments
2.2. Preparation and Characterization of nLNP
2.3. Biodistribution and Colon-Targeting Efficiency
2.4. DSS-Induced Acute Colitis Mouse Model
2.5. Identification of Cellular Targets
2.5.1. Isolation of Cells from Mouse Colon Tissues
2.5.2. Flow Cytometry Analysis
2.6. Safety Evaluation of nLNP
2.6.1. In Vitro Evaluation of Safety and Toxicity (InVEST) Panel
2.6.2. Immunosafety Evaluation in Human Immune Cells
2.6.3. Maximum Tolerated Dose (MTD)
2.7. Statistical Analysis
3. Results
3.1. Formulation and Characterization of nLNP
3.2. Colon-Targeting Efficiency of Orally Delivered nLNP
3.3. Cellular Targets and Uptake Behavior of nLNP
3.3.1. Inflammation Reduces Epithelial Cells and Increases Immune Cells in the Colon Mucosa
3.3.2. Macrophage Migration to the Epithelium in Response to Inflammation
3.3.3. Enhanced nLNP Uptake by Epithelial Cells and Macrophages in Inflamed Epithelium
3.4. nLNP Is a Safe Oral Drug Delivery System
3.4.1. Comprehensive In Vitro Toxicity Assessment of nLNP for Oral Drug Delivery
3.4.2. nLNP Is Safe for In Vitro Cultured Human Immune Cells
3.4.3. Oral Administration of nLNP Is Safe for Mice
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Guan, Q. A Comprehensive Review and Update on the Pathogenesis of Inflammatory Bowel Disease. J. Immunol. Res. 2019, 2019, 7247238. [Google Scholar] [CrossRef] [PubMed]
- Fakhoury, M.; Negrulj, R.; Mooranian, A.; Al-Salami, H. Inflammatory bowel disease: Clinical aspects and treatments. J. Inflamm. Res. 2014, 7, 113–120. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Li, Z.; Liu, S.; Zhang, D. Global, regional and national burden of inflammatory bowel disease in 204 countries and territories from 1990 to 2019: A systematic analysis based on the Global Burden of Disease Study 2019. BMJ Open 2023, 13, e065186. [Google Scholar] [CrossRef] [PubMed]
- Kaplan, G.G. The global burden of IBD: From 2015 to 2025. Nat. Rev. Gastroenterol. Hepatol. 2015, 12, 720–727. [Google Scholar] [CrossRef] [PubMed]
- Turpin, W.; Goethel, A.; Bedrani, L.; Croitoru, K. Determinants of IBD Heritability: Genes, Bugs, and More. Inflamm. Bowel Dis. 2018, 24, 1133–1148. [Google Scholar] [CrossRef]
- Aslam, N.; Lo, S.W.; Sikafi, R.; Barnes, T.; Segal, J.; Smith, P.J.; Limdi, J.K. A review of the therapeutic management of ulcerative colitis. Therap. Adv. Gastroenterol. 2022, 15, 17562848221138160. [Google Scholar] [CrossRef]
- Bai, J.; Wang, Y.; Li, F.; Wu, Y.; Chen, J.; Li, M.; Wang, X.; Lv, B. Research advancements and perspectives of inflammatory bowel disease: A comprehensive review. Sci. Prog. 2024, 107, 368504241253709. [Google Scholar] [CrossRef]
- Muzammil, M.A.; Fariha, F.; Patel, T.; Sohail, R.; Kumar, M.; Khan, E.; Khanam, B.; Kumar, S.; Khatri, M.; Varrassi, G.; et al. Advancements in Inflammatory Bowel Disease: A Narrative Review of Diagnostics, Management, Epidemiology, Prevalence, Patient Outcomes, Quality of Life, and Clinical Presentation. Cureus 2023, 15, e41120. [Google Scholar] [CrossRef]
- Perrotta, C.; Pellegrino, P.; Moroni, E.; De Palma, C.; Cervia, D.; Danelli, P.; Clementi, E. Five-aminosalicylic Acid: An update for the reappraisal of an old drug. Gastroenterol. Res. Pract. 2015, 2015, 456895. [Google Scholar] [CrossRef]
- Muller, A.F.; Stevens, P.E.; McIntyre, A.S.; Ellison, H.; Logan, R.F. Experience of 5-aminosalicylate nephrotoxicity in the United Kingdom. Aliment. Pharmacol. Ther. 2005, 21, 1217–1224. [Google Scholar] [CrossRef]
- Singh, A.; Mahajan, R.; Kedia, S.; Dutta, A.K.; Anand, A.; Bernstein, C.N.; Desai, D.; Pai, C.G.; Makharia, G.; Tevethia, H.V.; et al. Use of thiopurines in inflammatory bowel disease: An update. Intest. Res. 2022, 20, 11–30. [Google Scholar] [CrossRef] [PubMed]
- Gisbert, J.P.; González-Lama, Y.; Maté, J. Thiopurine-induced liver injury in patients with inflammatory bowel disease: A systematic review. Am. J. Gastroenterol. 2007, 102, 1518–1527. [Google Scholar] [CrossRef] [PubMed]
- Hadam, J.; Aoun, E.; Clarke, K.; Wasko, M.C. Managing risks of TNF inhibitors: An update for the internist. Clevel. Clin. J. Med. 2014, 81, 115–127. [Google Scholar] [CrossRef] [PubMed]
- Xie, X.; Li, F.; Chen, J.-W.; Wang, J. Risk of tuberculosis infection in anti-TNF-α biological therapy: From bench to bedside. J. Microbiol. Immunol. Infect. 2014, 47, 268–274. [Google Scholar] [CrossRef]
- Calip, G.S.; Lee, W.-J.; Lee, T.A.; Schumock, G.T.; Chiu, B.C.-H. Risk of Non-Hodgkin Lymphoma Following Treatment of Inflammatory Conditions with Tumor Necrosis Factor-Alpha Inhibitors. Blood 2015, 126, 2653. [Google Scholar] [CrossRef]
- Yang, C.; Zhang, M.; Lama, S.; Wang, L.; Merlin, D. Natural-lipid nanoparticle-based therapeutic approach to deliver 6-shogaol and its metabolites M2 and M13 to the colon to treat ulcerative colitis. J. Control. Release 2020, 323, 293–310. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, L.; Wang, Z.-D.; Zhou, Q.; Zhou, X.; Zhou, T.; Guan, Y.-X.; Liu, X. Surface-anchored microbial enzyme-responsive solid lipid nanoparticles enabling colonic budesonide release for ulcerative colitis treatment. J. Nanobiotechnol. 2023, 21, 145. [Google Scholar] [CrossRef]
- Mitchell, M.J.; Billingsley, M.M.; Haley, R.M.; Wechsler, M.E.; Peppas, N.A.; Langer, R. Engineering precision nanoparticles for drug delivery. Nat. Rev. Drug Discov. 2021, 20, 101–124. [Google Scholar] [CrossRef]
- Ashfaq, R.; Rasul, A.; Asghar, S.; Kovács, A.; Berkó, S.; Budai-Szűcs, M. Lipid Nanoparticles: An Effective Tool to Improve the Bioavailability of Nutraceuticals. Int. J. Mol. Sci. 2023, 24, 15764. [Google Scholar] [CrossRef]
- Yang, C.; Merlin, D. Can naturally occurring nanoparticle-based targeted drug delivery effectively treat inflammatory bowel disease? Expert. Opin. Drug Deliv. 2020, 17, 1–4. [Google Scholar] [CrossRef]
- Yu, L.; Deng, Z.; Liu, L.; Zhang, W.; Wang, C. Plant-Derived Nanovesicles: A Novel Form of Nanomedicine. Front. Bioeng. Biotechnol. 2020, 8, 584391. [Google Scholar] [CrossRef] [PubMed]
- Ye, L.; Wang, Y.; Xiao, F.; Wang, X.; Li, X.; Cao, R.; Zhang, J.; Zhang, T.F. Prausnitzii-derived extracellular vesicles attenuate experimental colitis by regulating intestinal homeostasis in mice. Microb. Cell Fact. 2023, 22, 235. [Google Scholar] [CrossRef] [PubMed]
- Balboni, A.; Ailuno, G.; Baldassari, S.; Drava, G.; Petretto, A.; Grinovero, N.; Cavalleri, O.; Angeli, E.; Lagomarsino, A.; Canepa, P.; et al. Human glioblastoma-derived cell membrane nanovesicles: A novel, cell-specific strategy for boron neutron capture therapy of brain tumors. Sci. Rep. 2024, 14, 19225. [Google Scholar] [CrossRef] [PubMed]
- Mougenot, M.F.; Pereira, V.S.; Costa, A.L.R.; Lancellotti, M.; Porcionatto, M.A.; da Silveira, J.C.; de la Torre, L.G. Biomimetic Nanovesicles—Sources, Design, Production Methods, and Applications. Pharmaceutics 2022, 14, 2008. [Google Scholar] [CrossRef]
- Sung, J.; Alghoul, Z.; Long, D.; Yang, C.; Merlin, D. Oral delivery of IL-22 mRNA-loaded lipid nanoparticles targeting the injured intestinal mucosa: A novel therapeutic solution to treat ulcerative colitis. Biomaterials 2022, 288, 121707. [Google Scholar] [CrossRef]
- Long, D.; Yang, C.; Sung, J.; Merlin, D. Atomic Force Microscopy to Characterize Ginger Lipid-Derived Nanoparticles (GLDNP). Bio-Protocol 2021, 11, e3969. [Google Scholar] [CrossRef]
- Mow, R.J.; Srinivasan, A.; Bolay, E.; Merlin, D.; Yang, C. Fluorescent Labeling and Imaging of IL-22 mRNA-Loaded Lipid Nanoparticles. Bio-Protocol 2024, 14, e4994. [Google Scholar] [CrossRef]
- Morral, C.; Ghinnagow, R.; Karakasheva, T.; Zhou, Y.; Thadi, A.; Li, N.; Yoshor, B.; Soto, G.; Chen, C.; Aleynick, D.; et al. Isolation of Epithelial and Stromal Cells from Colon Tissues in Homeostasis and Under Inflammatory Conditions. Bio-Protocol 2023, 13, e4825. [Google Scholar] [CrossRef]
- Kuczma, M.P.; Szurek, E.A.; Cebula, A.; Chassaing, B.; Jung, Y.-J.; Kang, S.-M.; Fox, J.G.; Stecher, B.; Ignatowicz, L. Commensal epitopes drive differentiation of colonic T(regs). Sci. Adv. 2020, 6, eaaz3186. [Google Scholar] [CrossRef]
- Zhang, M.; Viennois, E.; Prasad, M.; Zhang, Y.; Wang, L.; Zhang, Z.; Han, M.K.; Xiao, B.; Xu, C.; Srinivasan, S.; et al. Edible ginger-derived nanoparticles: A novel therapeutic approach for the prevention and treatment of inflammatory bowel disease and colitis-associated cancer. Biomaterials 2016, 101, 321–340. [Google Scholar] [CrossRef]
- Wardill, H.R.; Choo, J.M.; Dmochowska, N.; Mavrangelos, C.; Campaniello, M.A.; Bowen, J.M.; Rogers, G.B.; Hughes, P.A. Acute Colitis Drives Tolerance by Persistently Altering the Epithelial Barrier and Innate and Adaptive Immunity. Inflamm. Bowel Dis. 2019, 25, 1196–1207. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Sharma, K.; Mow, R.J.; Bolay, E.; Srinivasan, A.; Merlin, D. Unleashing the Potential of Oral Deliverable Nanomedicine in the Treatment of Inflammatory Bowel Disease. Cell. Mol. Gastroenterol. Hepatol. 2024, 18, 101333. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Alpini, G.; Glaser, S.; Merlin, D. Lipid nanoparticles for oral delivery of nucleic acids for treating inflammatory bowel disease. Nanomedicine 2022, 17, 1501–1504. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Zhuang, X.; Mu, J.; Deng, Z.B.; Jiang, H.; Zhang, L.; Xiang, X.; Wang, B.; Yan, J.; Miller, D.; et al. Delivery of Therapeutic Agents by Nanoparticles Made of Grapefruit-Derived Lipids. Nat. Commun. 2013, 4, 1867. [Google Scholar] [CrossRef] [PubMed]
- Jiang, D.; Li, Z.; Liu, H.; Liu, H.; Xia, X.; Xiang, X. Plant exosome-like nanovesicles derived from sesame leaves as carriers for luteolin delivery: Molecular docking, stability, and bioactivity. Food Chem. 2024, 438, 137963. [Google Scholar] [CrossRef]
- Zu, M.; Xie, D.; Canup, B.S.; Chen, N.; Wang, Y.; Sun, R.; Zhang, Z.; Fu, Y.; Dai, F.; Xiao, B. ‘Green’ nanotherapeutics from tea leaves for orally targeted prevention and alleviation of colon diseases. Biomaterials 2021, 279, 121178. [Google Scholar] [CrossRef]
- Chen, Q.; Li, Q.; Liang, Y.; Zu, M.; Chen, N.; Canup, B.S.; Luo, L.; Wang, C.; Zeng, L.; Xiao, B. Natural exosome-like nanovesicles from edible tea flowers suppress metastatic breast cancer via ROS generation and microbiota modulation. Acta Pharm. Sin. B 2022, 12, 907–923. [Google Scholar] [CrossRef]
- Gao, C.; Zhou, Y.; Chen, Z.; Li, H.; Xiao, Y.; Hao, W.; Zhu, Y.; Vong, C.T.; Farag, M.A.; Wang, Y.; et al. Turmeric-derived nanovesicles as novel nanobiologics for targeted therapy of ulcerative colitis. Theranostics 2022, 12, 5596–5614. [Google Scholar] [CrossRef]
- Hu, G.; Guo, M.; Xu, J.; Wu, F.; Fan, J.; Huang, Q.; Yang, G.; Lv, Z.; Wang, X.; Jin, Y. Nanoparticles Targeting Macrophages as Potential Clinical Therapeutic Agents Against Cancer and Inflammation. Front. Immunol. 2019, 10, 1998. [Google Scholar] [CrossRef]
- You, D.J.; Lee, H.Y.; Bonner, J.C. Macrophages: First Innate Immune Responders to Nanomaterials. In Interaction of Nanomaterials with the Immune System; Bonner, J.C., Brown, J.M., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 15–34. [Google Scholar] [CrossRef]
- Bendels, S.; Bissantz, C.; Fasching, B.; Gerebtzoff, G.; Guba, W.; Kansy, M.; Migeon, J.; Mohr, S.; Peters, J.-U.; Tillier, F.; et al. Safety screening in early drug discovery: An optimized assay panel. J. Pharmacol. Toxicol. Methods 2019, 99, 106609. [Google Scholar] [CrossRef]
Target | % Activity Data 1; Data 2 | IC (50) | Reference Compound | |
---|---|---|---|---|
A1 adenosine | 99 | 103 | 2.61 × 10−9 | CPDPX |
A2A adenosine | 100 | 101 | 5.69 × 10−8 | CGS 21680 |
alpha1A adrenergic | 108 | 108 | 9.27 × 10−9 | prazocin |
alpha2A adrenergic | 115 | 116 | 1.15 × 10−8 | RX 821002 |
beta 1 adrenergic | 103 | 103 | 1.02 × 10−8 | alprenolol |
CCK | 90 | 92 | 3.78 × 10−9 | lorglumide |
D1 dopamine | 106 | 101 | 9.01 × 10−10 | SCH 23390 |
D3 dopamine | 98 | 100 | 1.36 × 10−9 | 7-OH DPAT |
Muscarinic M1 | 100 | 99 | 4.94 × 10−9 | pirenzepine |
Muscarinic M2 | 122 | 110 | 1.79 × 10−8 | AF-DX 384 |
Muscarinic M3 | 100 | 97 | 1.11 × 10−8 | 4-DAMP |
5-HT1A | 99 | 98 | 3.71 × 10−9 | 8-OH DPAT |
5-HT1B | 100 | 99 | 4.85 × 10−9 | GR125743 |
5-HT2A | 99 | 96 | 4.66 × 10−9 | ketanserin |
5-HT3 | 94 | 98 | 1.09 × 10−9 | GR 65630 |
Central BZD | 103 | 101 | 2.24 × 10−9 | flumazenil |
GABA-A | 103 | 107 | 3.00 × 10−9 | bicuculline |
NMDA | 96 | 98 | 7.97 × 10−9 | MK-801 |
Thrombin alpha | 104 | 105 | 2.26 × 10−6 | gabexate mesylate |
PDE3A | 80 | 74 | 2.21 × 10−5 | IBMX |
PDE4A | 101 | 101 | 3.00 × 10−5 | IBMX |
CYP1A2 | 100 | 100 | 5.82 × 10−7 | furafylline |
CYP2C9 | 98 | 96 | 3.41 × 10−6 | ketoconazole |
CYP2D6 | 94 | 104 | 5.19 × 10−6 | ketoconazole |
CYP3A4 | 134 | 126 | 5.19 × 10−6 | ketoconazole |
CYP19A | 96 | 98 | 1.70 × 10−9 | letrozole |
AhR-activation | 91 | 96 | 1.05 × 10−8 | FICZ |
AhR-inhibition | 101 | 101 | 2.90 × 10−7 | GNF-351 + 10 nM FICZ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mow, R.J.; Kuczma, M.P.; Shi, X.; Mani, S.; Merlin, D.; Yang, C. Harnessing a Safe Novel Lipid Nanoparticle: Targeted Oral Delivery to Colonic Epithelial and Macrophage Cells in a Colitis Mouse Model. Nanomaterials 2024, 14, 1800. https://doi.org/10.3390/nano14221800
Mow RJ, Kuczma MP, Shi X, Mani S, Merlin D, Yang C. Harnessing a Safe Novel Lipid Nanoparticle: Targeted Oral Delivery to Colonic Epithelial and Macrophage Cells in a Colitis Mouse Model. Nanomaterials. 2024; 14(22):1800. https://doi.org/10.3390/nano14221800
Chicago/Turabian StyleMow, Rabeya Jafrin, Michal Pawel Kuczma, Xiaodi Shi, Sridhar Mani, Didier Merlin, and Chunhua Yang. 2024. "Harnessing a Safe Novel Lipid Nanoparticle: Targeted Oral Delivery to Colonic Epithelial and Macrophage Cells in a Colitis Mouse Model" Nanomaterials 14, no. 22: 1800. https://doi.org/10.3390/nano14221800
APA StyleMow, R. J., Kuczma, M. P., Shi, X., Mani, S., Merlin, D., & Yang, C. (2024). Harnessing a Safe Novel Lipid Nanoparticle: Targeted Oral Delivery to Colonic Epithelial and Macrophage Cells in a Colitis Mouse Model. Nanomaterials, 14(22), 1800. https://doi.org/10.3390/nano14221800