Characterization of HZO Films Fabricated by Co-Plasma Atomic Layer Deposition for Ferroelectric Memory Applications
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fabrication of HZO Films by PEALD
2.2. Evaluation of the Properties of the PEALD HZO Film
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Park, M.H.; Lee, Y.H.; Kim, H.J.; Kim, Y.J.; Moon, T.; Kim, K.D.; Müller, J.; Kersch, A.; Schroeder, U.; Mikolajick, T.; et al. Ferroelectricity and Antiferroelectricity of Doped Thin HfO2-Based Films. Adv. Mater. 2015, 27, 1811–1831. [Google Scholar] [CrossRef] [PubMed]
- Böscke, T.S.; Müller, J.; Bräuhaus, D.; Schröder, U.; Böttger, U. Ferroelectricity in Hafnium Oxide Thin Films. Appl. Phys. Lett. 2011, 99, 102903. [Google Scholar] [CrossRef]
- Muller, J.; Boscke, T.S.; Muller, S.; Yurchuk, E.; Polakowski, P.; Paul, J.; Martin, D.; Schenk, T.; Khullar, K.; Kersch, A.; et al. Ferroelectric Hafnium Oxide: A CMOS-Compatible and Highly Scalable Approach to Future Ferroelectric Memories. In Proceedings of the 2013 IEEE International Electron Devices Meeting, Washington, DC, USA, 9–11 December 2013; pp. 280–283. [Google Scholar] [CrossRef]
- Hyuk Park, M.; Joon Kim, H.; Jin Kim, Y.; Lee, W.; Moon, T.; Seong Hwang, C. Evolution of Phases and Ferroelectric Properties of Thin Hf0.5Zr0.5O2 Films According to the Thickness and Annealing Temperature. Appl. Phys. Lett. 2013, 102, 242905. [Google Scholar] [CrossRef]
- Palade, C.; Lepadatu, A.M.; Slav, A.; Cojocaru, O.; Iuga, A.; Maraloiu, V.A.; Moldovan, A.; Dinescu, M.; Teodorescu, V.S.; Stoica, T.; et al. A Nanoscale Continuous Transition from the Monoclinic to Ferroelectric Orthorhombic Phase inside HfO2 nanocrystals Stabilized by HfO2 capping and Self-Controlled Ge Doping. J. Mater. Chem. C 2021, 9, 12353–12366. [Google Scholar] [CrossRef]
- Hoffmann, M.; Schroeder, U.; Schenk, T.; Shimizu, T.; Funakubo, H.; Sakata, O.; Pohl, D.; Drescher, M.; Adelmann, C.; Materlik, R.; et al. Stabilizing the Ferroelectric Phase in Doped Hafnium Oxide. J. Appl. Phys. 2015, 118, 072006. [Google Scholar] [CrossRef]
- Müller, J.; Böscke, T.S.; Schröder, U.; Mueller, S.; Bräuhaus, D.; Böttger, U.; Frey, L.; Mikolajick, T. Ferroelectricity in Simple Binary ZrO2 and HfO2. Nano Lett. 2012, 12, 4318–4323. [Google Scholar] [CrossRef]
- Kobayashi, M.; Wu, J.; Sawabe, Y.; Takuya, S.; Hiramoto, T. Mesoscopic-Scale Grain Formation in HfO2-Based Ferroelectric Thin Films and Its Impact on Electrical Characteristics. Nano Converg. 2022, 9, 50. [Google Scholar] [CrossRef]
- Starschich, S.; Boettger, U. An Extensive Study of the Influence of Dopants on the Ferroelectric Properties of HfO2. J. Mater. Chem. C 2017, 5, 333–338. [Google Scholar] [CrossRef]
- Chen, G.H.; Chen, Y.R.; Zhao, Z.; Lee, J.Y.; Chen, Y.W.; Xing, Y.; Dobhal, R.; Liu, C.W. A Kinetic Pathway to Orthorhombic HfZrO. IEEE J. Electron Devices Soc. 2023, 11, 752–758. [Google Scholar] [CrossRef]
- Saha, A.K.; Ni, K.; Dutta, S.; Datta, S.; Gupta, S. Phase Field Modeling of Domain Dynamics and Polarization Accumulation in Ferroelectric HZO. Appl. Phys. Lett. 2019, 114, 202903. [Google Scholar] [CrossRef]
- Das, D.; Jeon, S. High-k HfxZr1−XO Ferroelectric Insulator by Utilizing High Pressure Anneal. IEEE Trans. Electron Devices 2020, 67, 2489–2494. [Google Scholar] [CrossRef]
- Lederer, M.; Olivo, R.; Lehninger, D.; Abdulazhanov, S.; Kämpfe, T.; Kirbach, S.; Mart, C.; Seidel, K.; Eng, L.M. On the Origin of Wake-Up and Antiferroelectric-Like Behavior in Ferroelectric Hafnium Oxide. Phys. Status Solidi Rapid Res. Lett. 2021, 15, 1–8. [Google Scholar] [CrossRef]
- Mart, C.; Kämpfe, T.; Zybell, S.; Weinreich, W. Layer Thickness Scaling and Wake-Up Effect of Pyroelectric Response in Si-Doped HfO2. Appl. Phys. Lett. 2018, 112, 052905. [Google Scholar] [CrossRef]
- Clima, S.; Wouters, D.J.; Adelmann, C.; Schenk, T.; Schroeder, U.; Jurczak, M.; Pourtois, G. Identification of the Ferroelectric Switching Process and Dopant-Dependent Switching Properties in Orthorhombic HfO2: A First Principles Insight. Appl. Phys. Lett. 2014, 104, 092906. [Google Scholar] [CrossRef]
- Hsiang, K.Y.; Liao, C.Y.; Lin, Y.Y.; Lin, C.Y.; Lee, J.Y.; Chang, F.S.; Li, Z.X.; Tseng, H.C.; Wang, C.C.; Ray, W.C.; et al. Correlation between Access Polarization and High Endurance (~1012 Cycling) of Ferroelectric and Anti-ferroelectric HfZrO2. In Proceedings of the 2022 IEEE International Reliability Physics Symposium (IRPS), Dallas, TX, USA, 27–31 March 2022; pp. 12–15. [Google Scholar] [CrossRef]
- Seo, M.; Kang, M.H.; Jeon, S.B.; Bae, H.; Hur, J.; Jang, B.C.; Yun, S.; Cho, S.; Kim, W.K.; Kim, M.S.; et al. First Demonstration of a Logic-Process Compatible Junctionless Ferroelectric FinFET Synapse for Neuromorphic Applications. IEEE Electron Device Lett. 2018, 39, 1445–1448. [Google Scholar] [CrossRef]
- Oh, S.; Kim, T.; Kwak, M.; Song, J.; Woo, J.; Jeon, S.; Yoo, I.K.; Hwang, H. HfZrOx-Based Ferroelectric Synapse Device with 32 Levels of Conductance States for Neuromorphic Applications. IEEE Electron Device Lett. 2017, 38, 732–735. [Google Scholar] [CrossRef]
- Kim, B.S.; Hyun, S.D.; Moon, T.; Do Kim, K.; Lee, Y.H.; Park, H.W.; Lee, Y.B.; Roh, J.; Kim, B.Y.; Kim, H.H.; et al. A Comparative Study on the Ferroelectric Performances in Atomic Layer Deposited Hf0.5Zr0.5O2 Thin Films Using Tetrakis(Ethylmethylamino) and Tetrakis(Dimethylamino) Precursors. Nanoscale Res. Lett. 2020, 15, 72. [Google Scholar] [CrossRef]
- Hur, J.; Tasneem, N.; Choe, G.; Wang, P.; Wang, Z.; Khan, A.I.; Yu, S. Direct comparision of ferroelectric properites in Hf0.5Zr0.5O2 between thermal and plasma-enhanced atomic layer depostion. Nanotechnology 2020, 31, 505707. [Google Scholar] [CrossRef]
- Hur, J.; Luo, Y.C.; Wang, P.; Tasneem, N.; Khan, A.I.; Yu, S. Ferroelectric Tunnel Junction Optimization by Plasma-Enhanced Atomic Layer Deposition. In Proceedings of the 2020 IEEE Silicon Nanoelectronics Workshop (SNW), Honolulu, HI, USA, 13–14 June 2020; pp. 11–12. [Google Scholar] [CrossRef]
- Hur, J.; Wang, P.; Tasneem, N.; Wang, Z.; Khan, A.I.; Yu, S. Exploring argon plasma effect on ferroelectric Hf0.5Zr0.5O2 thin film atomic layer deposition. J. Mater. Res. 2021, 36, 1206–1213. [Google Scholar] [CrossRef]
- Hur, J.; Luo, Y.C.; Tasneem, N.; Khan, A.I.; Yu, S. Ferroelectric Hafnium Zirconium Oxide Compatible with Back-End-of-Line Process. IEEE Trans. Electron Devices 2021, 68, 3176–3180. [Google Scholar] [CrossRef]
- Piallat, F.; Beugin, V.; Gassilloud, R.; Dussault, L.; Pelissier, B.; Leroux, C.; Caubet, P.; Vallée, C. Interface and Plasma Damage Analysis of PEALD TaCN Deposited on HfO2 for Advanced CMOS Studied by Angle Resolved XPS and C-V. Appl. Surf. Sci. 2014, 303, 388–392. [Google Scholar] [CrossRef]
- Zhao, M.J.; Zhang, Z.X.; Hsu, C.H.; Wu, W.Y.; Zhang, X.Y.; Lien, S.Y.; Zhu, W.Z. In2O3 Film Prepared by a PEALD Process with Balanced Oxygen Radical Supply and Ion Bombardment Damage. Vacuum 2021, 192, 110411. [Google Scholar] [CrossRef]
- Kim, H.G.; Hong, D.H.; Yoo, J.H.; Lee, H.C. Effect of Process Temperature on Density and Electrical Characteristics of Hf0.5Zr0.5O2 Thin Films Prepared by Plasma-Enhanced Atomic Layer Deposition. Nanomaterials 2022, 12, 548. [Google Scholar] [CrossRef]
- Hong, D.H.; Yoo, J.H.; Park, W.J.; Kim, S.W.; Kim, J.H.; Uhm, S.H.; Lee, H.C. Characteristics of Hf0.5Zr0.5O2 Thin Films Prepared by Direct and Remote Plasma Atomic Layer Deposition for Application to Ferroelectric Memory. Nanomaterials 2023, 13, 900. [Google Scholar] [CrossRef]
- Oh, N.K.; Kim, J.-T.; Ahn, J.-K.; Kang, G.; Kim, S.Y.; Yun, J.-Y. The Effects of Thermal Decomposition of Tetrakis-Ethylmethylaminohafnium (TEMAHf) Precursors on HfO2 Film Growth Using Atomic Layer Deposition. Appl. Sci. Converg. Technol. 2016, 25, 56–60. [Google Scholar] [CrossRef]
- Zhou, D.; Xu, J.; Li, Q.; Guan, Y.; Cao, F.; Dong, X.; Müller, J.; Schenk, T.; Schröder, U. Wake-up Effects in Si-Doped Hafnium Oxide Ferroelectric Thin Films. Appl. Phys. Lett. 2013, 103, 192904. [Google Scholar] [CrossRef]
- Chen, J.; Jin, C.; Yu, X.; Jia, X.; Peng, Y.; Liu, Y.; Chen, B.; Cheng, R.; Han, G. Impact of Oxygen Vacancy on Ferroelectric Characteristics and Its Implication for Wake-Up and Fatigue of HfO2-Based Thin Films. IEEE Trans. Electron Devices 2022, 69, 5297–5301. [Google Scholar] [CrossRef]
- Jiang, P.; Wei, W.; Yang, Y.; Wang, Y.; Xu, Y.; Tai, L.; Yuan, P.; Chen, Y.; Gao, Z.; Gong, T.; et al. Stabilizing Remanent Polarization during Cycling in HZO-Based Ferroelectric Device by Prolonging Wake-Up Period. Adv. Electron. Mater. 2022, 8, 2100662. [Google Scholar] [CrossRef]
- Onaya, T.; Nabatame, T.; Inoue, M.; Jung, Y.C.; Hernandez-Arriaga, H.; Mohan, J.; Kim, H.S.; Sawamoto, N.; Nagata, T.; Kim, J.; et al. Improvement of Ferroelectricity and Fatigue Property of Thicker HfxZr1−XO2/ZrO2 Bi-Layer. ECS Meet. Abstr. 2020; MA2020-02, 1361. [Google Scholar] [CrossRef]
- Pilz, J.; Perrotta, A.; Leising, G.; Coclite, A.M. ZnO Thin Films Grown by Plasma-Enhanced Atomic Layer Deposition: Material Properties Within and Outside the “Atomic Layer Deposition Window”. Phys. Status Solidi Appl. Mater. Sci. 2020, 217, 1900256. [Google Scholar] [CrossRef]
- Kalanyan, B.; Lemaire, P.C.; Atanasov, S.E.; Ritz, M.J.; Parsons, G.N. Using Hydrogen to Expand the Inherent Substrate Selectivity Window During Tungsten Atomic Layer Deposition. Chem. Mater. 2016, 28, 117–126. [Google Scholar] [CrossRef]
- Gaddam, V.; Das, D.; Jeon, S. Insertion of HfO2 Seed/Dielectric Layer to the Ferroelectric HZO Films for Heightened Remanent Polarization in MFM Capacitors. IEEE Trans. Electron Devices 2020, 67, 745–750. [Google Scholar] [CrossRef]
- Buyantogtokh, B.; Gaddam, V.; Jeon, S. Effect of High Pressure Anneal on Switching Dynamics of Ferroelectric Hafnium Zirconium Oxide Capacitors. J. Appl. Phys. 2021, 129, 244106. [Google Scholar] [CrossRef]
- Hsain, H.A.; Lee, Y.; Parsons, G.; Jones, J.L. Compositional Dependence of Crystallization Temperatures and Phase Evolution in Hafnia-Zirconia (HfxZr1-x)O2 thin Films. Appl. Phys. Lett. 2020, 116, 192901. [Google Scholar] [CrossRef]
- Yoo, J.H.; Park, W.J.; Kim, S.W.; Lee, G.R.; Kim, J.H.; Lee, J.H.; Uhm, S.H.; Lee, H.C. Preparation of Remote Plasma Atomic Layer-Deposited HfO2 Thin Films with High Charge Trapping Densities and Their Application in Nonvolatile Memory Devices. Nanomaterials 2023, 13, 1785. [Google Scholar] [CrossRef]
- Peši, M.; Fengler, F.P.G.; Larcher, L.; Padovani, A.; Schenk, T.; Grimley, E.D.; Sang, X.; LeBeau, J.M.; Slesazeck, S.; Schroeder, U.; et al. Physical Mechanisms behind the Field-Cycling Behavior of HfO2-Based Ferroelectric Capacitors. Adv. Funct. Mater. 2016, 26, 4601–4612. [Google Scholar] [CrossRef]
- Chouprik, A.; Negrov, D.; Tsymbal, E.Y.; Zenkevich, A. Defects in ferroelectric HfO2. Nanoscale 2021, 13, 11635–11678. [Google Scholar] [CrossRef]
- Liu, C.F.; Tang, X.G.; Guo, X.B.; Liu, Q.X.; Jiang, Y.P.; Tang, Z.H.; Li, W.H. Photodiode Characteristics of HfO2 Thin Films Prepared by Magnetron Sputtering. Mater. Des. 2020, 188, 108465. [Google Scholar] [CrossRef]
- Driemeier, C.; Wallace, R.M.; Baumvol, I.J.R. Oxygen species in HfO2 films: An in situ X-ray photoelectron spectroscopy study. J. Appl. Phys. Chem. 2007, 102, 024112. [Google Scholar]
- Kashir, A.; Kim, H.; Oh, S.; Hwang, H. Large Remnant Polarization in a Wake-Up Free Hf0.5Zr0.5O2Ferroelectric Film Through Bulk and Interface Engineering. ACS Appl. Electron. Mater. 2021, 3, 629–638. [Google Scholar] [CrossRef]
- Kim, S.J.; Narayan, D.; Lee, J.G.; Mohan, J.; Lee, J.S.; Lee, J.; Kim, H.S.; Byun, Y.C.; Lucero, A.T.; Young, C.D.; et al. Large Ferroelectric Polarization of TiN/Hf0.5Zr0.5O2/TiN Capacitors Due to Stress-Induced Crystallization at Low Thermal Budget. Appl. Phys. Lett. 2017, 111, 242901. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, W.-J.; Kim, H.-J.; Lee, J.-H.; Kim, J.-H.; Uhm, S.-H.; Kim, S.-W.; Lee, H.-C. Characterization of HZO Films Fabricated by Co-Plasma Atomic Layer Deposition for Ferroelectric Memory Applications. Nanomaterials 2024, 14, 1801. https://doi.org/10.3390/nano14221801
Park W-J, Kim H-J, Lee J-H, Kim J-H, Uhm S-H, Kim S-W, Lee H-C. Characterization of HZO Films Fabricated by Co-Plasma Atomic Layer Deposition for Ferroelectric Memory Applications. Nanomaterials. 2024; 14(22):1801. https://doi.org/10.3390/nano14221801
Chicago/Turabian StylePark, Won-Ji, Ha-Jung Kim, Joung-Ho Lee, Jong-Hwan Kim, Sae-Hoon Uhm, So-Won Kim, and Hee-Chul Lee. 2024. "Characterization of HZO Films Fabricated by Co-Plasma Atomic Layer Deposition for Ferroelectric Memory Applications" Nanomaterials 14, no. 22: 1801. https://doi.org/10.3390/nano14221801
APA StylePark, W. -J., Kim, H. -J., Lee, J. -H., Kim, J. -H., Uhm, S. -H., Kim, S. -W., & Lee, H. -C. (2024). Characterization of HZO Films Fabricated by Co-Plasma Atomic Layer Deposition for Ferroelectric Memory Applications. Nanomaterials, 14(22), 1801. https://doi.org/10.3390/nano14221801