The Effect of Solute Elements Co-Segregation on Grain Boundary Energy and the Mechanical Properties of Aluminum by First-Principles Calculation
Abstract
:1. Introduction
2. Materials and Methods
2.1. First-Principles Calculation
2.2. Grain Boundary Model
2.3. Mechanical Property Calculation
3. Results
3.1. Segregation Site of Mg
3.2. Energy Properties of GB
3.3. Mechanical Properties of GB
4. Discussion
4.1. Charge Density Analysis
4.2. Partial Density of States
4.3. Crystal Orbital Hamiltonian Populations and Bader Charge
5. Conclusions
- (1)
- By calculating the segregation energy of Mg at different positions of the Cu-segregated Σ5(210) GB, the segregation preference and the preferred location of Mg at the GB were identified. The results indicate that Mg tends to substitute the Al atom and form segregation at the position of the GB that is far from the interstitial segregation of Cu.
- (2)
- Mg and Cu co-segregation significantly alters the energy properties of the GB. GB energy calculations exhibit that Mg and Cu co-segregation notably decreases GB energy, which further improves the stability of the Σ5(210) GB compared with Mg or Cu segregation alone. The segregation of Cu enhances Mg segregation, and this effect strengthens with increased Cu concentration. According to the analysis of the binding energy between Mg and Cu, the primary factor driving Cu to facilitate Mg segregation is the energy of mutual attraction between them.
- (3)
- First-principles tensile test calculation performed on the mechanical properties of the GB indicate that Cu can inhibit the weakening effect caused by Mg segregation at the Al GB. With the increased number of segregated Cu atoms, the inhibition becomes more obvious. Mg weakens the strengthening effect of low concentration Cu, and the GB strength decreases gradually with the increase in Mg atoms. However, Mg strengthens the GB in the case of a GB with a high concentration of Cu atoms.
- (4)
- The results of the charge density, PDOS, and COHP calculations indicate that the compensating effect of Cu on the GB strength is mainly ascribed to the increment of charge density at the GB core region, the newly formed Cu-Al bonds, and stronger Al-Al bonds. The strengthening effect of Mg on the GB with a high concentration of Cu can be attributed to the fact that the segregation of Mg slows the expansion of the GB, although Mg reduces the charge density of the GB. Also, the segregated Mg atoms increased the Cu-Al and Al-Al bonding involving charge transfer with surrounding atoms.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kumar, K.S.; Van Swygenhoven, H.; Suresh, S. Mechanical behavior of nanocrystalline metals and alloys. Acta Mater. 2003, 51, 5743–5774. [Google Scholar] [CrossRef]
- Zhang, L.; Shibuta, Y.; Lu, C.; Huang, X. Interaction between nano-voids and migrating grain boundary by molecular dynamics simulation. Acta Mater. 2019, 173, 206–224. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, Z.; Zhang, X.; Huang, X. Computational simulation of grain boundary segregation of solute atoms in nanocrystalline metals. J. Mater. Res. Technol. 2022, 21, 161–185. [Google Scholar] [CrossRef]
- Dao, M.; Lu, L.; Asaro, R.J.; De Hosson, J.T.M.; Ma, E. Toward a quantitative understanding of mechanical behavior of nanocrystalline metals. Acta Mater. 2007, 55, 4041–4065. [Google Scholar] [CrossRef]
- Weertman, J.R. Retaining the Nano in Nanocrystalline Alloys. Science 2012, 337, 921–922. [Google Scholar] [CrossRef] [PubMed]
- Gertsman, V.Y.; Birringer, R. On the room-temperature grain growth in nanocrystalline copper. Scr. Metall. Mater. 1994, 30, 577–581. [Google Scholar] [CrossRef]
- Hu, J.; Shi, Y.N.; Sauvage, X.; Sha, G.; Lu, K. Grain boundary stability governs hardening and softening in extremely fine nanograined metals. Science 2017, 355, 1292–1296. [Google Scholar] [CrossRef] [PubMed]
- Murdoch, H.A.; Schuh, C.A. Estimation of grain boundary segregation enthalpy and its role in stable nanocrystalline alloy design. J. Mater. Res. 2013, 28, 2154–2163. [Google Scholar] [CrossRef]
- Raabe, D.; Herbig, M.; Sandlöbes, S.; Li, Y.; Tytko, D.; Kuzmina, M.; Ponge, D.; Choi, P.P. Grain boundary segregation engineering in metallic alloys: A pathway to the design of interfaces. Curr. Opin. Solid State Mater. Sci. 2014, 18, 253–261. [Google Scholar] [CrossRef]
- Hu, C.; Dingreville, R.; Boyce, B.L. Computational modeling of grain boundary segregation: A review. Comput. Mater. Sci. 2024, 232, 112596. [Google Scholar] [CrossRef]
- Detor, A.J.; Schuh, C.A. Microstructural evolution during the heat treatment of nanocrystalline alloys. J. Mater. Res. 2007, 22, 3233–3248. [Google Scholar] [CrossRef]
- Detor, A.J.; Schuh, C.A. Grain boundary segregation, chemical ordering and stability of nanocrystalline alloys: Atomistic computer simulations in the Ni–W system. Acta Mater. 2007, 55, 4221–4232. [Google Scholar] [CrossRef]
- Li, Y.; Raabe, D.; Herbig, M.; Choi, P.P.; Goto, S.; Kostka, A.; Yarita, H.; Borchers, C.; Kirchheim, R. Segregation Stabilizes Nanocrystalline Bulk Steel with Near Theoretical Strength. Phys. Rev. Lett. 2014, 113, 106104. [Google Scholar] [CrossRef]
- Shuai, L.; Huang, T.; Yu, T.; Wu, G.; Hansen, N.; Huang, X. Segregation and precipitation stabilizing an ultrafine lamellar-structured Al-0.3%Cu alloy. Acta Mater. 2021, 206, 116595. [Google Scholar] [CrossRef]
- Valiev, R.Z.; Enikeev, N.A.; Murashkin, M.Y.; Kazykhanov, V.U.; Sauvage, X. On the origin of the extremely high strength of ultrafine-grained Al alloys produced by severe plastic deformation. Scr. Mater. 2010, 63, 949–952. [Google Scholar] [CrossRef]
- Xu, W.; Liu, X.C.; Li, X.Y.; Lu, K. Deformation induced grain boundary segregation in nanolaminated Al–Cu alloy. Acta Mater. 2020, 182, 207–214. [Google Scholar] [CrossRef]
- Jia, H.; Bjørge, R.; Cao, L.; Song, H.; Marthinsen, K.; Li, Y. Quantifying the grain boundary segregation strengthening induced by post-ECAP aging in an Al-5Cu alloy. Acta Mater. 2018, 155, 199–213. [Google Scholar] [CrossRef]
- Zha, M.; Zhang, H.-M.; Meng, X.-T.; Jia, H.-L.; Jin, S.-B.; Sha, G.; Wang, H.-Y.; Li, Y.-J.; Roven, H.J. Stabilizing a severely deformed Al–7Mg alloy with a multimodal grain structure via Mg solute segregation. J. Mater. Sci. Technol. 2021, 89, 141–149. [Google Scholar] [CrossRef]
- Wang, J.; Li, F. Research Status and Prospective Properties of the Al-Zn-Mg-Cu Series Aluminum Alloys. Metals 2023, 13, 1329. [Google Scholar] [CrossRef]
- Kuang, Z.; Han, Z.; Wang, C.; Xia, Y.; Sun, Y.; Ju, B.; Yang, W.; Sun, D.; Chen, G.; Wu, G.; et al. Si and Mg additions on the interfacial properties and mechanical properties of Be/Al composites: First-principles calculations and experimental studies. Surf. Interfaces 2024, 46, 103971. [Google Scholar] [CrossRef]
- Yang, R.; Feng, Z.; Huang, T.; Wu, G.; Godfrey, A.; Huang, X. Unprecedented age-hardening and its structural requirement in a severely deformed Al-Cu-Mg alloy. Scr. Mater. 2022, 206, 114240. [Google Scholar] [CrossRef]
- Zhao, H.; De Geuser, F.; da Silva, A.K.; Szczepaniak, A.; Gault, B.; Ponge, D.; Raabe, D. Segregation assisted grain boundary precipitation in a model Al-Zn-Mg-Cu alloy. Acta Mater. 2018, 156, 318–329. [Google Scholar] [CrossRef]
- Sha, G.; Yao, L.; Liao, X.; Ringer, S.P.; Duan, Z.C.; Langdon, T.G. Segregation of solute elements at grain boundaries in an ultrafine grained Al–Zn–Mg–Cu alloy. Ultramicroscopy 2011, 111, 500–505. [Google Scholar] [CrossRef]
- Cheng, B.; Zhao, X.; Zhang, Y.; Chen, H.; Polmear, I.; Nie, J.-F. Co-segregation of Mg and Zn atoms at the planar η1-precipitate/Al matrix interface in an aged Al–Zn–Mg alloy. Scr. Mater. 2020, 185, 51–55. [Google Scholar] [CrossRef]
- Sha, G.; Marceau, R.K.W.; Gao, X.; Muddle, B.C.; Ringer, S.P. Nanostructure of aluminium alloy 2024: Segregation, clustering and precipitation processes. Acta Mater. 2011, 59, 1659–1670. [Google Scholar] [CrossRef]
- Song, R.G.; Tseng, M.K.; Zhang, B.J.; Liu, J.; Jin, Z.H.; Shin, K.S. Grain boundary segregation and hydrogen-induced fracture in 7050 aluminium alloy. Acta Mater. 1996, 44, 3241–3248. [Google Scholar] [CrossRef]
- Parvizi, R.; Hughes, A.E.; Glenn, A.M.; Cizek, P.; Tan, M.Y.; Forsyth, M. Role of microstructure in corrosion initiation of a highly-deformed AA2024 wire. Corros. Sci. 2018, 144, 184–197. [Google Scholar] [CrossRef]
- Mahjoub, R.; Laws, K.J.; Stanford, N.; Ferry, M. General trends between solute segregation tendency and grain boundary character in aluminum—An ab inito study. Acta Mater. 2018, 158, 257–268. [Google Scholar] [CrossRef]
- Lu, G.; Kioussis, N. Interaction of vacancies with a grain boundary in aluminum: A first-principles study. Phys. Rev. B 2001, 64, 024101. [Google Scholar] [CrossRef]
- Zhang, Y.; Lu, G.-H.; Deng, S.; Wang, T.; Xu, H.; Kohyama, M.; Yamamoto, R. Weakening of an aluminum grain boundary induced by sulfur segregation: A first-principles computational tensile test. Phys. Rev. B 2007, 75, 174101. [Google Scholar] [CrossRef]
- Ma, N.; Yu, X.; Liu, E.; Zhao, D.; Sha, J.; He, C.; Li, Y.; Zhao, N. First-principles interpretation toward the effects of Cu, Mg co-segregation on the strength of Al Σ5 (210) grain boundary. J. Mater. Sci. 2024, 59, 2008–2023. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, L.; Wan, Y.; Shibuta, Y.; Huang, X. Predicting the grain boundary segregation energy of solute atoms in aluminum by first-principles calculation and machine learning. Mater. Today Commun. 2024, 41, 110326. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, L.; Zhang, Z.; Huang, X. Effect of solute atoms segregation on Al grain boundary energy and mechanical properties by first-principles study. Mech. Mater. 2023, 185, 104775. [Google Scholar] [CrossRef]
- Razumovskiy, V.I.; Ruban, A.V.; Razumovskii, I.M.; Lozovoi, A.Y.; Butrim, V.N.; Vekilov, Y.K. The effect of alloying elements on grain boundary and bulk cohesion in aluminum alloys: An ab initio study. Scr. Mater. 2011, 65, 926–929. [Google Scholar] [CrossRef]
- Liu, X.; Wang, X.; Wang, J.; Zhang, H. First-principles investigation of Mg segregation at Σ = 11(113) grain boundaries in Al. J. Phys. Condens. Matter 2005, 17, 4301–4308. [Google Scholar] [CrossRef]
- Yu, X.; Xie, H.; Zhao, D.; Shi, C.; He, C.; Liu, E.; Sha, J.; Zhao, N. On the affected strength of Al grain boundaries by Zn segregation: A first-principles interpretation. Comput. Mater. Sci. 2022, 212, 111604. [Google Scholar] [CrossRef]
- Song, K.; Cao, S.; Bao, Y.; Qian, P.; Su, Y. Designing hydrogen embrittlement-resistant grain boundary in steel by alloying elements segregation: First-principles calculations. Appl. Surf. Sci. 2024, 656, 159684. [Google Scholar] [CrossRef]
- Huang, Z.; Chen, F.; Shen, Q.; Zhang, L.; Rupert, T.J. Combined effects of nonmetallic impurities and planned metallic dopants on grain boundary energy and strength. Acta Mater. 2019, 166, 113–125. [Google Scholar] [CrossRef]
- Xiao, Z.; Hu, J.; Liu, Y.; Dong, F.; Huang, Y. Co-segregation behavior of Sc and Zr solutes and their effect on the Al Σ5 (210) [110] symmetrical tilt grain boundary: A first-principles study. Phys. Chem. Chem. Phys. 2019, 21, 19437–19446. [Google Scholar] [CrossRef]
- Long, M.; Yao, Z.; Du, W.; Shu, C.; Kong, X.; Zhang, S. First-principles calculations of co-segregation behavior of transition metal solutes and hydrogen along aluminum grain boundaries. Comput. Mater. Sci. 2024, 231, 112560. [Google Scholar] [CrossRef]
- Cui, Y.; Song, K.; Bao, Y.; Zhu, Y.; Liu, Q.; Qian, P. Effect of Cu and Mg co-segregation on the strength of the Al grain boundaries: A molecular dynamics simulation. Comput. Mater. Sci. 2023, 229, 112391. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set—ScienceDirect. Comput. Mater. Sci. 1996, 6, 15–50. [Google Scholar] [CrossRef]
- Kresse, G.G.; Furthmüller, J.J. Efficient Iterative Schemes for Ab Initio Total-Energy Calculations Using a Plane-Wave Basis Set. Phys. Rev. B Condens. Matter 1996, 54, 11169. [Google Scholar] [CrossRef] [PubMed]
- Straumanis, M.E.; Woodward, C.L. Lattice parameters and thermal expansion coefficients of Al, Ag and Mo at low temperatures. Comparison with dilatometric data. Acta Crystallogr. Sect. A 1971, 27, 549–551. [Google Scholar] [CrossRef]
- He, C.; Li, Z.; Chen, H.; Wilson, N.; Nie, J.-F. Unusual solute segregation phenomenon in coherent twin boundaries. Nat. Commun. 2021, 12, 722. [Google Scholar] [CrossRef]
- Jiang, S.; Chen, J.; Lu, T.; Long, Y.; Sun, K. Correlation of the atomic and electronic structures and the optical properties of the Σ5(210)/[001] symmetric tilt grain boundary in yttrium aluminum garnet. Acta Mater. 2012, 60, 7041–7050. [Google Scholar] [CrossRef]
- Zhang, L.; Lu, C.; Michal, G.; Tieu, K.; Zhao, X.; Deng, G. Influence of temperature and local structure on the shear-coupled grain boundary migration. Phys. Status Solidi B 2017, 254, 1600477. [Google Scholar] [CrossRef]
- Zhang, L.; Mao, W.; Liu, M.; Shibuta, Y. Mechanical response and plastic deformation of coherent twin boundary with perfect and defective structures. Mech. Mater. 2020, 141, 103266. [Google Scholar] [CrossRef]
- Liao, Z.; Zhang, L.; Xie, J.; Huang, X. Atomic-scale investigation on the structures and mechanical properties of metastable grain boundaries in aluminum. Mater. Today Commun. 2024, 41, 110851. [Google Scholar] [CrossRef]
- Campbell, G.H.; Jürgen, M.P.; King, W.E.; Foiles, S.M.; Kisielowski, C.; Duscher, G.J.M. Copper Segregation to the Σ5 (310)/[001] Symmetric Tilt Grain Boundary in Aluminum. Interface Sci. 2004, 12, 165–174. [Google Scholar] [CrossRef]
- Zhao, D.; Løvvik, O.M.; Marthinsen, K.; Li, Y.; Mg, S.O. Cu and their effects on the strength of Al Σ5 (210)[001] symmetrical tilt grain boundary. Acta Mater. 2018, 145, 235–246. [Google Scholar] [CrossRef]
- Momma, K.; Izumi, F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 2011, 44, 1272–1276. [Google Scholar] [CrossRef]
- Wu, X.; You, Y.-W.; Kong, X.-S.; Chen, J.-L.; Luo, G.N.; Lu, G.-H.; Liu, C.S.; Wang, Z. First-principles determination of grain boundary strengthening in tungsten: Dependence on grain boundary structure and metallic radius of solute. Acta Mater. 2016, 120, 315–326. [Google Scholar] [CrossRef]
- Hu, J.; Xiao, Z.; Huang, Y. Segregation of solute elements and their effects on the strength of Al Σ5 (210) [001] symmetrical tilt grain boundary in 2219 alloys. Mater. Sci. Eng. A 2021, 800, 140261. [Google Scholar] [CrossRef]
- Tian, Z.X.; Yan, J.X.; Xiao, W.; Geng, W.T. Effect of lateral contraction and magnetism on the energy release upon fracture in metals: First-principles computational tensile tests. Phys. Rev. B 2009, 79, 144114. [Google Scholar] [CrossRef]
- Hasson, G.C.; Goux, C. Interfacial energies of tilt boundaries in aluminium. Experimental and theoretical determination. Scr. Metall. 1971, 5, 889–894. [Google Scholar] [CrossRef]
- Millett, P.C.; Selvam, R.P.; Saxena, A. Molecular dynamics simulations of grain size stabilization in nanocrystalline materials by addition of dopants. Acta Mater. 2006, 54, 297–303. [Google Scholar] [CrossRef]
- Millett, P.C.; Selvam, R.P.; Bansal, S.; Saxena, A. Atomistic simulation of grain boundary energetics—Effects of dopants. Acta Mater. 2005, 53, 3671–3678. [Google Scholar] [CrossRef]
- Wu, X.; Kong, X.S.; You, Y.W.; Liu, W.; Liu, C.S.; Chen, J.L.; Luo, G.N. Effect of transition metal impurities on the strength of grain boundaries in vanadium. J. Appl. Phys. 2016, 120, 095901. [Google Scholar] [CrossRef]
- Rose, J.H.; Ferrante, J.; Smith, J.R. Universal Binding Energy Curves for Metals and Bimetallic Interfaces. Phys. Rev. Lett. 1981, 47, 675–678. [Google Scholar] [CrossRef]
- Rose, J.H.; Smith, J.R.; Ferrante, J. Universal features of bonding in metals. Phys. Rev. B 1983, 28, 1835–1845. [Google Scholar] [CrossRef]
- Wang, X.; Yu, X.; Zhao, D.; Sha, J.; Shi, C.; He, C.; Zhao, N. First-principles investigation of the Mg, Cu segregation at Al Σ5 (310) and Σ9 (221) symmetrical tilt grain boundaries. J. Alloys Compd. 2024, 983, 173831. [Google Scholar] [CrossRef]
- Lynch, S. A review of underlying reasons for intergranular cracking for a variety of failure modes and materials and examples of case histories. Eng. Fail. Anal. 2019, 100, 329–350. [Google Scholar] [CrossRef]
- Nelson, R.; Ertural, C.; George, J.; Deringer, V.L.; Hautier, G.; Dronskowski, R. LOBSTER: Local orbital projections; atomic charges, and chemical-bonding analysis from projector-augmented-wave-based density-functional theory. J. Comput. Chem. 2020, 41, 1931–1940. [Google Scholar] [CrossRef]
- Yu, M.; Trinkle, D.R. Accurate and efficient algorithm for Bader charge integration. J. Chem. Phys. 2011, 134, 064111. [Google Scholar] [CrossRef]
0 Mg | 1 Mg | 2 Mg | 3 Mg | 4 Mg | ||
---|---|---|---|---|---|---|
0 Cu | Strength (GPa) | 10.71 | 10.29 | 9.84 | 9.45 | 9.02 |
Fracture energy (J/m2) | 1.75 | 1.73 | 1.72 | 1.67 | 1.67 | |
Critical distance (Å) | 0.612 | 0.619 | 0.643 | 0.667 | 0.691 | |
1 Cu | Strength (GPa) | 11.38 | 11.01 | 10.53 | 10.24 | 9.94 |
Fracture energy (J/m2) | 1.86 | 1.84 | 1.82 | 1.81 | 1.80 | |
Critical distance (Å) | 0.612 | 0.613 | 0.637 | 0.649 | 0.667 | |
2 Cu | Strength (GPa) | 11.88 | 11.53 | 11.81 | 11.05 | 10.83 |
Fracture energy (J/m2) | 1.95 | 1.93 | 1.91 | 1.93 | 1.92 | |
Critical distance (Å) | 0.612 | 0.619 | 0.619 | 0.637 | 0.649 | |
3 Cu | Strength (GPa) | 12.81 | 12.51 | 12.28 | 12.19 | 12.18 |
Fracture energy (J/m2) | 2.07 | 2.08 | 2.07 | 2.09 | 2.09 | |
Critical distance (Å) | 0.594 | 0.613 | 0.619 | 0.625 | 0.631 | |
4 Cu | Strength (GPa) | 13.39 | 13.35 | 13.34 | 13.40 | 13.51 |
Fracture energy (J/m2) | 2.15 | 2.19 | 2.23 | 2.26 | 2.29 | |
Critical distance (Å) | 0.589 | 0.601 | 0.613 | 0.619 | 0.625 |
System | Bond | ICOHP (eV/Bond) | Atom | Bader Charge (e) | |
---|---|---|---|---|---|
Atom in GB | Atom in Bulk | ||||
GB + 4 Cu | Al (1)-Al (2′) | −1.05 | Al (1) | 2.35 | 3.0 |
Al (2)-Al (2′) | −1.65 | Al (2) | 2.55 | 3.0 | |
Cu-Al (3) | −1.75 | Al (3) | 2.73 | 3.0 | |
Al (1)-Al (4) | −1.01 | Al (4) | 2.55 | 3.0 | |
Al (1)-Al (5) | −0.95 | Al (5) | 2.73 | 3.0 | |
Cu-Al (4) | −1.59 | Cu | 13.10 | 11.0 | |
GB + 4 (Cu + Mg) | Al (2)-Al (2′) | −2.42 | Mg | 0.52 | 2.0 |
Mg-Al (2′) | −0.14 | Al (2) | 2.72 | 3.0 | |
Cu-Al (3) | −2.08 | Al (3) | 2.83 | 3.0 | |
Mg-Al (4) | −0.15 | Al (4) | 2.72 | 3.0 | |
Mg-Al (5) | −0.14 | Al (5) | 2.83 | 3.0 | |
Cu-Al (4) | −1.81 | Cu | 13.31 | 11.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Wan, Y.; Chen, C.; Zhang, L. The Effect of Solute Elements Co-Segregation on Grain Boundary Energy and the Mechanical Properties of Aluminum by First-Principles Calculation. Nanomaterials 2024, 14, 1803. https://doi.org/10.3390/nano14221803
Zhang X, Wan Y, Chen C, Zhang L. The Effect of Solute Elements Co-Segregation on Grain Boundary Energy and the Mechanical Properties of Aluminum by First-Principles Calculation. Nanomaterials. 2024; 14(22):1803. https://doi.org/10.3390/nano14221803
Chicago/Turabian StyleZhang, Xuan, Yuxuan Wan, Cuifan Chen, and Liang Zhang. 2024. "The Effect of Solute Elements Co-Segregation on Grain Boundary Energy and the Mechanical Properties of Aluminum by First-Principles Calculation" Nanomaterials 14, no. 22: 1803. https://doi.org/10.3390/nano14221803
APA StyleZhang, X., Wan, Y., Chen, C., & Zhang, L. (2024). The Effect of Solute Elements Co-Segregation on Grain Boundary Energy and the Mechanical Properties of Aluminum by First-Principles Calculation. Nanomaterials, 14(22), 1803. https://doi.org/10.3390/nano14221803