Comparative Analysis of Thin and Thick MoTe2 Photodetectors: Implications for Next-Generation Optoelectronics
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Structural Features of Thin and Thick MoTe2
3.2. Electrical Properties
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Konstantatos, G. Current Status and Technological Prospect of Photodetectors Based on Two-Dimensional Materials. Nat. Commun. 2018, 9, 5266. [Google Scholar] [CrossRef] [PubMed]
- Huo, N.; Konstantatos, G. Recent Progress and Future Prospects of 2D-Based Photodetectors. Adv. Mater. 2018, 30, 1801164. [Google Scholar] [CrossRef] [PubMed]
- Shinde, P.V.; Hussain, M.; Moretti, E.; Vomiero, A. Advances in Two-Dimensional Molybdenum Ditelluride (MoTe2): A Comprehensive Review of Properties, Preparation Methods, and Applications. SusMat 2024, 4, e236. [Google Scholar] [CrossRef]
- Rhodes, D.; Chenet, D.A.; Janicek, B.E.; Nyby, C.; Lin, Y.; Jin, W.; Hone, J.; Balicas, L. Engineering the Structural and Electronic Phases of MoTe2 Through W Substitution. Nano Lett. 2017, 17, 1616–1622. [Google Scholar] [CrossRef]
- Qiao, J.; Feng, F.; Cao, G.; Wei, S.; Song, S.; Wang, T.; Somekh, M.G. Ultrasensitive Near-Infrared MoTe2 Photodetectors with Monolithically Integrated Fresnel Zone Plate Metalens. Adv. Opt. Mater. 2022, 10, 2200375. [Google Scholar] [CrossRef]
- Ma, P.; Flory, N.; Salamin, Y.; Bäuerle, B.; Emboras, A.; Josten, A.; Leuthold, J. Fast MoTe2 Waveguide Photodetector with High Sensitivity at Telecommunication Wavelengths. ACS Photonics 2018, 5, 1846–1852. [Google Scholar] [CrossRef]
- Cong, X.; Shah, M.N.U.; Zheng, Y.; He, W. Largely Reducing the Contact Resistance of Molybdenum Ditelluride by In Situ Potassium Modification. Adv. Electron. Mater. 2023, 9, 2300062. [Google Scholar] [CrossRef]
- Yamamoto, M.; Wang, S.T.; Ni, M.; Lin, Y.F.; Li, S.L.; Aikawa, S.; Jian, W.B.; Ueno, K.; Wakabayashi, K.; Tsukagoshi, K. Strong enhancement of Raman scattering from a bulk-inactive vibrational mode in few-layer MoTe2. ACS Nano 2014, 8, 3895–3903. [Google Scholar] [CrossRef]
- Cheng, Y.; Qiu, Z.; Zhao, S.; Zhang, Q.; Zhao, J.; Zi, X.; Zhao, Y.; Zheng, Z.; Tao, L. Multifunctional Optoelectronic Devices Based on Two-Dimensional Tellurium/MoS2 Heterojunction. Appl. Phys. Lett. 2024, 125, 171105. [Google Scholar] [CrossRef]
- Ji, H.; Joo, M.K.; Yun, Y.; Park, J.H.; Lee, G.; Moon, B.H.; Lim, S.C. Suppression of Interfacial Current Fluctuation in MoTe2 Transistors with Different Dielectrics. ACS Appl. Mater. Interfaces 2016, 8, 19092–19099. [Google Scholar] [CrossRef]
- Basumatary, P.; Agarwal, P. Photocurrent Transient Measurements in MAPbI3 Thin Films. J. Mater. Sci. Mater. Electron. 2020, 31, 10047–10054. [Google Scholar] [CrossRef]
- Sirota, B.; Glavin, N.; Krylyuk, S.; Davydov, A.V.; Voevodin, A.A. Hexagonal MoTe2 with Amorphous BN Passivation Layer for Improved Oxidation Resistance and Endurance of 2D Field Effect Transistors. Sci. Rep. 2018, 8, 8668. [Google Scholar] [CrossRef] [PubMed]
- Yao, J.; Yang, G. 2D Layered Material Alloys: Synthesis and Application in Electronic and Optoelectronic Devices. Adv. Sci. 2022, 9, 2103036. [Google Scholar] [CrossRef]
- Tao, L.; Chen, Z.F.; Li, Z.Y.; Wang, J.Q.; Xu, X.; Xu, J.-B. Enhancing light-matter interaction in 2D materials by optical micro/nano architectures for high-performance optoelectronic devices. InfoMat 2021, 3, 36–60. [Google Scholar] [CrossRef]
- Wazir, N.; Liu, R.; Ding, C.; Wang, X.; Ye, X.; Lingling, X.; Lu, T.; Wei, L.; Zou, B. Vertically Stacked MoSe2/MoO2 Nanolayered Photodetectors with Tunable Photoresponses. ACS Appl. Nano Mater. 2020, 3, 7543–7553. [Google Scholar] [CrossRef]
- Wazir, N.; Zhang, M.; Li, L.; Ji, R.; Li, Y.; Wang, Y.; Ma, Y.; Ullah, R.; Aziz, T.; Cheng, B.; et al. Three-Terminal Photodetectors Based on Chemical Vapor Deposition-Grown Triangular MoSe2 Flakes. FlatChem 2022, 34, 100399. [Google Scholar] [CrossRef]
- Park, M.J.; Park, K.; Ko, H. Near-Infrared Photodetector Achieved by Chemically-Exfoliated Multilayered MoS2 Flakes. Appl. Surf. Sci. 2018, 448, 64–70. [Google Scholar] [CrossRef]
- Patel, R.P.; Pataniya, P.M.; Patel, M.; Sumesh, C.K. WSe2 Crystals on Paper: Flexible, Large Area, and Broadband Photodetectors. Nanotechnology 2021, 32, 505202. [Google Scholar] [CrossRef]
- Gomathi, P.T.; Sahatiya, P.; Badhulika, S. Large-Area, Flexible Broadband Photodetector Based on ZnS–MoS2 Hybrid on Paper Substrate. Adv. Funct. Mater. 2017, 27, 1701611. [Google Scholar] [CrossRef]
- Kufer, D.; Nikitskiy, I.; Lasanta, T.; Navickaite, G.; Koppens, F.H.L.; Konstantatos, G. Hybrid 2D-0D MoS2-PbS Quantum Dot Photodetectors. Adv. Mater. 2015, 27, 176–180. [Google Scholar] [CrossRef]
- Reddy, T.S.; Kumar, M.C.S. Co-Evaporated SnS Thin Films for Visible Light Photodetector Applications. RSC Adv. 2016, 6, 95680–95692. [Google Scholar] [CrossRef]
- Jethwa, V.P.; Patel, K.; Pathak, V.M.; Solanki, G.K. Enhanced Electrical and Optoelectronic Performance of SnS Crystal by Se Doping. J. Alloys Compd. 2021, 883, 160941. [Google Scholar] [CrossRef]
- Wei, Y.; Tran, V.T.; Zhao, C.; Liu, H.; Kong, J.; Du, H. Robust Photodetectable Paper from Chemically Exfoliated MoS2-MoO3 Multilayers. ACS Appl. Mater. Interfaces 2019, 11, 21445–21453. [Google Scholar] [CrossRef] [PubMed]
- Yu, T.; Nie, H.; Wang, S.; Zhang, B.; Zhao, S.; Wang, Z.; Tao, X. Two-Dimensional GeP-Based Broad-Band Optical Switches and Photodetectors. Adv. Opt. Mater. 2020, 8, 1901490. [Google Scholar] [CrossRef]
- Perea-Lõpez, N.; Elías, A.L.; Berkdemir, A.; Castro-Beltran, A.; Gutiérrez, H.R.; Feng, S.; Lv, R.; Hayashi, T.; Lõpez-Urías, F.; Ghosh, S.; et al. Photosensor Device Based on Few-Layered WS2 Films. Adv. Funct. Mater. 2013, 23, 5511–5517. [Google Scholar] [CrossRef]
- Zheng, W.; Zhang, Z.; Lin, R.; Xu, K.; He, J.; Huang, F. High-Crystalline 2D Layered PbI2 with Ultrasmooth Surface: Liquid-Phase Synthesis and Application of High-Speed Photon Detection. Adv. Electron. Mater. 2016, 2, 1600291. [Google Scholar] [CrossRef]
- Frisenda, R.; Island, J.O.; Lado, J.L.; Giovanelli, E.; Gant, P.; Nagler, P.; Castellanos-Gomez, A. Characterization of Highly Crystalline Lead Iodide Nanosheets Prepared by Room-Temperature Solution Processing. Nanotechnology 2017, 28, 455703. [Google Scholar] [CrossRef]
- Saleem, M.I.; Chandrasekar, P.; Batool, A.; Lee, J.H. Aqueous-Phase Formation of Two-Dimensional PbI2 Nanoplates for High-Performance Self-Powered Photodetectors. Micromachines 2023, 14, 1949. [Google Scholar] [CrossRef]
- Yin, Z.; Li, H.; Li, H.; Jiang, L.; Shi, Y.; Sun, Y.; Lu, G.; Zhang, Q.; Chen, X.; Zhang, H. Single-Layer MoS2 Phototransistors. ACS Nano 2012, 6, 74–80. [Google Scholar] [CrossRef]
- Cheng, R.; Wen, Y.; Yin, L.; Wang, F.; Wang, F.; Liu, K.; He, J. Ultrathin Single-Crystalline CdTe Nanosheets Realized via van der Waals Epitaxy. Adv. Mater. 2017, 29, 1703122. [Google Scholar] [CrossRef]
- Perea-López, N.; Lin, Z.; Pradhan, N.R.; Iñiguez-Rábago, A.; Elías, A.L.; McCreary, A.; Lou, J.; Ajayan, P.M.; Terrones, H.; Balicas, L.; et al. CVD-Grown Monolayered MoS2 as an Effective Photosensor Operating at Low-Voltage. 2D Mater. 2014, 1, 011004. [Google Scholar] [CrossRef]
- Shi, W.; Ye, J.; Zhang, Y.; Suzuki, R.; Yoshida, M.; Miyazaki, J.; Iwasa, Y. Superconductivity Series in Transition Metal Dichalcogenides by Ionic Gating. Sci. Rep. 2015, 5, 12534. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Wang, F.; Yin, L.; Huang, Y.; Xu, K.; Wang, F.; He, J. Electrostatically Tunable Lateral MoTe2 p–n Junction for Use in High-Performance Optoelectronics. Nanoscale 2016, 8, 13245–13250. [Google Scholar] [CrossRef] [PubMed]
- Hao, Y.; Meng, G.; Ye, C.; Zhang, L. Reversible Blue Light Emission from Self-Assembled Silica Nanocords. Appl. Phys. Lett. 2005, 87, 031912. [Google Scholar] [CrossRef]
- Lee, J.; Tao, L.; Parrish, K.N.; Hao, Y.; Ruoff, R.S.; Akinwande, D. Multi-Finger Flexible Graphene Field Effect Transistors with High Bendability. Appl. Phys. Lett. 2012, 101, 252109. [Google Scholar] [CrossRef]
- Lee, H.; Ahn, J.; Im, S.; Kim, J.; Choi, W. High-Responsivity Multilayer MoSe2 Phototransistors with Fast Response Time. Sci. Rep. 2018, 8, 11545. [Google Scholar] [CrossRef]
Device | Wavelength (nm) | Responsivity (A/W) | Detectivity (Jones) | E.Q.E | Ref. |
---|---|---|---|---|---|
AgNPs-MoS2 | 980 | 8.8 × 10−4 | 1.28 × 109 | - | [17] |
WSe2 | 780 | 7.25 × 10−5 | 2.4 × 107 | 11.55% | [18] |
ZnS–MoS2 | 554 | 1.78 × 10−5 | - | 0.4% | [19] |
MoS2/PbS | 400–1500 | 4.3 × 102 | - | - | [20] |
SnS | 400–700 | 4.3 × 10−3 | 71 × 106 | - | [21] |
MoSe2 | 532 | 1.7 × 10−4 | 11.58 × 108 | 0.025% | [16] |
SnS0.25Se0.75 | 400–700 | 1.17 × 10−4 | - | - | [22] |
MoS2–MoO3 | 405 | 1.3 × 10−4 | - | 0.041% | [23] |
GeP | 440 | 1 × 10−5 | 1.38 × 107 | - | [24] |
WS2 | 458 | 2.12 × 10−6 | - | - | [25] |
PbI2 | 450 | 1.0 × 10−4 | - | - | [26] |
PbI2 | 405 | 1.3 × 10−3 | - | - | [27] |
ITO/PbI2/Au | - | 0.5 × 10−3 | 2.5 × 1012 | - | [28] |
MoS2 | 488 | 4.2 × 10−4 | - | - | [29] |
CdTe | 473 | 1.6 × 10−4 | 5.84 × 109 | - | [30] |
MoS2 | 514.5 | 1.1 × 10−3 | - | - | [31] |
MoTe2 (thin) | 520 | 1.2 | 4.32 × 108 | 285% | This Work |
MoTe2 (thick) | 520 | 1.0 | 3.6 × 108 | 238% | This Work |
MoTe2 (thin) | 1064 | 1.1 | 3.96 × 108 | 127% | This Work |
MoTe2 (thick) | 1064 | 8.8 | 3.19 × 109 | 1027% | This Work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hussain, S.; Zhao, S.; Zhang, Q.; Tao, L. Comparative Analysis of Thin and Thick MoTe2 Photodetectors: Implications for Next-Generation Optoelectronics. Nanomaterials 2024, 14, 1804. https://doi.org/10.3390/nano14221804
Hussain S, Zhao S, Zhang Q, Tao L. Comparative Analysis of Thin and Thick MoTe2 Photodetectors: Implications for Next-Generation Optoelectronics. Nanomaterials. 2024; 14(22):1804. https://doi.org/10.3390/nano14221804
Chicago/Turabian StyleHussain, Saddam, Shaoguang Zhao, Qiman Zhang, and Li Tao. 2024. "Comparative Analysis of Thin and Thick MoTe2 Photodetectors: Implications for Next-Generation Optoelectronics" Nanomaterials 14, no. 22: 1804. https://doi.org/10.3390/nano14221804
APA StyleHussain, S., Zhao, S., Zhang, Q., & Tao, L. (2024). Comparative Analysis of Thin and Thick MoTe2 Photodetectors: Implications for Next-Generation Optoelectronics. Nanomaterials, 14(22), 1804. https://doi.org/10.3390/nano14221804