Hematological Response to Particle Debris Generated During Wear–Corrosion Processes of CoCr Surfaces Modified with Graphene Oxide and Hyaluronic Acid for Joint Prostheses
Abstract
:1. Introduction
2. Materials and Methods
2.1. Wear–Corrosion Tests of Modified CoCr with Graphene Oxide and Hyaluronic Acid
2.1.1. Materials and Reagents
2.1.2. Deposition of Graphene Oxide Functionalized with Hyaluronic Acid on CoCr Disks (CoCr-GO-HA Surface)
2.1.3. Debris Collected from Wear–Corrosion Process
2.1.4. Chemical Composition and Size Distribution of Wear Particles
2.2. In Vitro Tests: Macrophages Cell Cultures
Inflammatory Response of J774A.1 Macrophages to Biofunctionalized CoCr Surfaces
2.3. In Vivo Tests: Intra-Articular Injection of Particles in Wistar Rats
2.3.1. Animals
2.3.2. In Vivo Experimental Design
2.3.3. Histological Analysis
2.3.4. Blood Analysis
2.3.5. Statistical Treatment
3. Results and Discussion
3.1. Inflammatory Response to Unworn and Worn Biofuncionalized CoCr Surfaces
3.2. In Vivo Tests
3.2.1. Debris Characterization
3.2.2. Intra-Articular Injection of Particles from Wear–Corrosion Tests
Hematological Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Milošev, I. CoCrMo Alloy for Biomedical Applications. In Biomedical Applications. Modern Aspects of Electrochemistry; Djokić, S., Ed.; Springer: Boston, MA, USA, 2012; Volume 55, pp. 1–72. [Google Scholar] [CrossRef]
- Liao, Y.; Pourzal, R.; Wimmer, M.A.; Jacobs, J.J.; Fischer, A.; Marks, L.D. Graphitic Tribological Layers in Metal-on-Metal Hip Replacements. Science 2011, 334, 1687–1690. [Google Scholar] [CrossRef] [PubMed]
- Mathew, M.T.; Nagelli, C.; Pourzal, R.; Fischer, A.; Laurent, M.P.; Jacobs, J.J.; Wimmer, M.A. Tribolayer formation in a metal-on-metal (MoM) hip joint: An electrochemical investigation. J. Mech. Behav. Biomed. Mater. 2014, 29, 199–212. [Google Scholar] [CrossRef] [PubMed]
- Wimmer, M.A.; Sprecher, C.; Hauert, R.; Täger, G.; Fischer, A. Tribochemical reaction on metal-on-metal hip joint bearings. A comparison between in-vitro and in-vivo results. Wear 2003, 255, 1007–1014. [Google Scholar] [CrossRef]
- Decking, R.; Reuter, P.; Huttner, M.; Puhl, W.; Claes, L.E.; Scharf, H.P. Surface Composition Analysis of Failed Cementless CoCr- and Ti-Base-Alloy Total Hip Implants. J. Biomed. Mater. Res. Part B Appl. Biomater. 2003, 64, 99–106. [Google Scholar] [CrossRef]
- Vuong, V.; Pettersson, M.; Persson, C.; Larsson, S.; Grandfield, K.; Engqvist, H. Surface and Subsurface Analyses of Metal-on-Polyethylene Total Hip Replacement Retrievals. Ann. Biomed. Eng. 2016, 44, 1685–1697. [Google Scholar] [CrossRef]
- Ramırez-Martınez, I.; Stea, S.; Joyce, T.J. Analysis of the surface topography of retrieved metal-on-polyethylene reverse shoulder prostheses. Proc. Inst. Mech. Eng. Part H 2020, 234, 1353–1362. [Google Scholar] [CrossRef]
- Wimmer, M.A.; Fischer, A.; Buscher, R.; Pourzal, R.; Sprecher, C.; Hauert, R.; Jacobs, J.J. Wear mechanisms in metal-on-metal bearings: The importance of tribochemical reaction layers. J. Orthop. Res. 2010, 28, 436–443. [Google Scholar] [CrossRef]
- Eichenbaum, G.; Wilsey, J.T.; Fessel, G.; Qiu, Q.-Q.; Perkins, L.; Hasgall, P.; Monnot, A.; More, S.L.; Egnot, N.; Sague, J.; et al. An integrated benefit-risk assessment of cobalt-containing alloys used in medical devices: Implications for regulatory requirements in the European Union. Regul. Toxicol. Pharmacol. 2021, 125, 105004. [Google Scholar] [CrossRef]
- Halwani, D.O.; Anderson, P.G.; Lemons, J.E.; Jordan, W.D.; Anayiotos, A.S.; Brott, B.C. In-vivo corrosion and local release of metallic ions from vascular stents into surrounding tissue. J. Invasive Cardiol. 2010, 22, 528–535. [Google Scholar]
- Matusiewicz, H. Potential release of in vivo trace metals from metallic medical implants in the human body: From ions to nanoparticles-A systematic analytical review. Acta Biomater. 2014, 10, 2379–2403. [Google Scholar] [CrossRef]
- Scharf, B.; Clement, C.C.; Zolla, V.; Perino, G.; Yan, B.; Elci, S.G.; Purdue, E.; Goldring, S.; Macaluso, F.; Cobelli, N.; et al. Molecular analysis of chromium and cobalt-related toxicity. Sci. Rep. 2015, 4, 5729. [Google Scholar] [CrossRef] [PubMed]
- Posada, O.M.; Gilmour, D.; Tate, R.J.; Grant, M.H. CoCr wear particles generated from CoCr alloy metal-on-metal hip replacements, and cobalt ions stimulate apoptosis and expression of general toxicology-related genes in monocyte-like U937 cells. Toxicol. Appl. Pharmacol. 2014, 281, 125–135. [Google Scholar] [CrossRef] [PubMed]
- Beyersmann, D.; Hartwig, A. Carcinogenic metal compounds: Recent insight into molecular and cellular mechanisms. Arch. Toxicol. 2008, 82, 493–512. [Google Scholar] [CrossRef] [PubMed]
- Bijukumar, D.R.; Segu, A.; de Souza, J.C.M.; Li, X.; Barba, M.; Mercuri, L.G.; Jacobs, J.J.; Mathew, M.T. Systemic and local toxicity of metal debris released from hip prostheses: A review of experimental approaches. Nanomed. Nanotechnol. Biol. Med. 2018, 14, 951–963. [Google Scholar] [CrossRef]
- Eltit, F.; Noble, J.; Sharma, M.; Benam, N.; Haegert, A.; Bell, R.H.; Simon, F.; Duncan, C.P.; Garbuz, D.S.; Greidanus, N.V.; et al. Cobalt ions induce metabolic stress in synovial fibroblasts and secretion of cytokines/chemokines that may be diagnostic markers for adverse local tissue reactions to hip implants. Acta Biomater. 2021, 131, 581–594. [Google Scholar] [CrossRef]
- Chico, B.; Pérez-Maceda, B.T.; San José-Pinilla, S.; Escudero, M.L.; García-Alonso, M.C.; Lozano, R.M. Corrosion behaviour and J774A.1 macrophages response to hyaluronic acid functionalization of electrochemically reduced graphene oxide on biomedical grade CoCr. Metals 2021, 11, 1078. [Google Scholar] [CrossRef]
- Benz, M.; Chen, N.; Israelachvili, J. Lubrication and wear properties of grafted polyelectrolytes, hyaluronan and hylan, measured in the surface forces apparatus. J. Biomed. Mater. Res. Part A 2004, 71, 6–15. [Google Scholar] [CrossRef]
- Liu, A.; Wang, P.; Zhang, J.; Ye, W.; Wei, Q. Restoration Effect and Tribological Behavior of Hyaluronic Acid Reinforced with Graphene Oxide in Osteoarthritis. J. Nanosci. Nanotechnol. 2019, 19, 91–97. [Google Scholar] [CrossRef]
- Wang, X.D.; Wan, X.C.; Liu, A.F.; Li, R.; Wei, Q. Effects of umbilical cord mesenchymal stem cells loaded with graphene oxide granular lubrication on cytokine levels in animal models of knee osteoarthritis. Int. Orthop. 2021, 45, 381–390. [Google Scholar] [CrossRef]
- Sánchez-López, L.; Chico, B.; Llorente, I.; Escudero, M.L.; Lozano, R.M.; García-Alonso, M.C. Covalent immobilization of Graphene Oxide on biomedical grade CoCr alloy by an improved multilayer system assembly via Silane/GO bonding. Mater. Chem. Phys. 2022, 287, 126296. [Google Scholar] [CrossRef]
- Sánchez-López, L.; Chico, B.; García-Alonso, M.C.; Lozano, R.M. Macrophage Proteomic Analysis of Covalent Immobilization of Hyaluronic Acid and Graphene Oxide on CoCr Alloy in a Tribocorrosive Environment. J. Biomed. Mater. Res. Part A 2024, 112, 1941–1959. [Google Scholar] [CrossRef] [PubMed]
- Neville, A.; Yan, Y. Biotribocorrosion: Surface interactions in total joint replacement (TJR). In Tribocorrosion of Passive Metals and Coatings, 1st ed.; Landolt, D., Mischler, S., Eds.; Woodhead Publishing Limited: Cambridge, UK, 2011; Chapter 12; pp. 337–367. [Google Scholar]
- Sánchez-López, L.; Ropero de Torres, N.; Chico, B.; Fagali, N.S.; de los Ríos, V.; Escudero, M.L.; García-Alonso, M.C.; Lozano, R.M. Effect of wear-corrosion of reduced graphene oxide functionalized with hyaluronic acid on inflammatory and proteomic response of J774A.1 macrophages. Metals 2023, 13, 598–626. [Google Scholar] [CrossRef]
- Donath, K.; Breuner, G. A method for the study of undecalcified bones and teeth with attached soft tissues. The Sage-Schliff (sawing and grinding) technique. J. Oral Pathol. 1982, 11, 318–326. [Google Scholar] [CrossRef] [PubMed]
- Aguado-Henche, S.; Escudero, M.L.; García-Alonso, M.C.; Lozano, R.M.; Clemente de Arriba, C. Biological response in the bloodline and organs in rats to intraperitoneal inoculation of graphene and graphene oxide. Materials 2022, 18, 2898. [Google Scholar] [CrossRef] [PubMed]
- Hallab, N.; Merritt, K.; Jacobs, J.J. Metal sensitivity in patients with orthopaedic implants. J. Bone Jt. Surg. Am. 2001, 83, 428–436. [Google Scholar] [CrossRef]
- Tower, S.S. Metal on Metal hip implants. Arthroprosthetic cobaltism associated with metal on metal hip implants. Br. Med. J. 2012, 344, e430. [Google Scholar] [CrossRef]
- Oldenburg, M.; Wegner, R.; Baur, X. Severe cobalt intoxication due to prosthesis wear in repeated total hip arthroplasty. J. Arthroplast. 2009, 24, 825.e15–825.e20. [Google Scholar] [CrossRef]
- Ikeda, T.; Takahashi, K.; Kabata, T.; Sakagoshi, D.; Tomita, K.; Yamada, M. Polyneuropathy caused by cobalt–chromium metallosis after total hip replacement. Muscle Nerve 2010, 42, 140–143. [Google Scholar] [CrossRef]
- Machado, C.; Appelbe, A.; Wood, R. Arthroprosthetic cobaltism and cardiomyopathy. Heart Lung Circ. 2012, 21, 759–760. [Google Scholar] [CrossRef]
- Pelclova, D.; Sklensky, M.; Janicek, P.; Lach, K. Severe cobalt intoxication following hip replacement revision: Clinical features and outcome. Clin. Toxicol. 2012, 50, 262–265. [Google Scholar] [CrossRef]
- Rizzetti, M.C.; Liberini, P.; Zarattini, G.; Catalani, S.; Pazzaglia, U.; Apostoli, P.; Padovani, A. Loss of sight and sound. Could it be the hip? Lancet 2009, 373, 1052. [Google Scholar] [CrossRef] [PubMed]
- Liao, Y.F.; Hoffman, E.; Wimmer, M.; Fischer, A.; Jacobs, J.; Marks, L. CoCrMo metal-on-metal hip replacements. Phys. Chem. Chem. Phys. 2013, 15, 746–756. [Google Scholar] [CrossRef] [PubMed]
- Friesenbichler, J.; Maurer-Ertl, W.; Sadoghi, P.; Lovse, T.; Windhager, R.; Leithner, A. Serum metal ion levels after rotating-hinge knee arthroplasty: Comparison between a standard device and a megaprosthesis. Int. Orthop. 2012, 36, 539–544. [Google Scholar] [CrossRef] [PubMed]
- Penny, J.O.; Varmarken, J.E.; Ovesen, O.; Nielsen, C.; Overgaard, S. Metal ion levels and lymphocyte counts: ASR hip resurfacing prosthesis vs. standard THA 2-year results from a randomized study. Acta Orthop. 2013, 84, 130–137. [Google Scholar] [CrossRef]
- Xia, Z.D.; Kwon, Y.M.; Mehmood, S.; Downing, C.; Jurkschat, K.; Murray, D.W. Characterization of metal-wear nanoparticles in pseudotumor following metal-on-metal hip resurfacing. Nanomed. Nanotechnol. Biol. Med. 2011, 7, 674–681. [Google Scholar] [CrossRef]
- Afolaranmi, G.A.; Akbar, M.; Brewer, J.; Grant, M.H. Distribution of metal released from cobalt-chromium alloy orthopaedic wear particles implanted into air pouches in mice. J. Biomed. Mater. Res. Part A 2012, 100, 1529–1538. [Google Scholar] [CrossRef]
- Perez-Maceda, B.T.; López-Fernández, M.E.; Díaz, I.; Kavanaugh, A.; Billi, F.; Escudero, M.L.; García-Alonso, M.C.; Lozano, R.M. Macrophage Biocompatibility of CoCr Wear Particles Produced under Polarization in Hyaluronic Acid Aqueous Solution. Materials 2018, 11, 756. [Google Scholar] [CrossRef]
- Hosman, A.H.; van der Mei, H.C.; Bulstra, S.K.; Busscher, H.J.; Neut, D. Effects of metal-on-metal wear on the host immune system and infection in hip arthroplasty. Acta Orthop. 2010, 81, 526–534. [Google Scholar] [CrossRef]
- Stratton-Powell, A.A.; Williams, S.; Tipper, J.L.; Redmond, A.C.; Brockett, C.L. Isolation and characterisation of wear debris surrounding failed total ankle replacements. Acta Biomater. 2023, 159, 410–422. [Google Scholar] [CrossRef]
- Hall, D.J.; Pourzal, R.; Jacobs, J.J.; Urban, R.M. Metal wear particles in hematopoietic marrow of the axial skeleton in patients with prior revision for mechanical failure of a hip or knee arthroplasty. J. Biomed. Mater. Res. Part B 2019, 107, 1930–1936. [Google Scholar] [CrossRef]
- Lohmann, C.H.; Meyer, H.; Nuechtern, J.V.; Singh, G.; Junk-Jantsch, S.; Schmotzer, H.; Morlock, M.M.; Pflüger, G. Periprosthetic Tissue Metal Content but Not Serum Metal Content Predicts the Type of Tissue Response in Failed Small-Diameter Metal-on-Metal Total Hip Arthroplasties. J. Bone Jt. Surg. 2013, 95, 1561–1568. [Google Scholar] [CrossRef] [PubMed]
- Betts, F.; Wright, T.; Salvati, E.A.; Boskey, A.; Bansal, M. Cobalt-alloy metal debris in periarticular tissues from total hip revision arthroplasties. Metal contents and associated histologic findings. Clin. Orthop. Relat. Res. 1992, 276, 75–82. [Google Scholar] [CrossRef]
- McDougall, J.J.; Karimian, S.M.; Ferrell, W.R. Prolonged alteration of vasoconstrictor and vasodilator responses in rat knee joints by adjuvant monoarthritis. Exp. Physiol. 1995, 80, 349–357. [Google Scholar] [CrossRef] [PubMed]
- Iwanaga, T.; Shikichi, M.; Kitamura, H.; Yanase, H.; Nozawa-Inoue, K. Morphology and functional roles of synoviocytes in the joint. Arch. Histol. Cytol. 2000, 63, 17–31. [Google Scholar] [CrossRef] [PubMed]
- Helal, I.; Fick-Brosnahan, G.M.; Reed-Gitomer, B.; Schrier, R.W. Glomerular hyperfiltration: Definitions, mechanisms and clinical implications. Nat. Rev. Nephrol. 2012, 8, 293–300. [Google Scholar] [CrossRef] [PubMed]
- Patlolla, A.K.; Randolph, J.; Kumari, S.A.; Tchounwou, P.B. Toxicity Evaluation of Graphene Oxide in Kidneys of Sprague-Dawley Rats. Int. J. Environ. Res. Public Health 2016, 13, 380. [Google Scholar] [CrossRef]
- Chen, W.; Wang, B.; Liang, S.; Wang, M.; Zheng, L.; Xu, S.; Wang, J.; Fang, H.; Yang, P.; Feng, W. Renal clearance of graphene oxide: Glomerular filtration or tubular secretion and selective kidney injury association with its lateral dimension. J. Nanobiotechnol. 2023, 21, 51. [Google Scholar] [CrossRef]
- Moreno-Gómez-Toledano, R.; Arenas, M.I.; Muñoz-Moreno, C.; Olea-Herrero, N.; Reventun, P.; Izquierdo-Lahuerta, A.; Antón-Cornejo, A.; González-Santander, M.; Zaragoza, C.; Saura, M.; et al. Comparison of the renal effects of bisphenol A in mice with and without experimental diabetes. Role of sexual dimorphism. Biochim. Biophys. Acta (BBA)-Mol. Basis Dis. 2022, 1868, 166296. [Google Scholar] [CrossRef] [PubMed]
- Salguero, M.L. Chapter 107: Detoxification. Book: Integrative Medicine, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2007; pp. 1123–1135. [Google Scholar] [CrossRef]
- Balali-Mood, M.; Naseri, K.; Tahergorabi, Z.; Reza Khazdair, M.; Sadeghi, M. Toxic Mechanisms of Five Heavy Metals: Mercury, Lead, Chromium, Cadmium, and Arsenic. Front. Pharmacol. 2021, 12, 643972. [Google Scholar] [CrossRef]
- Qu, Y.; He, F.; Yu, C.; Liang, X.; Liang, D.; Ma, L.; Zhang, Q.; Lv, J.; Wu, J. Advances on graphene-based nanomaterials for biomedical applications. Mater. Sci. Eng. C 2018, 90, 764–780. [Google Scholar] [CrossRef]
- Wu, H.; Shi, H.; Wang, Y.; Jia, X.; Tang, C.; Zhang, J.; Yang, S. Hyaluronic acid conjugated graphene oxide for targeted drug delivery. Carbon 2014, 69, 379–389. [Google Scholar] [CrossRef]
- Mao, L.; Hu, M.; Pan, B.; Xie, Y.; Petersen, E.J. Biodistribution and toxicity of radio-labeled few-layer Graphene in mice after intratracheal instillation. Part. Fibre Toxicol. 2015, 1, 7. [Google Scholar] [CrossRef] [PubMed]
- da Silva, C.A.; Pina, D.; Hernández, H.; Román, M. Systematic Review of Toxicity Derived from Graphene Exposure. Med. Segur. Trab. 2018, 64, 75–88. [Google Scholar]
- Andrews, J.P.M.; Joshi, S.S.; Tzolos, E.; Syed, M.B.; Cuthbert, H.; Crica, L.E.; Lozano, N.; Okwelogu, E.; Raftis, J.B.; Bruce, L.; et al. First-in-human controlled inhalation of thin graphene oxide nanosheets to study acute cardiorespiratory responses. Nat. Nanotechnol. 2024, 19, 705–714. [Google Scholar] [CrossRef]
- Yu, S.; You, M.; Zhou, K.; Li, J. Progress of research on graphene and its derivatives in bone and cartilage repair. Front. Bioeng. Biotechnol. 2023, 11, 1185520. [Google Scholar] [CrossRef]
Group | Number of Rats |
---|---|
0—Control | 6 |
1—Hyaluronic acid | 6 |
2—Reduced graphene oxide | 6 |
3—Wear particles (0.63 mg/mL) | 6 |
4—Wear particles (1.65 mg/mL) | 6 |
5—Wear particles (1.83 mg/mL) | 6 |
6—Wear particles (2.35 mg/mL) | 6 |
Blood Parameters | Control (Group 0) | Hyaluronic (Group 1) | Graphene (Group 2) | Wear Particles | |||
---|---|---|---|---|---|---|---|
[0.63 mg/mL] (Group 3) | [1.65 mg/mL] (Group 4) | [1.83 mg/mL] (Group 5) | [2.35 mg/mL] (Group 6) | ||||
RBC (106/µL) | 8.13 ± 0.37 | 8.39 ± 0.52 | 8.45 ± 0.76 | 8.39 ± 0.44 | 8.27 ± 0.28 | 8.24 ± 0.38 | 8.20 ± 0.41 |
Hgb (g/dL) | 15.07 ± 0.49 | 15.33 ± 0.80 | 14.75 ± 0.76 | 14.85 ± 0.53 | 14.93 ± 0.73 | 14.58 ± 0.67 | 14.98 ± 0.42 |
Hct (%) | 41.9 ± 2.47 | 43.35 ± 1.96 | 42.60 ± 4.19 | 42.63 ± 1.95 | 42.05 ± 1.67 | 41.70 ± 3.10 | 41.83 ± 1.36 |
MCV (fL) | 51.5 ± 0.94 | 51.73 ± 1.47 | 50.38 ± 1.21 | 50.68 ± 0.38 | 50.78 ± 0.97 | 50.48 ± 1.52 | 51.00 ± 1.27 |
MCHC (g/dL) | 35.63 ± 0.17 | 35.30 ± 0.30 | 35.58 ± 0.34 | 35.53 ± 0.57 | 35.33 ± 0.33 | 35.40 ± 0.40 | 35.08 ± 0.27 |
WBC (103/mm3) | 5.96 ± 0.69 | 6.83 ± 1.19 | 7.05 ± 1.99 | 7.44 ± 1.16 | 7.18 ± 3.45 | 6.56 ± 1.86 | 6.75 ± 2.14 |
PLT (103/µL) | 522.6 ± 67.5 | 591.83 ± 136.26 | 475.67 ± 194.95 | 633.17 ± 89.82 | 605.00 ± 77.05 | 517.00 ± 164.73 | 354.00 ± 192.05 |
PT (sg) | 9.25 ± 0.15 | 8.94 ± 0.27 | 28.17 ± 44.94 | 9.51 ± 0.67 | 9.74 ± 0.86 | 10.06 ± 0.97 | 13.76 ± 4.61 |
TT (sg) | 41.15 ± 11.15 | 40.16 ± 12.32 | 45.20 ± 14.61 | 44.61 ± 8.21 | 57.82 ± 12.77 | 51.38 ± 22.69 | 52.66 ± 30.30 |
F (mg/dL) | 150.15 ± 28.25 | 145.5 ± 35.98 | 109.73 ± 57.48 | 148.66 ± 29.79 | 147.47 ± 16.81 | 144.72 ± 13.40 | 176.20 ± 15.55 |
Crea (mg/dL) | 0.32 ± 0.02 | 0.33 ± 0.05 | 0.23 ± 0.02 | 0.28 ± 0.03 | 0.20 ± 0.02 | 0.26 ± 0.04 | 0.23 ± 0.03 |
Total proteins (g/dL) | 7.13 ± 0.45 | 7.45 ± 0.26 | 6.74 ± 0.37 | 6.65 ± 0.20 | 6.45 ± 0.19 | 6.68 ± 0.14 | 6.46 ± 0.20 |
AST (UI/L) | 84.0 ± 2.94 | 77.17 ± 17.84 | 78.43 ± 17.96 | 79.83 ± 10.00 | 76.66 ± 11.44 | 84.00 ± 11.45 | 77.83 ± 17.78 |
ALT (UI/L) | 37.0 ± 4.9 | 37.67 ± 10.65 | 35.00 ± 7.12 | 34.00 ± 5.86 | 36.50 ± 8.01 | 36.00 ± 2.44 | 35.00 ± 3.16 |
LDH (UI/L) | 507.67 ± 155.38 | 326.33 ± 62.73 | 395.29 ± 160.23 | 434.00 ± 166.2 | 392.00 ± 90.95 | 434.20 ± 113.80 | 290.30 ± 79.06 |
CHO (mg/mL) | 103.33 ± 15.80 | 103.50 ± 21.35 | 100.57 ± 19.61 | 100.83 ± 9.78 | 99.66 ± 7.17 | 92.00 ± 11.62 | 97.33 ± 10.01 |
TG (mg/mL) | 156.0 ± 29.22 | 183.66 ± 68.58 | 148.00 ± 36.56 | 165.50 ± 33.44 | 189.50 ± 45.05 | 198.30 ± 37.60 | 180.70 ± 63.70 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Escudero, M.L.; García-Alonso, M.C.; Chico, B.; Lozano, R.M.; Sánchez-López, L.; Flores-Sáenz, M.; Cristóbal-Aguado, S.; Moreno-Gómez-Toledano, R.; Aguado-Henche, S. Hematological Response to Particle Debris Generated During Wear–Corrosion Processes of CoCr Surfaces Modified with Graphene Oxide and Hyaluronic Acid for Joint Prostheses. Nanomaterials 2024, 14, 1815. https://doi.org/10.3390/nano14221815
Escudero ML, García-Alonso MC, Chico B, Lozano RM, Sánchez-López L, Flores-Sáenz M, Cristóbal-Aguado S, Moreno-Gómez-Toledano R, Aguado-Henche S. Hematological Response to Particle Debris Generated During Wear–Corrosion Processes of CoCr Surfaces Modified with Graphene Oxide and Hyaluronic Acid for Joint Prostheses. Nanomaterials. 2024; 14(22):1815. https://doi.org/10.3390/nano14221815
Chicago/Turabian StyleEscudero, María L., Maria C. García-Alonso, Belén Chico, Rosa M. Lozano, Luna Sánchez-López, Manuel Flores-Sáenz, Soledad Cristóbal-Aguado, Rafael Moreno-Gómez-Toledano, and Soledad Aguado-Henche. 2024. "Hematological Response to Particle Debris Generated During Wear–Corrosion Processes of CoCr Surfaces Modified with Graphene Oxide and Hyaluronic Acid for Joint Prostheses" Nanomaterials 14, no. 22: 1815. https://doi.org/10.3390/nano14221815
APA StyleEscudero, M. L., García-Alonso, M. C., Chico, B., Lozano, R. M., Sánchez-López, L., Flores-Sáenz, M., Cristóbal-Aguado, S., Moreno-Gómez-Toledano, R., & Aguado-Henche, S. (2024). Hematological Response to Particle Debris Generated During Wear–Corrosion Processes of CoCr Surfaces Modified with Graphene Oxide and Hyaluronic Acid for Joint Prostheses. Nanomaterials, 14(22), 1815. https://doi.org/10.3390/nano14221815