Recent Advances in the Growth and Compositional Modelling of III–V Nanowire Heterostructures
Abstract
:1. Introduction
2. Experimental Works
- -
- Material system [165]: It influences the chemical potential difference, incorporation rates into the solid, desorption of group V species, solubility of atoms and their diffusion in the droplet, etc. With the exceptions of the GaAs/AlxGa1−xAs/GaAs and GaP/GaAsxP1−x/GaP heterostructures, the transition widths of heterostructures based on group V interchange are typically much lower in comparison with those for group III interchange (on the order of a few monolayers [166] versus one hundred monolayers [43]). This striking difference is due to the low solubility of group V elements in the liquid.
- -
- Order of the transition within one material system [40,44,167]: The difference in the width of BD/AD and AD/BD heterojunctions is clearly seen in double nanowire heterostructures. For example, the width of the transition region is around 50 nm for GaAs/InAs and 100 nm for InAs/GaAs nanowires [44]. This can be explained by the difference in the affinity of the group III elements in a catalyst droplet. For example, In atoms are incorporated into InxGa1−xAs nanowires only when the number of In atoms in the droplet is predominant [168].
- -
- -
- Growth temperature: Increasing the temperature widens the heterointerface [167]. However, decreasing the temperature is unlikely to be the universal solution because it influences many other growth aspects, including the overall kinetics of the growth process, solubility, and parasitic growth [170].
- -
- Total V/III flux ratio: According to theory, higher V/III ratios in vapour improve the interfacial abruptness of group III-based heterostructures [161].
- -
- -
- The preparation procedures, growth techniques, equipment, catalyst material, and precursors [173] used for nanowire growth are important.
3. General Remarks and Definitions
4. Models
4.1. Equilibrium Models
4.2. Nucleation Models
4.3. Kinetic Models
4.4. Regular Growth Models
5. Model Comparison
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Johansson, J.; Dick, K.A. Recent advances in semiconductor nanowire heterostructures. CrystEngComm 2011, 13, 7175–7184. [Google Scholar] [CrossRef]
- Wang, N.; Cai, Y.; Zhang, R.Q. Growth of nanowires. Mater. Sci. Eng. R Rep. 2008, 60, 1–51. [Google Scholar] [CrossRef]
- Vattikuti, S.V.P. Heterostructured Nanomaterials: Latest Trends in Formation of Inorganic Heterostructures. In Synthesis of Inorganic Nanomaterials; Elsevier: Cambridge, MA, USA; Kidlington, UK; Duxford, UK, 2018; pp. 89–120. [Google Scholar]
- Yan, X.; Li, Y.; Zhang, X. Semiconductor nanowire heterodimensional structures toward advanced optoelectronic devices. Nanoscale Horiz. 2024; ahead-of-print. [Google Scholar] [CrossRef]
- Wu, Y.; Fan, R.; Yang, P. Block-by-Block Growth of Single-Crystalline Si/SiGe Superlattice Nanowires. Nano Lett. 2002, 2, 83–86. [Google Scholar] [CrossRef]
- Gudiksen, M.S.; Lauhon, L.J.; Wang, J.; Smith, D.C.; Lieber, C.M. Growth of nanowire superlattice structures for nanoscale photonics and electronics. Nature 2002, 415, 617–620. [Google Scholar] [CrossRef] [PubMed]
- Björk, M.T.; Ohlsson, B.J.; Sass, T.; Persson, A.I.; Thelander, C.; Magnusson, M.H.; Deppert, K.; Wallenberg, L.R.; Samuelson, L. One-dimensional Steeplechase for Electrons Realized. Nano Lett. 2002, 2, 87–89. [Google Scholar] [CrossRef]
- Lauhon, L.J.; Gudiksen, M.S.; Wang, D.; Lieber, C.M. Epitaxial core-shell and core-multishell nanowire heterostructures. Nature 2002, 420, 57–61. [Google Scholar] [CrossRef]
- Wagner, R.S.; Ellis, W.C. Vapor-Liquid-Solid Mechanism of Single Crystal Growth. Appl. Phys. Lett. 1964, 4, 89–90. [Google Scholar] [CrossRef]
- Ross, F.M. Controlling nanowire structures through real time growth studies. Rep. Prog. Phys. 2010, 73, 114501. [Google Scholar] [CrossRef]
- Harmand, J.-C.; Patriarche, G.; Glas, F.; Panciera, F.; Florea, I.; Maurice, J.-L.; Travers, L.; Ollivier, Y. Atomic Step Flow on a Nanofacet. Phys. Rev. Lett. 2018, 121, 166101. [Google Scholar] [CrossRef]
- Jacobsson, D.; Panciera, F.; Tersoff, J.; Reuter, M.C.; Lehmann, S.; Hofmann, S.; Dick, K.A.; Ross, F.M. Interface dynamics and crystal phase switching in GaAs nanowires. Nature 2016, 531, 317–322. [Google Scholar] [CrossRef]
- Joyce, H.J. III–V Nanowires and Related Nanostructures. In Metalorganic Vapor Phase Epitaxy (MOVPE), 1st ed.; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2019; pp. 217–239. [Google Scholar]
- Wu, Z.H.; Mei, X.Y.; Kim, D.; Blumin, M.; Ruda, H.E. Growth of Au-catalyzed ordered GaAs nanowire arrays by molecular-beam epitaxy. Appl. Phys. Lett. 2002, 81, 5177–5179. [Google Scholar] [CrossRef]
- Jabeen, F.; Grillo, V.; Rubini, S.; Martelli, F. Self-catalyzed growth of GaAs nanowires on cleaved Si by molecular beam epitaxy. Nanotechnology 2008, 19, 275711. [Google Scholar] [CrossRef] [PubMed]
- Allen, J.E.; Hemesath, E.R.; Perea, D.E.; Lensch-Falk, J.L.; Li, Z.Y.; Yin, F.; Gass, M.H.; Wang, P.; Bleloch, A.L.; Palmer, R.E.; et al. High-resolution detection of Au catalyst atoms in Si nanowires. Nat. Nanotechnol. 2008, 3, 168–173. [Google Scholar] [CrossRef] [PubMed]
- Bemski, G. Recombination Properties of Gold in Silicon. Phys. Rev. B 1958, 111, 1515–1518. [Google Scholar] [CrossRef]
- Hillerich, K.; Dick, K.A.; Messing, M.E.; Deppert, K.; Johansson, J. Simultaneous growth mechanisms for Cu-seeded InP nanowires. Nano Res. 2012, 5, 297–306. [Google Scholar] [CrossRef]
- Sun, R.; Vainorius, N.; Jacobsson, D.; Pistol, M.-E.; Lehmann, S.; Dick, K.A. Sn-seeded GaAs nanowires grown by MOVPE. Nanotechnology 2016, 27, 215603. [Google Scholar] [CrossRef]
- Nirmal, M.; Brus, L. Luminescence Photophysics in Semiconductor Nanocrystals. Accounts Chem. Res. 1998, 32, 407–414. [Google Scholar] [CrossRef]
- Qian, F.; Gradečak, S.; Li, Y.; Wen, C.-Y.; Lieber, C.M. Core/Multishell Nanowire Heterostructures as Multicolor, High-Efficiency Light-Emitting Diodes. Nano Lett. 2005, 5, 2287–2291. [Google Scholar] [CrossRef]
- Qian, F.; Li, Y.; Gradečak, S.; Wang, D.; Barrelet, C.J.; Lieber, C.M. Gallium Nitride-Based Nanowire Radial Heterostructures for Nanophotonics. Nano Lett. 2004, 4, 1975–1979. [Google Scholar] [CrossRef]
- Mohan, P.; Motohisa, J.; Fukui, T. Fabrication of InP∕InAs∕InP core-multishell heterostructure nanowires by selective area metalorganic vapor phase epitaxy. Appl. Phys. Lett. 2006, 88, 133105. [Google Scholar] [CrossRef]
- Royo, M.; De Luca, M.; Rurali, R.; Zardo, I. A review on III–V core–multishell nanowires: Growth, properties, and applications. J. Phys. D Appl. Phys. 2017, 50, 143001. [Google Scholar] [CrossRef]
- Sistani, M.; Luong, M.A.; Hertog, M.I.D.; Robin, E.; Spies, M.; Fernandez, B.; Yao, J.; Bertagnolli, E.; Lugstein, A. Monolithic Axial and Radial Metal-Semiconductor Nanowire Heterostructures. Nano Lett. 2018, 18, 7692–7697. [Google Scholar] [CrossRef] [PubMed]
- Borgstrom, M.T.; Magnusson, M.H.; Dimroth, F.; Siefer, G.; Hohn, O.; Riel, H.; Schmid, H.; Wirths, S.; Bjork, M.; Aberg, I.; et al. Towards Nanowire Tandem Junction Solar Cells on Silicon. IEEE J. Photovoltaics 2018, 8, 733–740. [Google Scholar] [CrossRef]
- Hrachowina, L.; Barrigón, E.; Borgström, M.T. Development and characterization of photovoltaic tandem-junction nanowires using electron-beam-induced current measurements. Nano Res. 2022, 15, 8510–8515. [Google Scholar] [CrossRef]
- Lan, C.; Gong, J.; Jiang, Y. Synthesis and photoluminescence properties of string-like ZnO/SnO nanowire/nanosheet nano-heterostructures. J. Alloys Compd. 2013, 575, 24–28. [Google Scholar] [CrossRef]
- Hiruma, K.; Murakoshi, H.; Yazawa, M.; Katsuyama, T. Self-organized growth of heterostructure nanocylinders by organometallic vapor phase epitaxy. J. Cryst. Growth 1996, 163, 226–231. [Google Scholar] [CrossRef]
- Tchernycheva, M.; Cirlin, G.E.; Patriarche, G.; Travers, L.; Zwiller, V.; Perinetti, U.; Harmand, J.-C. Growth and Characterization of InP Nanowires with InAsP Insertions. Nano Lett. 2007, 7, 1500–1504. [Google Scholar] [CrossRef]
- Nilsson, H.A.; Duty, T.; Abay, S.; Wilson, C.; Wagner, J.B.; Thelander, C.; Delsing, P.; Samuelson, L. A Radio Frequency Single-Electron Transistor Based on an InAs/InP Heterostructure Nanowire. Nano Lett. 2008, 8, 872–875. [Google Scholar] [CrossRef]
- Fahlvik Svensson, S.; Jeppesen, S.; Thelander, C.; Samuelson, L.; Linke, H.; Dick, K.A. Control and understanding of kink formation in InAs-InP heterostructure nanowires. Nanotechnology 2013, 24, 345601. [Google Scholar] [CrossRef]
- Motohisa, J.; Tomoya, A.; Manami, O.; Katsuhiro, T. Characterization of nanowire light-emitting diodes with InP/InAsP heterostructures emitting in telecom band. Jpn. J. Appl. Phys. 2024, 63, 03SP08. [Google Scholar] [CrossRef]
- Jabeen, F.; Patriarche, G.; Glas, F.; Harmand, J.-C. GaP/GaAs1−xPx nanowires fabricated with modulated fluxes: A step towards the realization of superlattices in a single nanowire. J. Cryst. Growth 2011, 323, 293–296. [Google Scholar] [CrossRef]
- Priante, G.; Patriarche, G.; Oehler, F.; Glas, F.; Harmand, J.-C. Abrupt GaP/GaAs Interfaces in Self-Catalyzed Nanowires. Nano Lett. 2015, 15, 6036–6041. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Sanchez, A.M.; Wu, J.; Aagesen, M.; Holm, J.V.; Beanland, R.; Ward, T.; Liu, H. Polarity-Driven Quasi-3-Fold Composition Symmetry of Self-Catalyzed III–V–V Ternary Core-Shell Nanowires. Nano Lett. 2015, 15, 3128–3133. [Google Scholar] [CrossRef] [PubMed]
- Krogstrup, P.; Yamasaki, J.; Sørensen, C.B.; Johnson, E.; Wagner, J.B.; Pennington, R.; Aagesen, M.; Tanaka, N.; Nygård, J. Junctions in Axial III−V Heterostructure Nanowires Obtained via an Interchange of Group III Elements. Nano Lett. 2009, 9, 3689–3693. [Google Scholar] [CrossRef] [PubMed]
- Venkatesan, S.; Madsen, M.H.; Schmid, H.; Krogstrup, P.; Johnson, E.; Scheu, C. Direct observation of interface and nanoscale compositional modulation in ternary III-As heterostructure nanowires. Appl. Phys. Lett. 2013, 103, 063106. [Google Scholar] [CrossRef]
- Paladugu, M.; Zou, J.; Guo, Y.N.; Auchterlonie, G.J.; Joyce, H.J.; Gao, Q.; Tan, H.H.; Jagadish, C.; Kim, Y. Novel Growth Phenomena Observed in Axial InAs/GaAs Nanowire Heterostructures. Small 2007, 3, 1873–1877. [Google Scholar] [CrossRef]
- Paladugu, M.; Zou, J.; Guo, Y.-N.; Zhang, X.; Kim, Y.; Joyce, H.J.; Gao, Q.; Tan, H.H.; Jagadish, C. Nature of heterointerfaces in GaAs/InAs and InAs/GaAs axial nanowire heterostructures. Appl. Phys. Lett. 2008, 93, 101911. [Google Scholar] [CrossRef]
- Messing, M.E.; Wong-Leung, J.; Zanolli, Z.; Joyce, H.J.; Tan, H.H.; Gao, Q.; Wallenberg, L.R.; Johansson, J.; Jagadish, C. Growth of straight InAs-on-GaAs nanowire heterostructures. Nano Lett. 2011, 11, 3899–3905. [Google Scholar] [CrossRef]
- Bauer, J.; Gottschalch, V.; Paetzelt, H.; Wagner, G. VLS growth of GaAs/(InGa)As/GaAs axial double-heterostructure nanowires by MOVPE. J. Cryst. Growth 2008, 310, 5106–5110. [Google Scholar] [CrossRef]
- Dick, K.A.; Bolinsson, J.; Borg, B.M.; Johansson, J. Controlling the Abruptness of Axial Heterojunctions in III–V Nanowires: Beyond the Reservoir Effect. Nano Lett. 2012, 12, 3200–3206. [Google Scholar] [CrossRef]
- Zannier, V.; Ercolani, D.; Gomes, U.P.; David, J.; Gemmi, M.; Dubrovskii, V.G.; Sorba, L. Catalyst Composition Tuning: The Key for the Growth of Straight Axial Nanowire Heterostructures with Group III Interchange. Nano Lett. 2016, 16, 7183–7190. [Google Scholar] [CrossRef] [PubMed]
- Heiss, M.; Gustafsson, A.; Conesa-Boj, S.; Peiro, F.; Morante, J.R.; Abstreiter, G.; Arbiol, J.; Samuelson, L.; Fontcuberta i Morral, A. Catalyst-free nanowires with axial InxGa1-xAs/GaAs heterostructures. Nanotechnology 2009, 20, 075603. [Google Scholar] [CrossRef] [PubMed]
- Scarpellini, D.; Somaschini, C.; Fedorov, A.; Bietti, S.; Frigeri, C.; Grillo, V.; Esposito, L.; Salvalaglio, M.; Marzegalli, A.; Montalenti, F.; et al. InAs/GaAs Sharply Defined Axial Heterostructures in Self-Assisted Nanowires. Nano Lett. 2015, 15, 3677–3683. [Google Scholar] [CrossRef] [PubMed]
- Jeong, H.W.; Church, S.A.; Doblinger, M.; Ajay, A.; Haubmann, B.; Patel, N.; Finley, J.J.; Parkinson, P.W.; Koblmuller, G. High-Throughput Spectroscopy of Geometry-Tunable Arrays of Axial InGaAs Nanowire Heterostructures with Twin-Induced Carrier Confinement. Nano Lett. 2024; ahead-of-print. [Google Scholar]
- Tchernycheva, M.; Lavenus, P.; Zhang, H.; Babichev, A.V.; Jacopin, G.; Shahmohammadi, M.; Julien, F.H.; Ciechonski, R.; Vescovi, G.; Kryliouk, O. InGaN/GaN Core–Shell Single Nanowire Light Emitting Diodes with Graphene-Based P-Contact. Nano Lett. 2014, 14, 2456–2465. [Google Scholar] [CrossRef] [PubMed]
- Daudin, B. InGaN Nanowire Heterostructures. In Wide Band Gap Semiconductor Nanowires 2; ISTE Ltd. and John Wiley & Sons, Inc.: London, UK; Hoboken, NJ, USA, 2014; pp. 41–60. [Google Scholar]
- Kulkarni, M.A.; Ryu, H.; Choi, H.-J.; Abdullah, A.; Thaalbi, H.; Tariq, F.; Lee, S.H.; Lim, H.; Ryu, S.-W. A strategy to grow three dimensional InGaN/GaN heterostructure exclusively on non-polar m-plane of two-step etched GaN nanorods. Appl. Surf. Sci. 2024, 654, 159529. [Google Scholar] [CrossRef]
- Shanmugasundaram, A.; Johar, M.A.; Paeng, C.; Jeong, Y.-J.; Abdullah, A.; Park, J.; Ryu, S.-W.; Yim, C.; Lee, D.-W. InGaN/GaN multi-quantum well nanowires: Enhanced trace-level NO2 detection for environmental and breath analysis. Chem. Eng. J. 2024, 491, 152074. [Google Scholar] [CrossRef]
- Li, Q.; Wang, G.T. Strain influenced indium composition distribution in GaN/InGaN core-shell nanowires. Appl. Phys. Lett. 2010, 97, 181107. [Google Scholar] [CrossRef]
- Ha, R.; Kim, S.-W.; Choi, H.-J. Fabrication of vertical GaN/InGaN heterostructure nanowires using Ni-Au bi-metal catalysts. Nanoscale Res. Lett. 2013, 8, 299. [Google Scholar] [CrossRef]
- Song, J.; Leung, B.; Zhang, Y.; Han, J. Growth, structural and optical properties of ternary InGaN nanorods prepared by selective-area metalorganic chemical vapor deposition. Nanotechnology 2014, 25, 225602. [Google Scholar] [CrossRef]
- Sundaram, S.; El Gmili, Y.; Puybaret, R.; Li, X.; Bonanno, P.L.; Pantzas, K.; Patriarche, G.; Voss, P.L.; Salvestrini, J.P.; Ougazzaden, A. Nanoselective area growth and characterization of dislocation-free InGaN nanopyramids on AlN buffered Si(111) templates. Appl. Phys. Lett. 2015, 107, 113105. [Google Scholar] [CrossRef]
- Sundaram, S.; Puybaret, R.; El Gmili, Y.; Li, X.; Bonanno, P.L.; Pantzas, K.; Orsal, G.; Troadec, D.; Cai, Z.-H.; Patriarche, G.; et al. Nanoscale selective area growth of thick, dense, uniform, In-rich, InGaN nanostructure arrays on GaN/sapphire template. J. Appl. Phys. 2014, 116, 163105. [Google Scholar] [CrossRef]
- Jung, B.O.; Bae, S.-Y.; Kim, S.Y.; Lee, S.; Lee, J.Y.; Lee, D.-S.; Kato, Y.; Honda, Y.; Amano, H. Highly ordered catalyst-free InGaN/GaN core–shell architecture arrays with expanded active area region. Nano Energy 2015, 11, 294–303. [Google Scholar] [CrossRef]
- Priante, G.; Glas, F.; Patriarche, G.; Pantzas, K.; Oehler, F.; Harmand, J.-C. Sharpening the Interfaces of Axial Heterostructures in Self-Catalyzed AlGaAs Nanowires: Experiment and Theory. Nano Lett. 2016, 16, 1917–1924. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Huang, H.; Ding, Y.; Ji, Z.; Liu, M.; Ren, X.; Zhang, X.; Huang, Y. Growth of zinc blende GaAs/AlGaAs heterostructure nanowires on Si substrate by using AlGaAs buffer layers. J. Cryst. Growth 2012, 359, 30–34. [Google Scholar] [CrossRef]
- Hayashida, A.; Sato, T.; Hara, S.; Motohisa, J.; Hiruma, K.; Fukui, T. Fabrication and characterization of GaAs quantum well buried in AlGaAs/GaAs heterostructure nanowires. J. Cryst. Growth 2010, 312, 3592–3598. [Google Scholar] [CrossRef]
- Chen, C.; Braidy, N.; Couteau, C.; Fradin, C.; Weihs, G.; LaPierre, R. Multiple Quantum Well AlGaAs Nanowires. Nano Lett. 2008, 8, 495–499. [Google Scholar] [CrossRef]
- Tateno, K.; Gotoh, H.; Watanabe, Y. Multi-Quantum Structures of GaAs/AlGaAs Free-Standing Nanowires. Jpn. J. Appl. Phys. 2006, 45. [Google Scholar] [CrossRef]
- Wu, Z.H.; Sun, M.; Mei, X.Y.; Ruda, H.E. Growth and photoluminescence characteristics of AlGaAs nanowires. Appl. Phys. Lett. 2004, 85, 657–659. [Google Scholar] [CrossRef]
- Paek, J.H.; Nishiwaki, T.; Yamaguchi, M.; Sawaki, N. Catalyst free MBE-VLS growth of GaAs nanowires on (111)Si substrate. Phys. Status Solidi (c) 2009, 6, 1436–1440. [Google Scholar] [CrossRef]
- Mokkapati, S.; Saxena, D.; Jiang, N.; Li, L.; Tan, H.H.; Jagadish, C. An order of magnitude increase in the quantum efficiency of (Al)GaAs nanowires using hybrid photonic-plasmonic modes. Nano Lett. 2015, 15, 307–312. [Google Scholar] [CrossRef]
- Meng, B.; Zhang, X.; Kang, Y.; Yu, X.; Wang, P.; Wang, S.; Tang, J.; Hao, Q.; Wei, Z.; Chen, R. Controlling the random lasing action from GaAs/AlGaAs axial heterostructure nanowire arrays. Nanoscale 2024, 16, 17488–17494. [Google Scholar] [CrossRef] [PubMed]
- Ren, D.; Dheeraj, D.L.; Jin, C.; Nilsen, J.S.; Huh, J.; Reinertsen, J.F.; Munshi, A.M.; Gustafsson, A.; van Helvoort, A.T.J.; Weman, H.; et al. New Insights into the Origins of Sb-Induced Effects on Self-Catalyzed GaAsSb Nanowire Arrays. Nano Lett. 2016, 16, 1201–1209. [Google Scholar] [CrossRef] [PubMed]
- Kauko, H.; Grieb, T.; Bjørge, R.; Schowalter, M.; Munshi, A.M.; Weman, H.; Rosenauer, A.; van Helvoort, A.T. Compositional characterization of GaAs/GaAsSb nanowires by quantitative HAADF-STEM. Micron 2013, 44, 254–260. [Google Scholar] [CrossRef] [PubMed]
- Sharma, M.; Karim, M.R.; Kasanaboina, P.; Li, J.; Iyer, S. Pitch-Induced Bandgap Tuning in Self-Catalyzed Growth of Patterned GaAsSb Axial and GaAs/GaAsSb Core–Shell Nanowires Using Molecular Beam Epitaxy. Cryst. Growth Des. 2017, 17, 730–737. [Google Scholar] [CrossRef]
- Ren, D.; Ahtapodov, L.; Nilsen, J.S.; Yang, J.; Gustafsson, A.; Huh, J.; Conibeer, G.J.; van Helvoort, A.T.J.; Fimland, B.O.; Weman, H. Single-Mode Near-Infrared Lasing in a GaAsSb-Based Nanowire Superlattice at Room Temperature. Nano Lett. 2018, 18, 2304–2310. [Google Scholar] [CrossRef]
- Zhou, C.; Zheng, K.; Chen, P.-P.; Matsumura, S.; Lu, W.; Zou, J. Crystal-phase control of GaAs-GaAsSb core-shell/axial nanowire heterostructures by a two-step growth method. J. Mater. Chem. C 2018, 6, 6726–6732. [Google Scholar] [CrossRef]
- Todorovic, J.; Kauko, H.; Ahtapodov, L.; Moses, A.F.; Olk, P.; Dheeraj, D.L.; Fimland, B.O.; Weman, H.; van Helvoort, A.T.J. The effects of Sb concentration variation on the optical properties of GaAsSb/GaAs heterostructured nanowires. Semicond. Sci. Technol. 2013, 28, 115004. [Google Scholar] [CrossRef]
- Kauko, H.; Fimland, B.O.; Grieb, T.; Munshi, A.M.; Müller, K.; Rosenauer, A.; van Helvoort, A.T.J. Near-surface depletion of antimony during the growth of GaAsSb and GaAs/GaAsSb nanowires. J. Appl. Phys. 2014, 116, 144303. [Google Scholar] [CrossRef]
- Plissard, S.; Dick, K.A.; Wallart, X.; Caroff, P. Gold-free GaAs/GaAsSb heterostructure nanowires grown on silicon. Appl. Phys. Lett. 2010, 96, 121901. [Google Scholar] [CrossRef]
- Li, L.; Pan, D.; Xue, Y.; Wang, X.; Lin, M.; Su, D.; Zhang, Q.; Yu, X.; So, H.; Wei, D.; et al. Near Full-Composition-Range High-Quality GaAs1-xSbx Nanowires Grown by Molecular-Beam Epitaxy. Nano Lett. 2017, 17, 622–630. [Google Scholar] [CrossRef]
- Munshi, A.M.; Dheeraj, D.L.; Todorovic, J.; van Helvoort, A.T.; Weman, H.; Fimland, B.-O. Crystal phase engineering in self-catalyzed GaAs and GaAs/GaAsSb nanowires grown on Si(111). J. Cryst. Growth 2013, 372, 163–169. [Google Scholar] [CrossRef]
- Kuchoor, H.; Deshmukh, Y.; Baruah, R.; Li, J.; Winkler, C.; Reynolds, L.; Iyer, S. Study of n–i–p Axial/Core–Shell Hybrid GaAsSb Dense Nanowire-Based Near-Infrared Photodetectors on Graphene. ACS Appl. Nano Mater. 2024, 7, 24299–24314. [Google Scholar] [CrossRef]
- Ercolani, D.; Gemmi, M.; Nasi, L.; Rossi, F.; Pea, M.; Li, A.; Salviati, G.; Beltram, F.; Sorba, L. Growth of InAs/InAsSb heterostructured nanowires. Nanotechnology 2012, 23, 115606. [Google Scholar] [CrossRef] [PubMed]
- Borg, B.M.; Dick, K.A.; Eymery, J.; Wernersson, L.-E. Enhanced Sb incorporation in InAsSb nanowires grown by metalorganic vapor phase epitaxy. Appl. Phys. Lett. 2011, 98, 113104. [Google Scholar] [CrossRef]
- Dahl, M.; Namazi, L.; Zamani, R.R.; Dick, K.A. Sb Incorporation in Wurtzite and Zinc Blende InAs1-x Sbx Branches on InAs Template Nanowires. Small 2018, 14, e1703785. [Google Scholar] [CrossRef]
- Pozuelo, M.; Zhou, H.; Lin, S.; Lipman, S.A.; Goorsky, M.S.; Hicks, R.F.; Kodambaka, S. Self-catalyzed growth of InP/InSb axial nanowire heterostructures. J. Cryst. Growth 2011, 329, 6–11. [Google Scholar] [CrossRef]
- Berg, A.; Heurlin, M.; Tsopanidis, S.; Pistol, M.E.; Borgstrom, M.T. Growth of wurtzite AlxGa1-x P nanowire shells and characterization by Raman spectroscopy. Nanotechnology 2017, 28, 035706. [Google Scholar] [CrossRef]
- Ishizaka, F.; Hiraya, Y.; Tomioka, K.; Motohisa, J.; Fukui, T. Growth and characterization of wurtzite InP/AlGaP core–multishell nanowires with AlGaP quantum well structures. Jpn. J. Appl. Phys. 2016, 56, 10311. [Google Scholar] [CrossRef]
- Ishizaka, F.; Hiraya, Y.; Tomioka, K.; Motohisa, J.; Fukui, T. Growth of All-Wurtzite InP/AlInP Core–Multishell Nanowire Array. Nano Lett. 2017, 17, 1350–1355. [Google Scholar] [CrossRef]
- Jacobsson, D.; Persson, J.M.; Kriegner, D.; Etzelstorfer, T.; Wallentin, J.; Wagner, J.B.; Stangl, J.; Samuelson, L.; Deppert, K.; Borgstrom, M.T. Particle-assisted GaxIn1-xP nanowire growth for designed bandgap structures. Nanotechnology 2012, 23, 245601. [Google Scholar] [CrossRef]
- Gagliano, L.; Belabbes, A.; Albani, M.; Assali, S.; Verheijen, M.A.; Miglio, L.; Bechstedt, F.; Haverkort, J.E.; Bakkers, E.P. Pseudodirect to Direct Compositional Crossover in Wurtzite GaP/InxGa1-xP Core-Shell Nanowires. Nano Lett. 2016, 16, 7930–7936. [Google Scholar] [CrossRef] [PubMed]
- Gorji Ghalamestani, S.; Ek, M.; Ganjipour, B.; Thelander, C.; Johansson, J.; Caroff, P.; Dick, K.A. Demonstration of defect-free and composition tunable GaxIn1-xSb nanowires. Nano Lett. 2012, 12, 4914–4919. [Google Scholar] [CrossRef] [PubMed]
- Ghalamestani, S.G.; Ek, M.; Ghasemi, M.; Caroff, P.; Johansson, J.; Dick, K.A. Morphology and composition controlled GaxIn1-xSb nanowires: Understanding ternary antimonide growth. Nanoscale 2014, 6, 1086–1092. [Google Scholar] [CrossRef] [PubMed]
- Ning, C.-Z.; Dou, L.; Yang, P. Bandgap engineering in semiconductor alloy nanomaterials with widely tunable compositions. Nat. Rev. Mater. 2017, 2, 17070. [Google Scholar] [CrossRef]
- Vurgaftman, I.; Meyer, J.R.; Ram-Mohan, L.R. Band parameters for III–V compound semiconductors and their alloys. J. Appl. Phys. 2001, 89, 5815–5875. [Google Scholar] [CrossRef]
- McIntyre, P.C.; Fontcuberta i Morral, A. Semiconductor nanowires: To grow or not to grow? Mater. Today Nano 2020, 9, 100058. [Google Scholar] [CrossRef]
- Zhang, X.; Dubrovskii, V.G.; Sibirev, N.V.; Ren, X. Analytical Study of Elastic Relaxation and Plastic Deformation in Nanostructures on Lattice Mismatched Substrates. Cryst. Growth Des. 2011, 11, 5441–5448. [Google Scholar] [CrossRef]
- Glas, F. Critical dimensions for the plastic relaxation of strained axial heterostructures in free-standing nanowires. Phys. Rev. B 2006, 74, 121302. [Google Scholar] [CrossRef]
- Wolfsteller, A.; Geyer, N.; Nguyen-Duc, T.-K.; Das Kanungo, P.; Zakharov, N.; Reiche, M.; Erfurth, W.; Blumtritt, H.; Kalem, S.; Werner, P.; et al. Comparison of the top-down and bottom-up approach to fabricate nanowire-based silicon/germanium heterostructures. Thin Solid Films 2010, 518, 2555–2561. [Google Scholar] [CrossRef]
- Whitesides, G.M.; Grzybowski, B. Self-assembly at all scales. Science 2002, 295, 2418–2421. [Google Scholar] [CrossRef]
- Koivusalo, E.S.; Hakkarainen, T.V.; Guina, M.D.; Dubrovskii, V.G. Sub-Poissonian Narrowing of Length Distributions Realized in Ga-Catalyzed GaAs Nanowires. Nano Lett. 2017, 17, 5350–5355. [Google Scholar] [CrossRef] [PubMed]
- Dubrovskii, V.G.; Xu, T.; Álvarez, A.D.; Plissard, S.R.; Caroff, P.; Glas, F.; Grandidier, B. Self-Equilibration of the Diameter of Ga-Catalyzed GaAs Nanowires. Nano Lett. 2015, 15, 5580–5584. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Borg, B.M.; Jacobsson, D.; Dick, K.A.; Wernersson, L.-E. Control of composition and morphology in InGaAs nanowires grown by metalorganic vapor phase epitaxy. J. Cryst. Growth 2013, 383, 158–165. [Google Scholar] [CrossRef]
- Yuan, X.; Pan, D.; Zhou, Y.; Zhang, X.; Peng, K.; Zhao, B.; Deng, M.; He, J.; Tan, H.H.; Jagadish, C. Selective area epitaxy of III–V nanostructure arrays and networks: Growth, applications, and future directions. Appl. Phys. Rev. 2021, 8, 021302. [Google Scholar] [CrossRef]
- Dubrovskii, V.G. Nucleation Theory and Growth of Nanostructures. In NanoScience and Technology; Avouris, P., Bhushan, B., Klitzing, K.V., Sakaki, H., Wiesendanger, R., Eds.; Springer: Berlin/Heidelberg, Germany, 2014. [Google Scholar] [CrossRef]
- Caroff, P.; Dick, K.A.; Johansson, J.; Messing, M.E.; Deppert, K.; Samuelson, L. Controlled polytypic and twin-plane superlattices in III–V nanowires. Nat. Nanotechnol. 2009, 4, 50–55. [Google Scholar] [CrossRef]
- Wallentin, J.; Borgström, M.T. Doping of semiconductor nanowires. J. Mater. Res. 2011, 26, 2142–2156. [Google Scholar] [CrossRef]
- Thelander, C.; Mårtensson, T.; Björk, M.T.; Ohlsson, B.J.; Larsson, M.W.; Wallenberg, L.R.; Samuelson, L. Single-electron transistors in heterostructure nanowires. Appl. Phys. Lett. 2003, 83, 2052–2054. [Google Scholar] [CrossRef]
- Lu, W.; Xie, P.; Lieber, C.M. Nanowire Transistor Performance Limits and Applications. IEEE Trans. Electron. Devices 2008, 55, 2859–2876. [Google Scholar] [CrossRef]
- Xiang, J.; Lu, W.; Hu, Y.; Wu, Y.; Yan, H.; Lieber, C.M. Ge/Si nanowire heterostructures as high-performance field-effect transistors. Nature 2006, 441, 489–493. [Google Scholar] [CrossRef]
- Nilsson, H.A.; Caroff, P.; Lind, E.; Pistol, M.-E.; Thelander, C.; Wernersson, L.-E. Unipolar and bipolar operation of InAs/InSb nanowire heterostructure field-effect transistors. J. Appl. Phys. 2011, 110, 064510. [Google Scholar] [CrossRef]
- Chen, J.; Ouyang, W.; Yang, W.; He, J.; Fang, X. Recent Progress of Heterojunction Ultraviolet Photodetectors: Materials, Integrations, and Applications. Adv. Funct. Mater. 2020, 30. [Google Scholar] [CrossRef]
- Karimi, M.; Heurlin, M.; Limpert, S.; Jain, V.; Mansouri, E.; Zeng, X.; Samuelson, L.; Linke, H.; Borgström, M.T.; Pettersson, H. Nanowire photodetectors with embedded quantum heterostructures for infrared detection. Infrared Phys. Technol. 2019, 96, 209–212. [Google Scholar] [CrossRef]
- Karimi, M.; Jain, V.; Heurlin, M.; Nowzari, A.; Hussain, L.; Lindgren, D.; Stehr, J.E.; Buyanova, I.A.; Gustafsson, A.; Samuelson, L.; et al. Room-temperature InP/InAsP Quantum Discs-in-Nanowire Infrared Photodetectors. Nano Lett. 2017, 17, 3356–3362. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Wang, S.; Hsu, J.; Sidhu, R.; Zheng, X.; Li, X.; Campbell, J.; Holmes, A. GaAsSb: A novel material for near infrared photodetectors on GaAs substrates. IEEE J. Sel. Top. Quantum Electron. 2002, 8, 817–822. [Google Scholar] [CrossRef]
- Ren, D.; Rong, Z.; Azizur-Rahman, K.M.; Somasundaram, S.; Shahili, M.; Huffaker, D.L. Feasibility of achieving high detectivity at short- and mid-wavelength infrared using nanowire-plasmonic photodetectors with p–n heterojunctions. Nanotechnology 2019, 30, 044002. [Google Scholar] [CrossRef]
- Karimi, M.; Heurlin, M.; Limpert, S.; Jain, V.; Zeng, X.; Geijselaers, I.; Nowzari, A.; Fu, Y.; Samuelson, L.; Linke, H.; et al. Intersubband Quantum Disc-in-Nanowire Photodetectors with Normal-Incidence Response in the Long-Wavelength Infrared. Nano Lett. 2018, 18, 365–372. [Google Scholar] [CrossRef]
- LaPierre, R.R.; Robson, M.; Azizur-Rahman, K.M.; Kuyanov, P. A review of III–V nanowire infrared photodetectors and sensors. J. Phys. D Appl. Phys. 2017, 50, 123001. [Google Scholar] [CrossRef]
- Spies, M.; Monroy, E. Nanowire photodetectors based on wurtzite semiconductor heterostructures. Semicond. Sci. Technol. 2019, 34, 053002. [Google Scholar] [CrossRef]
- Albert, S.; Bengoechea-Encabo, A.; Sanchez-Garcia, M.A.; Calleja, E.; Jahn, U. Selective area growth and characterization of InGaN nanocolumns for phosphor-free white light emission. J. Appl. Phys. 2013, 113, 114306. [Google Scholar] [CrossRef]
- Albert, S.; Bengoechea-Encabo, A.; Ledig, J.; Schimpke, T.; Sánchez-Garcia, M.A.; Strassburg, M.; Waag, A.; Calleja, E. Demonstration of (In, Ga)N/GaN Core–Shell Micro Light-Emitting Diodes Grown by Molecular Beam Epitaxy on Ordered MOVPE GaN Pillars. Cryst. Growth Des. 2015, 15, 3661–3665. [Google Scholar] [CrossRef]
- Chang, Y.-L.; Wang, J.L.; Li, F.; Mi, Z. High efficiency green, yellow, and amber emission from InGaN/GaN dot-in-a-wire heterostructures on Si(111). Appl. Phys. Lett. 2010, 96, 013106. [Google Scholar] [CrossRef]
- Lin, H.-W.; Lu, Y.-J.; Chen, H.-Y.; Lee, H.-M.; Gwo, S. InGaN/GaN nanorod array white light-emitting diode. Appl. Phys. Lett. 2010, 97, 073101. [Google Scholar] [CrossRef]
- Limbach, F.; Gotschke, T.; Stoica, T.; Calarco, R.; Sutter, E.; Ciston, J.; Cusco, R.; Artus, L.; Kremling, S.; Höfling, S.; et al. Structural and optical properties of InGaN–GaN nanowire heterostructures grown by molecular beam epitaxy. J. Appl. Phys. 2011, 109, 014309. [Google Scholar] [CrossRef]
- Goodman, K.D.; Protasenko, V.V.; Verma, J.; Kosel, T.H.; Xing, H.G.; Jena, D. Green luminescence of InGaN nanowires grown on silicon substrates by molecular beam epitaxy. J. Appl. Phys. 2011, 109, 084336. [Google Scholar] [CrossRef]
- Chen, H.-S.; Yao, Y.-F.; Liao, C.-H.; Tu, C.-G.; Su, C.-Y.; Chang, W.-M.; Kiang, Y.-W.; Yang, C.C. Light-emitting device with regularly patterned growth of an InGaN/GaN quantum-well nanorod light-emitting diode array. Opt. Lett. 2013, 38, 3370–3373. [Google Scholar] [CrossRef]
- Ra, Y.-H.; Wang, R.; Woo, S.Y.-M.; Djavid, M.; Sadaf, S.M.; Lee, J.; Botton, G.A.; Mi, Z. Full-Color Single Nanowire Pixels for Projection Displays. Nano Lett. 2016, 16, 4608–4615. [Google Scholar] [CrossRef]
- Sekiguchi, H.; Kishino, K.; Kikuchi, A. Emission color control from blue to red with nanocolumn diameter of InGaN/GaN nanocolumn arrays grown on same substrate. Appl. Phys. Lett. 2010, 96, 231104. [Google Scholar] [CrossRef]
- Albert, S.; Bengoechea-Encabo, A.; Kong, X.; Sanchez-Garcia, M.A.; Calleja, E.; Trampert, A. Monolithic integration of InGaN segments emitting in the blue, green, and red spectral range in single ordered nanocolumns. Appl. Phys. Lett. 2013, 102, 181103. [Google Scholar] [CrossRef]
- Wang, R.; Nguyen, H.P.T.; Connie, A.T.; Lee, J.; Shih, I.; Mi, Z. Color-tunable, phosphor-free InGaN nanowire light-emitting diode arrays monolithically integrated on silicon. Opt. Express 2014, 22 (Suppl. S7), A1768–A1775. [Google Scholar] [CrossRef]
- Nguyen, H.P.T.; Cui, K.; Zhang, S.; Fathololoumi, S.; Mi, Z. Full-color InGaN/GaN dot-in-a-wire light emitting diodes on silicon. Nanotechnology 2011, 22, 445202. [Google Scholar] [CrossRef]
- Nguyen, H.P.T.; Zhang, S.; Cui, K.; Han, X.; Fathololoumi, S.; Couillard, M.; Botton, G.A.; Mi, Z. p-Type Modulation Doped InGaN/GaN Dot-in-a-Wire White-Light-Emitting Diodes Monolithically Grown on Si(111). Nano Lett. 2011, 11, 1919–1924. [Google Scholar] [CrossRef] [PubMed]
- Tourbot, G.; Bougerol, C.; Glas, F.; Zagonel, L.F.; Mahfoud, Z.; Meuret, S.; Gilet, P.; Kociak, M.; Gayral, B.; Daudin, B. Growth mechanism and properties of InGaN insertions in GaN nanowires. Nanotechnology 2012, 23, 135703. [Google Scholar] [CrossRef] [PubMed]
- Guo, W.; Zhang, M.; Banerjee, A.; Bhattacharya, P. Catalyst-Free InGaN/GaN Nanowire Light Emitting Diodes Grown on (001) Silicon by Molecular Beam Epitaxy. Nano Lett. 2010, 10, 3355–3359. [Google Scholar] [CrossRef] [PubMed]
- Chatterjee, S.; Sahu, S.S.; Mallick, B.; Singh, U.; Bhunia, S.; Sarkar, R.; Saha, D.; Laha, A. InGaN/GaN Hybrid-Nanostructure Light Emitting Diodes with Emission Wavelength Green and Beyond. Phys. Status Solidi (RRL)–Rapid Res. Lett. 2024, 2400147. [Google Scholar] [CrossRef]
- Albert, S.; Bengoechea-Encabo, A.; Sanchez-Garcia, M.A.; Kong, X.; Trampert, A.; Calleja, E. Selective area growth of In(Ga)N/GaN nanocolumns by molecular beam epitaxy on GaN-buffered Si(111): From ultraviolet to infrared emission. Nanotechnology 2013, 24, 175303. [Google Scholar] [CrossRef]
- Yan, X.; Wei, W.; Tang, F.; Wang, X.; Li, L.; Zhang, X.; Ren, X. Low-threshold room-temperature AlGaAs/GaAs nanowire/single-quantum-well heterostructure laser. Appl. Phys. Lett. 2017, 110, 061104. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, X. One-Dimensional Nanowire-Based Heterostructures for Gas Sensors. In Nanowire Electronics; Nanostructure Science and Technology; Springer Nature Singapore Pte Ltd.: Singapore, 2019; pp. 201–235. [Google Scholar]
- Wu, H.; Xu, M.; Wang, Y.; Zheng, G. Branched Co3O4/Fe2O3 nanowires as high capacity lithium-ion battery anodes. Nano Research 2013, 6, 167–173. [Google Scholar] [CrossRef]
- Wierer, J.J., Jr.; Li, Q.; Koleske, D.D.; Lee, S.R.; Wang, G.T. III-nitride core–shell nanowire arrayed solar cells. Nanotechnology 2012, 23, 194007. [Google Scholar] [CrossRef]
- Alcer, D.; Tirrito, M.; Hrachowina, L.; Borgström, M.T. Vertically Processed GaInP/InP Tandem-Junction Nanowire Solar Cells. ACS Appl. Nano Mater. 2024, 7, 2352–2358. [Google Scholar] [CrossRef]
- Parize, R.; Katerski, A.; Gromyko, I.; Rapenne, L.; Roussel, H.; Kärber, E.; Appert, E.; Krunks, M.; Consonni, V. ZnO/TiO2/Sb2S3 Core–Shell Nanowire Heterostructure for Extremely Thin Absorber Solar Cells. J. Phys. Chem. C 2017, 121, 9672–9680. [Google Scholar] [CrossRef]
- Han, D.; Tang, W.; Sun, N.; Ye, H.; Chai, H.; Wang, M. Shape and Composition Evolution in an Alloy Core–Shell Nanowire Heterostructure Induced by Adatom Diffusion. Nanomaterials 2023, 13, 1732. [Google Scholar] [CrossRef] [PubMed]
- Vlassov, S.; Oras, S.; Polyakov, B.; Butanovs, E.; Kyritsakis, A.; Zadin, V. Kinking in Semiconductor Nanowires: A Review. Cryst. Growth Des. 2021, 22, 871–892. [Google Scholar] [CrossRef]
- A Fortuna, S.; Li, X. Metal-catalyzed semiconductor nanowires: A review on the control of growth directions. Semicond. Sci. Technol. 2010, 25, 024005. [Google Scholar] [CrossRef]
- Wu, Z.H.; Mei, X.; Kim, D.; Blumin, M.; Ruda, H.E.; Liu, J.Q.; Kavanagh, K.L. Growth, branching, and kinking of molecular-beam epitaxial <110> GaAs nanowires. Appl. Phys. Lett. 2003, 83, 3368–3370. [Google Scholar] [CrossRef]
- Bao, P.; Zheng, R.; Du, S.; Li, L.; Yeoh, W.K.; Cui, X.; Ringer, S.P. Single Crystal Kinked ZnO Nanowires: Synthesis, Characterization, and Growth/Kinking Mechanism. Cryst. Growth Des. 2012, 12, 3153–3157. [Google Scholar] [CrossRef]
- Li, B.; Yan, X.; Zhang, X.; Ren, X. Self-catalyzed Growth of InAs Nanowires on InP Substrate. Nanoscale Res. Lett. 2017, 12, 34. [Google Scholar] [CrossRef]
- Madras, P.; Dailey, E.; Drucker, J. Kinetically Induced Kinking of Vapor−Liquid−Solid Grown Epitaxial Si Nanowires. Nano Lett. 2009, 9, 3826–3830. [Google Scholar] [CrossRef]
- Lugstein, A.; Steinmair, M.; Hyun, Y.J.; Hauer, G.; Pongratz, P.; Bertagnolli, E. Pressure-Induced Orientation Control of the Growth of Epitaxial Silicon Nanowires. Nano Lett. 2008, 8, 2310–2314. [Google Scholar] [CrossRef]
- Hyun, Y.-J.; Lugstein, A.; Steinmair, M.; Bertagnolli, E.; Pongratz, P. Orientation specific synthesis of kinked silicon nanowires grown by the vapour–liquid–solid mechanism. Nanotechnology 2009, 20, 125606. [Google Scholar] [CrossRef]
- Schwarz, K.W.; Tersoff, J. Elementary Processes in Nanowire Growth. Nano Lett. 2011, 11, 316–320. [Google Scholar] [CrossRef]
- Schwarz, K.W.; Tersoff, J. From Droplets to Nanowires: Dynamics of Vapor-Liquid-Solid Growth. Phys. Rev. Lett. 2009, 102, 206101. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Schmidt, V.; Senz, S.; Gösele, U. Epitaxial growth of silicon nanowires using an aluminium catalyst. Nat. Nanotechnol. 2006, 1, 186–189. [Google Scholar] [CrossRef] [PubMed]
- Dick, K.A.; Kodambaka, S.; Reuter, M.C.; Deppert, K.; Samuelson, L.; Seifert, W.; Wallenberg, L.R.; Ross, F.M. The Morphology of Axial and Branched Nanowire Heterostructures. Nano Lett. 2007, 7, 1817–1822. [Google Scholar] [CrossRef] [PubMed]
- Paladugu, M.; Zou, J.; Auchterlonie, G.J.; Guo, Y.N.; Kim, Y.; Joyce, H.J.; Gao, Q.; Tan, H.H.; Jagadish, C. Evolution of InAs branches in InAs∕GaAs nanowire heterostructures. Appl. Phys. Lett. 2007, 91, 133115. [Google Scholar] [CrossRef]
- Dick, K.A.; Deppert, K.; Karlsson, L.S.; Seifert, W.; Wallenberg, L.R.; Samuelson, L. Position-Controlled Interconnected InAs Nanowire Networks. Nano Lett. 2006, 6, 2842–2847. [Google Scholar] [CrossRef]
- Wang, D.; Qian, F.; Yang, C.; Zhong, Z.; Lieber, C.M. Rational Growth of Branched and Hyperbranched Nanowire Structures. Nano Lett. 2004, 4, 871–874. [Google Scholar] [CrossRef]
- Dubrovskii, V.G.; Shtrom, I.V.; Reznik, R.R.; Samsonenko, Y.B.; Khrebtov, A.I.; Soshnikov, I.P.; Rouvimov, S.; Akopian, N.; Kasama, T.; Cirlin, G.E. Origin of Spontaneous Core–Shell AlGaAs Nanowires Grown by Molecular Beam Epitaxy. Cryst. Growth Des. 2016, 16, 7251–7255. [Google Scholar] [CrossRef]
- Sun, W.; Huang, Y.; Guo, Y.; Liao, Z.M.; Gao, Q.; Tan, H.H.; Jagadish, C.; Liao, X.Z.; Zou, J. Spontaneous formation of core–shell GaAsP nanowires and their enhanced electrical conductivity. J. Mater. Chem. C 2014, 3, 1745–1750. [Google Scholar] [CrossRef]
- Wang, R.; Liu, X.; Shih, I.; Mi, Z. High efficiency, full-color AlInGaN quaternary nanowire light emitting diodes with spontaneous core-shell structures on Si. Appl. Phys. Lett. 2015, 106, 261104. [Google Scholar] [CrossRef]
- Kavanagh, K.L. Misfit dislocations in nanowire heterostructures. Semicond. Sci. Technol. 2010, 25, 024006. [Google Scholar] [CrossRef]
- Romanov, A.; Kolesnikova, A.; Gutkin, M.; Dubrovskii, V. Elasticity of axial nanowire heterostructures with sharp and diffuse interfaces. Scr. Mater. 2020, 176, 42–46. [Google Scholar] [CrossRef]
- Ek, M.; Borg, B.M.; Johansson, J.; Dick, K.A. Diameter Limitation in Growth of III-Sb-Containing Nanowire Heterostructures. ACS Nano 2013, 7, 3668–3675. [Google Scholar] [CrossRef] [PubMed]
- Panev, N.; Persson, A.I.; Sköld, N.; Samuelson, L. Sharp exciton emission from single InAs quantum dots in GaAs nanowires. Appl. Phys. Lett. 2003, 83, 2238–2240. [Google Scholar] [CrossRef]
- Dubrovskii, V.G.; Sibirev, N.V. Factors Influencing the Interfacial Abruptness in Axial III–V Nanowire Heterostructures. Cryst. Growth Des. 2016, 16, 2019–2023. [Google Scholar] [CrossRef]
- Barrigón, E.; Heurlin, M.; Bi, Z.; Monemar, B.; Samuelson, L. Synthesis and Applications of III–V Nanowires. Chem. Rev. 2019, 119, 9170–9220. [Google Scholar] [CrossRef]
- Ghasemi, M.; Leshchenko, E.D.; Johansson, J. Assembling your nanowire: An overview of composition tuning in ternary III–V nanowires. Nanotechnology 2021, 32, 072001. [Google Scholar] [CrossRef]
- Leshchenko, E.D.; Dubrovskii, V.G. An Overview of Modeling Approaches for Compositional Control in III–V Ternary Nanowires. Nanomaterials 2023, 13, 1659. [Google Scholar] [CrossRef]
- Leshchenko, E.D.; Johansson, J. Interfacial profile of axial nanowire heterostructures in the nucleation limited regime. CrystEngComm 2022, 24, 8052–8059. [Google Scholar] [CrossRef]
- Zannier, V.; Rossi, F.; Dubrovskii, V.G.; Ercolani, D.; Battiato, S.; Sorba, L. Nanoparticle Stability in Axial InAs-InP Nanowire Heterostructures with Atomically Sharp Interfaces. Nano Lett. 2018, 18, 167–174. [Google Scholar] [CrossRef]
- Hui, H.Y.; de la Mata, M.; Arbiol, J.; Filler, M.A. Low-Temperature Growth of Axial Si/Ge Nanowire Heterostructures Enabled by Trisilane. Chem. Mater. 2017, 29, 3397–3402. [Google Scholar] [CrossRef]
- Sjokvist, R.; Jacobsson, D.; Tornberg, M.; Wallenberg, R.; Leshchenko, E.D.; Johansson, J.; Dick, K.A. Compositional Correlation between the Nanoparticle and the Growing Au-Assisted InxGa1-xAs Nanowire. J. Phys. Chem. Lett. 2021, 12, 7590–7595. [Google Scholar] [CrossRef] [PubMed]
- Clark, T.E.; Nimmatoori, P.; Lew, K.K.; Pan, L.; Redwing, J.M.; Dickey, E.C. Diameter dependent growth rate and interfacial abruptness in vapor-liquid-solid Si/Si1-xGex heterostructure nanowires. Nano Lett. 2008, 8, 1246–1252. [Google Scholar] [CrossRef] [PubMed]
- Stringfellow, G.B. Organometallic Vapor-Phase Epitaxy Theory and Practice, 2nd ed.; Academic Press: Cambridge, MA, USA, 1998. [Google Scholar]
- Dubrovskii, V.G. Theory of MBE Growth of Nanowires on Reflecting Substrates. Nanomaterials 2022, 12, 253. [Google Scholar] [CrossRef] [PubMed]
- Dubrovskii, V.G. Theory of MBE Growth of Nanowires on Adsorbing Substrates: The Role of the Shadowing Effect on the Diffusion Transport. Nanomaterials 2022, 12, 1064. [Google Scholar] [CrossRef]
- Tateno, K.; Zhang, G.; Gotoh, H.; Sogawa, T. VLS Growth of Alternating InAsP/InP Heterostructure Nanowires for Multiple-Quantum-Dot Structures. Nano Lett. 2012, 12, 2888–2893. [Google Scholar] [CrossRef]
- Joyce, T.; Bullough, T. Beam equivalent pressure measurements in chemical beam epitaxy. J. Cryst. Growth 1993, 127, 265–269. [Google Scholar] [CrossRef]
- Lukas, H.; Fries, S.G.; Sundman, B. Computational Thermodynamics; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Hildebrand, J.H. Solubility. XII. Regular Solutions1. J. Am. Chem. Soc. 2002, 51, 66–80. [Google Scholar] [CrossRef]
- Redlich, O.; Kister, A.T. Algebraic Representation of Thermodynamic Properties and the Classification of Solutions. Ind. Eng. Chem. 2002, 40, 345–348. [Google Scholar] [CrossRef]
- Er, D.; Ghatak, K. Atomistic modeling by density functional theory of two-dimensional materials. In Synthesis, Modeling, and Characterization of 2D Materials, and Their Heterostructures; Elsevier: Amsterdam, The Netherlands; Kidlington, UK; Cambridge, MA, USA, 2020; pp. 113–123. [Google Scholar]
- Kashchiev, D. Nucleation Basic Theory with Applications, 1st ed.; Butterworth-Heinemann: Oxford, UK, 2000; p. 544. [Google Scholar]
- Chakraborty, S.; Kumar, H. Molecular dynamics simulations of two-dimensional materials. In Synthesis, Modeling, and Characterization of 2D Materials, and Their Heterostructures; Elsevier: Amsterdam, The Netherlands; Kidlington, UK; Cambridge, MA, USA, 2020; pp. 125–148. [Google Scholar]
- Basu, S.; Sharma, V. Monte Carlo method in two-dimensional materials. In Synthesis, Modeling, and Characterization of 2D Materials, and Their Heterostructures; Elsevier: Amsterdam, The Netherlands; Kidlington, UK; Cambridge, MA, USA, 2020; pp. 149–163. [Google Scholar]
- Mukhopadhyay, T.; Mahata, A.; Adhikari, S. Lattice and continuum based modeling of 2D materials. In Synthesis, Modeling, and Characterization of 2D Materials, and Their Heterostructures; Elsevier: Amsterdam, The Netherlands; Kidlington, UK; Cambridge, MA, USA, 2020; pp. 165–177. [Google Scholar]
- Filho, M.A.M.; Hsiao, C.-L.; dos Santos, R.B.; Hultman, L.; Birch, J.; Gueorguiev, G.K. Self-Induced Core–Shell InAlN Nanorods: Formation and Stability Unraveled by Ab Initio Simulations. ACS Nanosci. Au 2023, 3, 84–93. [Google Scholar] [CrossRef]
- Gueorguiev, G.; Furlan, A.; Högberg, H.; Stafström, S.; Hultman, L. First-principles calculations on the structural evolution of solid fullerene-like CPx. Chem. Phys. Lett. 2006, 426, 374–379. [Google Scholar] [CrossRef]
- Filho, M.A.M.; Farmer, W.; Hsiao, C.-L.; dos Santos, R.B.; Hultman, L.; Birch, J.; Ankit, K.; Gueorguiev, G.K. Density Functional Theory-Fed Phase Field Model for Semiconductor Nanostructures: The Case of Self-Induced Core–Shell InAlN Nanorods. Cryst. Growth Des. 2024, 24, 4717–4727. [Google Scholar] [CrossRef] [PubMed]
- Wheeler, A.A.; Boettinger, W.J.; McFadden, G.B. Phase-field model for isothermal phase transitions in binary alloys. Phys. Rev. A 1992, 45, 7424–7439. [Google Scholar] [CrossRef] [PubMed]
- Dubrovskii, V.G. Liquid-solid and vapor-solid distributions of vapor-liquid-solid III–V ternary nanowires. Phys. Rev. Mater. 2023, 7, 096001. [Google Scholar] [CrossRef]
- Li, C.; Li, J.B.; Du, Z.; Lu, L.; Zhang, W. A thermodynamic reassessment of the Al-As-Ga system. J. Phase Equilibria Diffus. 2001, 22, 26–33. [Google Scholar] [CrossRef]
- McLean, D.; Maradudin, A. Grain Boundaries in Metals. Phys. Today 1958, 11, 35–36. [Google Scholar] [CrossRef]
- Koryakin, A.A.; Leshchenko, E.D.; Dubrovskii, V.G. Effect of Elastic Stresses on the Formation of Axial Heterojunctions in Ternary AIIIBV Nanowires. Phys. Solid State 2020, 61, 2459–2463. [Google Scholar] [CrossRef]
- Christiansen, S.; Albrecht, M.; Strunk, H.P.; Maier, H.J. Strained state of Ge(Si) islands on Si: Finite element calculations and comparison to convergent beam electron-diffraction measurements. Appl. Phys. Lett. 1994, 64, 3617–3619. [Google Scholar] [CrossRef]
- Wilemski, G. Revised classical binary nucleation theory for aqueous alcohol and acetone vapors. J. Phys. Chem. 2002, 91, 2492–2498. [Google Scholar] [CrossRef]
- Leshchenko, E.D.; Johansson, J. Surface energy driven miscibility gap suppression during nucleation of III–V ternary alloys. CrystEngComm 2021, 23, 5284–5292. [Google Scholar] [CrossRef]
- Dubrovskii, V.; Koryakin, A.; Sibirev, N. Understanding the composition of ternary III–V nanowires and axial nanowire heterostructures in nucleation-limited regime. Mater. Des. 2017, 132, 400–408. [Google Scholar] [CrossRef]
- Glas, F. Comparison of Modeling Strategies for the Growth of Heterostructures in III–V Nanowires. Cryst. Growth Des. 2017, 17, 4785–4794. [Google Scholar] [CrossRef]
- Dubrovskii, V.G. Self-Consistent Model for the Compositional Profiles in Vapor–Liquid–Solid III–V Nanowire Heterostructures Based on Group V Interchange. Nanomaterials 2024, 14, 821. [Google Scholar] [CrossRef] [PubMed]
- Bolshakov, A.D.; Fedorov, V.V.; Sibirev, N.V.; Fetisova, M.V.; Moiseev, E.I.; Kryzhanovskaya, N.V.; Koval, O.Y.; Ubyivovk, E.V.; Mozharov, A.M.; Cirlin, G.E.; et al. Growth and Characterization of GaP/GaPAs Nanowire Heterostructures with Controllable Composition. Phys. Status Solidi (RRL)–Rapid Res. Lett. 2019, 13, 1900350. [Google Scholar] [CrossRef]
- Dubrovskii, V.G.; Leshchenko, E.D. Modeling the compositional profiles across axial InSb/GaInSb/InSb nanowire heterostructures. Tech. Phys. Lett. 2022, 48, 17. [Google Scholar] [CrossRef]
- Stauffer, D. Kinetic theory of two-component (“hetero-molecular”) nucleation and condensation. J. Aerosol Sci. 1976, 7, 319–333. [Google Scholar] [CrossRef]
- Leshchenko, E.D.; Dubrovskii, V.G. Kinetic modeling of interfacial abruptness in axial nanowire heterostructures. Nanotechnology 2022, 34, 065602. [Google Scholar] [CrossRef]
- Glas, F.; Ramdani, M.R.; Patriarche, G.; Harmand, J.-C. Predictive modeling of self-catalyzed III–V nanowire growth. Phys. Rev. B 2013, 88, 195304. [Google Scholar] [CrossRef]
- Zhang, Y.; Velichko, A.V.; Fonseka, H.A.; Parkinson, P.; Gott, J.A.; Davis, G.; Aagesen, M.; Sanchez, A.M.; Mowbray, D.; Liu, H. Defect-Free Axially Stacked GaAs/GaAsP Nanowire Quantum Dots with Strong Carrier Confinement. Nano Lett. 2021, 21, 5722–5729. [Google Scholar] [CrossRef]
- Dubrovskii, V.G. Interfacial profiles in vapor-liquid-solid grown III–V axial nanowire heterostructures based on group V interchange. Phys. Rev. Mater. 2024, 8, 076003. [Google Scholar] [CrossRef]
- Dubrovskii, V.G.; Leshchenko, E.D. Composition of III–V ternary materials under arbitrary material fluxes: The general approach unifying kinetics and thermodynamics. Phys. Rev. Mater. 2023, 7, 074603. [Google Scholar] [CrossRef]
- Dubrovskii, V.G.; Leshchenko, E.D. Modeling the Radial Growth of Self-Catalyzed III–V Nanowires. Nanomaterials 2022, 12, 1698. [Google Scholar] [CrossRef] [PubMed]
- Glas, F.; Harmand, J.-C.; Patriarche, G. Nucleation Antibunching in Catalyst-Assisted Nanowire Growth. Phys. Rev. Lett. 2010, 104, 135501. [Google Scholar] [CrossRef] [PubMed]
- Wen, C.-Y.; Tersoff, J.; Hillerich, K.; Reuter, M.C.; Park, J.H.; Kodambaka, S.; Stach, E.A.; Ross, F.M. Periodically Changing Morphology of the Growth Interface in Si, Ge, and GaP Nanowires. Phys. Rev. Lett. 2011, 107, 025503. [Google Scholar] [CrossRef] [PubMed]
- Panciera, F.; Baraissov, Z.; Patriarche, G.; Dubrovskii, V.G.; Glas, F.; Travers, L.; Mirsaidov, U.; Harmand, J.-C. Phase Selection in Self-catalyzed GaAs Nanowires. Nano Lett. 2020, 20, 1669–1675. [Google Scholar] [CrossRef]
- Dubrovskii, V.G. Refinement of Nucleation Theory for Vapor–Liquid–Solid Nanowires. Cryst. Growth Des. 2017, 17, 2589–2593. [Google Scholar] [CrossRef]
- Glas, F.; Dubrovskii, V.G. Energetics and kinetics of monolayer formation in vapor-liquid-solid nanowire growth. Phys. Rev. Mater. 2020, 4, 083401. [Google Scholar] [CrossRef]
- Glas, F.; Panciera, F.; Harmand, J.-C. Statistics of Nucleation and Growth of Single Monolayers in Nanowires: Towards a Deterministic Regime. Phys. Status Solidi (RRL)–Rapid Res. Lett. 2022, 16, 2100647. [Google Scholar] [CrossRef]
- Glas, F. Incomplete monolayer regime and mixed regime of nanowire growth. Phys. Rev. Mater. 2024, 8, 043401. [Google Scholar] [CrossRef]
Models | Equilibrium | Nucleation-Limited ) | Kinetically Controlled | |
---|---|---|---|---|
Parameters | ||||
Temperature | Widens | Widens | Not studied | |
Radius | Widens | Widens | Widens | |
Parameter | Narrows | Narrows | Narrows | |
As concentration | Not a parameter | Almost no effect | Not applicable | |
Au concentration | Low High Widens Narrows | Low High Widens Narrows | Low High Widens Narrows |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leshchenko, E.D.; Sibirev, N.V. Recent Advances in the Growth and Compositional Modelling of III–V Nanowire Heterostructures. Nanomaterials 2024, 14, 1816. https://doi.org/10.3390/nano14221816
Leshchenko ED, Sibirev NV. Recent Advances in the Growth and Compositional Modelling of III–V Nanowire Heterostructures. Nanomaterials. 2024; 14(22):1816. https://doi.org/10.3390/nano14221816
Chicago/Turabian StyleLeshchenko, Egor D., and Nickolay V. Sibirev. 2024. "Recent Advances in the Growth and Compositional Modelling of III–V Nanowire Heterostructures" Nanomaterials 14, no. 22: 1816. https://doi.org/10.3390/nano14221816
APA StyleLeshchenko, E. D., & Sibirev, N. V. (2024). Recent Advances in the Growth and Compositional Modelling of III–V Nanowire Heterostructures. Nanomaterials, 14(22), 1816. https://doi.org/10.3390/nano14221816