Suppression of Short-Channel Effects in AlGaN/GaN HEMTs Using SiNx Stress-Engineered Technique
Abstract
:1. Introduction
2. Device Structure and Fabrication Process
3. Results and Discussion
3.1. DC Characterization
3.2. Short-Channel Effect Results
3.3. TCAD Simulation Results and SCE Suppression Mechanism
3.4. Potential Impact on Trapping
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Asif Khan, M.; Bhattarai, A.; Kuznia, J.N.; Olson, D.T. High electron mobility transistor based on a GaN-AlxGa1−xN heterojunction. Appl. Phys. Lett. 1993, 63, 1214–1215. [Google Scholar] [CrossRef]
- Moon, J.S.; Shihchang, W.; Wong, D.; Milosavljevic, I.; Conway, A.; Hashimoto, P.; Hu, M.; Antcliffe, M.; Micovic, M. Gate-recessed AlGaN-GaN HEMTs for high-performance millimeter-wave applications. IEEE Electron Device Lett. 2005, 26, 348–350. [Google Scholar] [CrossRef]
- Sheppard, S.T.; Doverspike, K.; Pribble, W.L.; Allen, S.T.; Palmour, J.W.; Kehias, L.T.; Jenkins, T.J. High-power microwave GaN/AlGaN HEMTs on semi-insulating silicon carbide substrates. IEEE Electron Device Lett. 1999, 20, 161–163. [Google Scholar] [CrossRef]
- Yuh-Renn, W.; Singh, M.; Singh, J. Device scaling physics and channel velocities in AIGaN/GaN HFETs: Velocities and effective gate length. IEEE Trans. Electron Devices 2006, 53, 588–593. [Google Scholar] [CrossRef]
- Jessen, G.H.; Fitch, R.C.; Gillespie, J.K.; Via, G.; Crespo, A.; Langley, D.; Denninghoff, D.J.; Trejo, M.; Heller, E.R. Short-Channel Effect Limitations on High-Frequency Operation of AlGaN/GaN HEMTs for T-Gate Devices. IEEE Trans. Electron Devices 2007, 54, 2589–2597. [Google Scholar] [CrossRef]
- Alim, M.A.; Rezazadeh, A.A.; Gaquiere, C. Thermal characterization of DC and small-signal parameters of 150 nm and 250 nm gate-length AlGaN/GaN HEMTs grown on a SiC substrate. Semicond. Sci. Technol. 2015, 30, 125005. [Google Scholar] [CrossRef]
- Allaei, M.; Shalchian, M.; Jazaeri, F. Modeling of Short-Channel Effects in GaN HEMTs. IEEE Trans. Electron Devices 2020, 67, 3088–3094. [Google Scholar] [CrossRef]
- Arulkumaran, S.; Ng, G.I.; Manojkumar, C.M.; Ranjan, K.; Teo, K.L.; Shoron, O.F.; Rajan, S.; Dolmanan, S.B.; Tripathy, S. In0.17Al0.83N/AlN/GaN Triple T-shape Fin-HEMTs with gm=646 mS/mm, ION=1.03 A/mm, IOFF=1.13 µA/mm, SS=82 mV/dec and DIBL=28 mV/V at VD=0.5 V. In Proceedings of the 2014 IEEE International Electron Devices Meeting, San Francisco, CA, USA, 15–17 December 2014; pp. 25.26.21–25.26.24. [Google Scholar] [CrossRef]
- Guerra, D.; Akis, R.; Marino, F.A.; Ferry, D.K.; Goodnick, S.M.; Saraniti, M. Aspect Ratio Impact on RF and DC Performance of State-of-the-Art Short-Channel GaN and InGaAs HEMTs. IEEE Electron Device Lett. 2010, 31, 1217–1219. [Google Scholar] [CrossRef]
- Zanoni, E.; Santi, C.D.; Gao, Z.; Buffolo, M.; Fornasier, M.; Saro, M.; Pieri, F.D.; Rampazzo, F.; Meneghesso, G.; Meneghini, M.; et al. Microwave and Millimeter-Wave GaN HEMTs: Impact of Epitaxial Structure on Short-Channel Effects, Electron Trapping, and Reliability. IEEE Trans. Electron Devices 2024, 71, 1396–1407. [Google Scholar] [CrossRef]
- Lian, M.; Yin, Y.A.; Li, J.; Zou, B.; Zhang, K.; Zhang, X.; Xie, Y.; Wu, Y.; Zhang, Z. 9 mV/V ultra-low DIBL of suppressing SCEs in InAlN/GaN HEMT with lattice-matched InxAlyGa(1-x-y)N back-barrier for RF device. Microelectron. J. 2023, 137, 105828. [Google Scholar] [CrossRef]
- Park, P.S.; Rajan, S. Simulation of Short-Channel Effects in N- and Ga-Polar AlGaN/GaN HEMTs. IEEE Trans. Electron Devices 2011, 58, 704–708. [Google Scholar] [CrossRef]
- Mutlu, A.A.; Rahman, M. Two-dimensional analytical model for drain induced barrier lowering (DIBL) in short channel MOSFETs. In Proceedings of the IEEE SoutheastCon 2000. ‘Preparing for the New Millennium’ (Cat. No.00CH37105), Nashville, TN, USA, 9 April 2000; pp. 340–344. [Google Scholar] [CrossRef]
- Then, H.W.; Chow, L.A.; Dasgupta, S.; Gardner, S.; Radosavljevic, M.; Rao, V.R.; Sung, S.H.; Yang, G.; Fischer, P. High-K gate dielectric depletion-mode and enhancement-mode GaN MOS-HEMTs for improved OFF-state leakage and DIBL for power electronics and RF applications. In Proceedings of the 2015 IEEE International Electron Devices Meeting (IEDM), Washington, DC, USA, 7–9 December 2015; pp. 16.13.11–16.13.14. [Google Scholar] [CrossRef]
- Rajawat, V.S.; Kumar, A.; Choudhary, B. Physical Analysis of Lateral-BTBT Induced GIDL Current in GaN-Based FinFET Devices. In Proceedings of the 2024 IEEE Open Conference of Electrical, Electronic and Information Sciences (eStream), Vilnius, Lithuania, 25 April 2024; pp. 1–5. [Google Scholar] [CrossRef]
- Choi, Y.-K.; Ha, D.; King, T.-J.; Bokor, J. Investigation of Gate-Induced Drain Leakage (GIDL) Current in Thin Body Devices: Single-Gate Ultra-Thin Body, Symmetrical Double-Gate, and Asymmetrical Double-Gate MOSFETs. Jpn. J. Appl. Phys. 2003, 42, 2073. [Google Scholar] [CrossRef]
- Balakrishnan, K.; Hashemi, P.; Ott, J.A.; Leobandung, E.; Park, D.G. Measurement and analysis of gate-induced drain leakage in short-channel strained silicon germanium-on-insulator pMOS FinFETs. In Proceedings of the 72nd Device Research Conference, Santa Barbara, CA, USA, 22–25 June 2014; pp. 183–184. [Google Scholar] [CrossRef]
- Enz, C.C.; Vittoz, E.A. Charge-Based MOS Transistor Modeling: The EKV Model for Low-Power and RF IC Design; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2006. [Google Scholar]
- Wong, W.; Liou, J.J. Modelling the channel-length modulation coefficient for junction field-effect transistors. Int. J. Electron. 1992, 72, 533–540. [Google Scholar] [CrossRef]
- Nariai, Y.; Hiroki, A. Gate voltage dependence of channel length modulation for 14 nm FinFETs. In Proceedings of the 2016 IEEE International Meeting for Future of Electron Devices, Kansai (IMFEDK), Kyoto, Japan, 23–24 June 2016; pp. 1–2. [Google Scholar] [CrossRef]
- Higashiwaki, M.; Mimura, T.; Matsui, T. AlGaN/GaN Heterostructure Field-Effect Transistors on 4H-SiC Substrates with Current-Gain Cutoff Frequency of 190 GHz. Appl. Phys. Express 2008, 1, 021103. [Google Scholar] [CrossRef]
- Yue, Y.; Hu, Z.; Guo, J.; Sensale-Rodriguez, B.; Li, G.; Wang, R.; Faria, F.; Fang, T.; Song, B.; Gao, X.; et al. InAlN/AlN/GaN HEMTs With Regrown Ohmic Contacts and fT of 370 GHz. IEEE Electron Device Lett. 2012, 33, 988–990. [Google Scholar] [CrossRef]
- Zhou, Y.; Mi, M.; Han, Y.; Wang, P.; Chen, Y.; Liu, J.; Gong, C.; Yang, M.; Zhang, M.; Zhu, Q.; et al. High Efficiency Over 70% at 3.6-GHz InAlN/GaN HEMT Fabricated by Gate Recess and Oxidation Process for Low-Voltage RF Applications. IEEE Trans. Electron Devices 2023, 70, 43–47. [Google Scholar] [CrossRef]
- Shinohara, K.; Regan, D.C.; Tang, Y.; Corrion, A.L.; Brown, D.F.; Wong, J.C.; Robinson, J.F.; Fung, H.H.; Schmitz, A.; Oh, T.C.; et al. Scaling of GaN HEMTs and Schottky Diodes for Submillimeter-Wave MMIC Applications. IEEE Trans. Electron Devices 2013, 60, 2982–2996. [Google Scholar] [CrossRef]
- Guo, J.; Zhu, J.; Liu, S.; Cheng, K.; Zhu, Q.; Wang, P.; Liu, K.; Zhao, Z.; Qin, L.; Zhou, Y.; et al. Tri-Gate Normally-Off AlN/GaN HEMTs With 2.36 W/mm of Power Density and 67.5% Power-Added-Efficiency at Vd = 12 V. IEEE Electron Device Lett. 2023, 44, 590–593. [Google Scholar] [CrossRef]
- Chung, J.W.; Hoke, W.E.; Chumbes, E.M.; Palacios, T. AlGaN/GaN HEMT With 300-GHz fmax. IEEE Electron Device Lett. 2010, 31, 195–197. [Google Scholar] [CrossRef]
- Kato, D.; Kajiwara, Y.; Mukai, A.; Ono, H.; Shindome, A.; Tajima, J.; Hikosaka, T.; Kuraguchi, M.; Nunoue, S. Suppression of short-channel effects in normally-off GaN MOSFETs with deep recessed-gate structures. Jpn. J. Appl. Phys. 2020, 59, SGGD13. [Google Scholar] [CrossRef]
- Ohi, K.; Asubar, J.T.; Nishiguchi, K.; Hashizume, T. Current Stability in Multi-Mesa-Channel AlGaN/GaN HEMTs. IEEE Trans. Electron Devices 2013, 60, 2997–3004. [Google Scholar] [CrossRef]
- Pinchbeck, J.; Lee, K.B.; Jiang, S.; Houston, P. Dual metal gate AlGaN/GaN high electron mobility transistors with improved transconductance and reduced short channel effects. J. Phys. D Appl. Phys. 2021, 54, 105104. [Google Scholar] [CrossRef]
- Pal, A.; Sarkar, A. Analytical study of Dual Material Surrounding Gate MOSFET to suppress short-channel effects (SCEs). Eng. Sci. Technol. Int. J. 2014, 17, 205–212. [Google Scholar] [CrossRef]
- Lee, D.S.; Gao, X.; Guo, S.; Palacios, T. InAlN/GaN HEMTs With AlGaN Back Barriers. IEEE Electron Device Lett. 2011, 32, 617–619. [Google Scholar] [CrossRef]
- Mackenzie, K.; Johnson, D.; DeVre, M.; Westerman, R.; Reelfs, B. Stress Control of Si-based PECVD Dielectrics. ECS Meet. Abstr. 2006, MA2005-01, 406. [Google Scholar] [CrossRef]
- Deng, C.; Wang, P.; Tang, C.; Hu, Q.; Du, F.; Jiang, Y.; Zhang, Y.; Li, M.; Xiong, Z.; Wang, X.; et al. Improvement of DC Performance and RF Characteristics in GaN-Based HEMTs Using SiNx Stress-Engineering Technique. Nanomaterials 2024, 14, 1471. [Google Scholar] [CrossRef]
- Deng, C.; Cheng, W.-C.; Chen, X.; Wen, K.; He, M.; Tang, C.; Wang, P.; Wang, Q.; Yu, H. Current collapse suppression in AlGaN/GaN HEMTs using dual-layer SiNx stressor passivation. Appl. Phys. Lett. 2023, 122, 232107. [Google Scholar] [CrossRef]
- Subramani, N. Physics-Based TCAD Device Simulations and Measurements of GaN HEMT Technology for RF Power Amplifier Applications. Doctoral dissertation, Université de Limoges, Limoges, France, 2017. [Google Scholar]
- Cheng, W.-C.; Zeng, F.; He, M.; Wang, Q.; Chan, M.; Yu, H. Quasi-Normally-Off AlGaN/GaN HEMTs with SiNx Stress Liner and Comb Gate for Power Electronics Applications. IEEE J. Electron Devices Soc. 2020, 8, 1138–1144. [Google Scholar] [CrossRef]
- Cheng, W.-C.; He, M.; Lei, S.; Wang, L.; Wu, J.; Zeng, F.; Hu, Q.; Wang, Q.; Zhao, F.; Chan, M.; et al. Increasing threshold voltage and reducing leakage of AlGaN/GaN HEMTs using dual-layer SiNx stressors. Semicond. Sci. Technol. 2020, 35, 045010. [Google Scholar] [CrossRef]
- Murray, C.E. Mechanics of edge effects in anisotropic thin film substrate/systems. J. Appl. Phys. 2006, 100, 103532. [Google Scholar] [CrossRef]
- Vetury, R. The Impact of Surface States on the DC and RF Characteristics of AlGaN/GaN HFETs. IEEE Electron Device Lett. 1996, 17, 455–457. [Google Scholar] [CrossRef]
- Angelotti, A.M.; Gibiino, G.P.; Santarelli, A.; Florian, C. Experimental characterization of charge trapping dynamics in 100-nm AlN/GaN/AlGaN-on-Si HEMTs by wideband transient measurements. IEEE Trans. Electron Devices 2020, 67, 3069–3074. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deng, C.; Tang, C.; Wang, P.; Cheng, W.-C.; Du, F.; Wen, K.; Zhang, Y.; Jiang, Y.; Tao, N.; Wang, Q.; et al. Suppression of Short-Channel Effects in AlGaN/GaN HEMTs Using SiNx Stress-Engineered Technique. Nanomaterials 2024, 14, 1817. https://doi.org/10.3390/nano14221817
Deng C, Tang C, Wang P, Cheng W-C, Du F, Wen K, Zhang Y, Jiang Y, Tao N, Wang Q, et al. Suppression of Short-Channel Effects in AlGaN/GaN HEMTs Using SiNx Stress-Engineered Technique. Nanomaterials. 2024; 14(22):1817. https://doi.org/10.3390/nano14221817
Chicago/Turabian StyleDeng, Chenkai, Chuying Tang, Peiran Wang, Wei-Chih Cheng, Fangzhou Du, Kangyao Wen, Yi Zhang, Yang Jiang, Nick Tao, Qing Wang, and et al. 2024. "Suppression of Short-Channel Effects in AlGaN/GaN HEMTs Using SiNx Stress-Engineered Technique" Nanomaterials 14, no. 22: 1817. https://doi.org/10.3390/nano14221817
APA StyleDeng, C., Tang, C., Wang, P., Cheng, W. -C., Du, F., Wen, K., Zhang, Y., Jiang, Y., Tao, N., Wang, Q., & Yu, H. (2024). Suppression of Short-Channel Effects in AlGaN/GaN HEMTs Using SiNx Stress-Engineered Technique. Nanomaterials, 14(22), 1817. https://doi.org/10.3390/nano14221817