Bimetallic NiCo Nanoparticles Embedded in Organic Group Functionalized Mesoporous Silica for Efficient Hydrogen Production from Ammonia Borane Hydrolysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of NiCo Nanoparticles Supported on Organic Group Functionalized Mesoporous Silica
2.2. Characterizations
2.3. Hydrolysis of Ammonia Borane with NixCo100−x@CMS Catalysts
3. Results and Discussion
3.1. Structural and Morphological Characterizations of NixCo100−x@CMS
3.2. Catalytic Hydrolysis of Ammonia Borane by NixCo100−x@CMS for Hydrogen Generation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jiang, H.-L.; Xu, Q. Catalytic hydrolysis of ammonia borane for chemical hydrogen storage. Catal. Today 2011, 170, 56–63. [Google Scholar] [CrossRef]
- Conte, M.; Iacobazzi, A.; Ronchetti, M.; Vellone, R. Hydrogen economy for a sustainable development: State-of-the-art and technological perspectives. J. Power Sources 2001, 100, 171–187. [Google Scholar] [CrossRef]
- Fakeeha, A.H.; Vadodariya, D.M.; Alotibi, M.F.; Abu-Dahrieh, J.K.; Ibrahim, A.A.; Abasaeed, A.E.; Alarifi, N.; Kumar, R.; Al-Fatesh, A.S. Pd+Al2O3-supported Ni-Co bimetallic catalyst for H2 production through dry reforming of methane: Effect of carbon deposition over active sites. Catalysts 2023, 13, 1374. [Google Scholar] [CrossRef]
- Wang, C.; Shi, P.; Guo, C.; Guo, R.; Qiu, J. CuCo2O4/CF cathode with bifunctional and dual reaction centers exhibits high RhB degradation in electro-Fenton systems. J. Electroanal. Chem. 2024, 956, 118072. [Google Scholar] [CrossRef]
- Vamvuka, D. Gasification of coal. In Clean Use of Coals. Low-Rank Technologies; Multi-Science Publishing: Seattle, WA, USA, 2000; pp. 515–581. [Google Scholar]
- Aralekallu, S.; Lokesh, K.S.; Singh, V.J.F. Advanced bifunctional catalysts for energy production by electrolysis of earth-abundant water. Fuel 2024, 357, 129753. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, Q.; Xu, B.; Liu, X.; Zhang, K.; Fan, G.; Jiang, W. Efficient hydrogen generation from the NaBH4 hydrolysis by cobalt-based catalysts: Positive roles of sulfur-containing salts. ACS Appl. Mater. Interfaces 2020, 12, 9376–9386. [Google Scholar] [CrossRef]
- Ming, M.; Zhang, Y.; He, C.; Zhao, L.; Niu, S.; Fan, G.; Hu, J.S. Room-temperature sustainable synthesis of selected platinum group metal (PGM = Ir, Rh, and Ru) nanocatalysts well-dispersed on porous carbon for efficient hydrogen evolution and oxidation. Small 2019, 15, 1903057. [Google Scholar] [CrossRef]
- Ouyang, L.; Ma, M.; Huang, M.; Duan, R.; Wang, H.; Sun, L.; Zhu, M. Enhanced hydrogen generation properties of MgH2-based hydrides by breaking the magnesium hydroxide passivation layer. Energies 2015, 8, 4237–4252. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, S.; Yao, Q.; Feng, G.; Zhu, M.; Lu, L.H. Metal-organic framework immobilized RhNi alloy nanoparticles for complete H2 evolution from hydrazine borane and hydrous hydrazine. Inorg. Chem. Front. 2018, 5, 370–377. [Google Scholar] [CrossRef]
- He, T.; Pachfule, P.; Wu, H.; Xu, Q.; Chen, P. Hydrogen carriers. Nat. Rev. Mater. 2016, 1, 16067. [Google Scholar] [CrossRef]
- Chen, P.; Xiong, Z.; Luo, J.; Lin, J.; Tan, K.L. Interaction of hydrogen with metal nitrides and imides. Nature 2002, 420, 302–304. [Google Scholar] [CrossRef] [PubMed]
- Durap, F.; Zahmakiran, M.; Ozkar, S. Water soluble laurate-stabilized rhodium (0) nanoclusters catalyst with unprecedented catalytic lifetime in the hydrolytic dehydrogenation of ammonia-borane. Appl. Catal. A 2009, 369, 53–59. [Google Scholar] [CrossRef]
- Kahri, H.; Sevim, M.; Metin, Ö. Enhanced catalytic activity of monodispersed AgPd alloy nanoparticles assembled on mesoporous graphitic carbon nitride for the hydrolytic dehydrogenation of ammonia borane under sunlight. Nano Res. 2017, 10, 1627–1640. [Google Scholar] [CrossRef]
- Chen, J.; Hu, M.; Ming, M.; Xu, C.; Wang, Y.; Zhang, Y.; Wu, J.; Gao, D.; Bi, J.; Fan, G. Carbon-supported small Rh nanoparticles prepared with sodium citrate: Toward high catalytic activity for hydrogen evolution from ammonia borane hydrolysis. Int. J. Hydrogen Energy 2018, 43, 2718–2725. [Google Scholar] [CrossRef]
- Aijaz, A.; Karkamkar, A.; Choi, Y.J.; Tsumori, N.; Ronnebro, E.; Autrey, T.; Shioyama, H.; Xu, Q. Immobilizing highly catalytically active Pt nanoparticles inside the pores of metal–organic framework: A double solvents approach. J. Am. Chem. Soc. 2012, 134, 13926–13929. [Google Scholar] [CrossRef]
- Xi, P.; Chen, F.; Xie, G.; Ma, C.; Liu, H.; Shao, C.; Wang, J.; Xu, Z.; Xu, X.; Zhang, Z. Ultrathin S-doped MoSe2 nanosheets for efficient hydrogen evolution. Nanoscale 2014, 4, 5597–5601. [Google Scholar] [CrossRef]
- Fuku, R.; Hayashi, K.; Takakura, S.; Kamegawa, T.; Mori, K.; Yamashita, H. The synthesis of size- and color-controlled silver nanoparticles by using microwave heating and their enhanced catalytic activity by localized surface plasmon resonance. Angew. Chem. Int. Ed. 2013, 52, 7446–7450. [Google Scholar] [CrossRef]
- Fan, G.; Liu, Q.; Tang, D.; Li, X.; Bi, J.; Gao, D. Nanodiamond supported Ru nanoparticles as an effective catalyst for hydrogen evolution from hydrolysis of ammonia borane. Int. J. Hydrogen Energy 2016, 41, 1542–1549. [Google Scholar] [CrossRef]
- Umegaki, T.; Yan, J.; Zhang, X.; Shioyama, H.; Kuriyama, N.; Xu, Q. Co-SiO2 nanosphere-catalyzed hydrolytic dehydrogenation of ammonia borane for chemical hydrogen storage. J. Power Sources 2010, 195, 8209–8214. [Google Scholar] [CrossRef]
- Wang, C.; Sun, D.; Yu, X.; Zhang, X.; Lu, Z.; Wang, X.; Zhao, J.; Li, L.; Yang, X. Cu/Ni nanoparticles supported on TiO2(B) nanotubes as hydrogen generation photocatalysts via hydrolysis of ammonia borane. Inorg. Chem. Front. 2018, 5, 2038–2044. [Google Scholar] [CrossRef]
- Lu, D.; Yu, G.; Li, G.Y.; Chen, M.; Pan, Y.; Zhou, L.; Yang, K.; Xiong, X.; Wu, P.; Xia, Q. RuCo NPs supported on MIL-96(Al) as highly active catalysts for the hydrolysis of ammonia borane. J. Alloys Compd. 2017, 694, 662–671. [Google Scholar] [CrossRef]
- Yao, Q.; Ding, Y.; Lu, Z. Noble-metal-free nanocatalysts for hydrogen generation from boron- and nitrogen-based hydrides. Inorg. Chem. Front. 2020, 7, 3837–3874. [Google Scholar] [CrossRef]
- Yao, Q.; Zhang, X.; Lu, Z.; Xu, Q. Metal-organic framework based catalysts for hydrogen production from liquid-phase chemical hydrides. Coord. Chem. Rev. 2023, 493, 215302. [Google Scholar] [CrossRef]
- Xu, Q.; Chandra, M. Catalytic activities of non-noble metals for hydrogen generation from aqueous ammonia–borane at room temperature. J. Power Sources 2006, 163, 364–370. [Google Scholar] [CrossRef]
- Fang, Y.; Xiao, Z.; Li, J.; Lollar, C.; Liu, L.; Lian, X.; Yuan, S.; Banerjee, S.; Zhang, P.; Zhou, H.C. Formation of a highly reactive cobalt nanocluster crystal within a highly negatively charged porous coordination cage. Angew. Chem. Int. Ed. 2018, 57, 5283–5287. [Google Scholar] [CrossRef]
- Metin, O.; Mazumder, V.; Ozkar, S.; Sun, S. Monodisperse nickel nanoparticles and their catalysis in hydrolytic dehydrogenation of ammonia borane. J. Am. Chem. Soc. 2010, 132, 1468–1469. [Google Scholar] [CrossRef]
- Hu, J.; Chen, Z.; Li, M.; Zhou, X.; Lu, H. Amine-capped Co nanoparticles for highly efficient dehydrogenation of ammonia borane. ACS Appl. Mater. Interfaces 2014, 6, 13191–13200. [Google Scholar] [CrossRef]
- Yan, L.; Sifang, L. Low-cost CuFeCo@MIL-101 as an efficient catalyst for catalytic hydrolysis of ammonia borane. Int. J. Hydrogen Energy 2020, 45, 10433–10441. [Google Scholar]
- Guo, K.; Ding, Y.; Luo, J.; Gu, M.; Yu, Z. NiCu bimetallic nanoparticles on silica support for catalytic hydrolysis of ammonia borane: Composition-dependent activity and support size effect. ACS Appl. Energy Mater. 2019, 2, 5851–5861. [Google Scholar] [CrossRef]
- Fang, H.; Yang, J.; Wen, M.; Wu, Q. Nanoalloy materials for chemical catalysis. Adv. Mater. 2018, 30, 1705698. [Google Scholar] [CrossRef]
- Huo, J.; Wei, H.; Fu, L.; Zhao, L.C.; He, C. Highly active Fe36Co44 bimetallic nanoclusters catalysts for hydrolysis of ammonia borane: The first-principles study. Chin. Chem. Lett. 2023, 34, 107261. [Google Scholar] [CrossRef]
- Zhao, L.; Wei, Q.; Zhang, L.; Zhao, Y.; Zhang, B. NiCo alloy decorated on porous N-doped carbon derived from ZnCo-ZIF as highly efficient and magnetically recyclable catalyst for hydrogen evolution from ammonia borane. Renew. Energy 2021, 173, 273–282. [Google Scholar] [CrossRef]
- Bulut, A.; Yurderi, M.; Ertas, İ.E.; Celebi, M.; Kaya, M.; Zahmakiran, M. Carbon dispersed copper-cobalt alloy nanoparticles: A cost-effective heterogeneous catalyst with exceptional performance in the hydrolytic dehydrogenation of ammonia-borane. Appl. Catal. B 2016, 180, 121–129. [Google Scholar] [CrossRef]
- Wang, C.; Li, L.; Yu, X.; Lu, Z.; Zhang, X.; Wang, X.; Yang, X.; Zhao, J. Regulation of d-band electrons to enhance the activity of co-based non-noble bimetal catalysts for hydrolysis of ammonia borane. ACS Sustain. Chem. Eng. 2020, 8, 8256–8266. [Google Scholar] [CrossRef]
- Kazıcı, H.Ç.; İzgi, M.S.; Şahin, Ö. A comprehensive study on the synthesis, characterization and mathematical modeling of nanostructured Co-based catalysts using different support materials for AB hydrolysis. Chem. Pap. 2021, 75, 2713–2725. [Google Scholar] [CrossRef]
- Mori, K.; Miyawaki, K.; Yamashita, H. Ru and Ru−Ni nanoparticles on TiO2 support as extremely active catalysts for hydrogen production from ammonia−borane. ACS Catal. 2016, 6, 3128–3135. [Google Scholar] [CrossRef]
- Zou, X.X.; Huang, X.X.; Goswami, A.; Silva, R.; Sathe, B.R.; Mikmekova, E.; Asefa, T. Angewandte Chemie International Edition; Wiley Press: Hoboken, NJ, USA, 2014; Volume 53, pp. 4372–4376. [Google Scholar]
- Gao, D.; Zhang, Y.; Zhou, L.; Yang, K. CuNi NPs supported on MIL-101 as highly active catalysts for the hydrolysis of ammonia borane. Appl. Surf. Sci. 2018, 427, 114–122. [Google Scholar] [CrossRef]
- Lai, S.-W.; Lin, H.-L.; Lin, Y.-P.; Yu, T.L. Hydrolysis of ammonia-borane catalyzed by an iron-nickel alloy on an SBA-15 support. Int. J. Hydrogen Energy 2013, 38, 4636–4647. [Google Scholar] [CrossRef]
- Sun, J.; Zhang, W.; Li, H.; Liu, J.; Xu, Z.; Zheng, S. Size-tunable Ni particles confined in the ordered mesoporous silica for catalytic H2 production from ammonia borane hydrolysis. Int. J. Hydrogen Energy 2024, 58, 964–973. [Google Scholar] [CrossRef]
- Kim, T.; Chung, P.; Lin, V.S.-Y. Facile synthesis of monodisperse spherical MCM-48 mesoporous silica nanoparticles with controlled particle size. Chem. Mater. 2010, 22, 5093–5104. [Google Scholar] [CrossRef]
- Zhang, H.; Mou, Y.; Liu, S.; Han, D.; Wang, F.; Bing, L.; Wang, G. MCM-41 supported NiPCeOx nanoparticles as highly efficient non-noble metal catalyst for hydrolytic dehydrogenation of ammonia borane. Int. J. Hydrogen Energy 2023, 48, 34141–34153. [Google Scholar] [CrossRef]
- Li, J.; Wang, Z.; Ma, Y.; Xu, C.; Zhou, S. Synthesis of mesoporous silica-supported NiCo bimetallic nanocatalysts and their enhanced catalytic hydrogenation performance. ACS Omega 2023, 8, 12339–12347. [Google Scholar] [CrossRef] [PubMed]
- Wawrzyńczak, A.; Nowak, I.; Feliczak-Guzik, A. SBA-15- and SBA-16-functionalized silicas as new carriers of niacinamide. Int. J. Mol. Sci. 2023, 24, 17567. [Google Scholar] [CrossRef] [PubMed]
- Wu, P.; Bai, P.; Yan, Z.; Zhao, G.X.S. Gold nanoparticles supported on mesoporous silica: Origin of high activity and role of Au NPs in selective oxidation of cyclohexane. Sci. Rep. 2016, 6, 18817. [Google Scholar] [CrossRef]
- Deka, J.R.; Kao, H.-M.; Huang, S.-Y.; Chang, W.; Ting, C.-C.; Rath, P.C.; Chen, C.-S. Ethane bridged periodic mesoporous organosilicas functionalized with high loadings of carboxylic acid groups: Synthesis, bifunctionalization, and fabrication of metal nanoparticles. Chem. Eur. J. 2014, 20, 894–903. [Google Scholar] [CrossRef]
- Zhu, H.; Lee, B.; Dai, S.; Overbury, S.H. Coassembly synthesis of ordered mesoporous silica materials containing Au nanoparticles. Langmuir 2003, 19, 3974–3980. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, Z.; Liu, J.; Liu, R.; Liu, T. Bimetallic non-noble CoNi nanoparticles monodispersed on multiwall carbon nanotubes: Highly efficient hydrolysis of ammonia borane. Mater. Chem. Phys. 2018, 204, 58–61. [Google Scholar] [CrossRef]
- Feng, W.; Yang, L.; Cao, N.; Du, C.; Dai, H.; Luo, W.; Cheng, G. In situ facile synthesis of bimetallic CoNi catalyst supported on graphene for hydrolytic dehydrogenation of amine borane. Int. J. Hydrogen Energy 2014, 39, 3371–3380. [Google Scholar] [CrossRef]
- Shingole, M.; Banerjee, S.; Ruz, P.; Kolay, S.; Kumar, A.; Sudarsan, V. Catalytic hydrogen generation through ammonia borane hydrolysis using metal−organic framework via O−H bond activation. Energy Fuels 2024, 38, 8968–8978. [Google Scholar] [CrossRef]
- Guo, Z.; Liu, T.; Wang, Q.; Gao, G. Construction of cost-effective bimetallic nanoparticles on titanium carbides as a superb catalyst for promoting hydrolysis of ammonia borane. RSC Adv. 2018, 8, 843–847. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, F.; Wang, H.; Yao, Q.; Chen, X.; Lu, Z.-H. Catalytic hydrolysis of ammonia borane by cobalt nickel nanoparticles supported on reduced graphene oxide for hydrogen generation. J. Nanomater. 2014, 9, 294350. [Google Scholar] [CrossRef]
- Zhao, B.; Liu, J.; Zhou, L.; Long, D.; Feng, K.; Sun, X.; Zhong, J. Probing the electronic structure of M-graphene oxide (M = Ni, Co, NiCo) catalysts for hydrolytic dehydrogenation of ammonia borane. Appl. Surf. Sci. 2016, 362, 79–85. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, F.; Du, F.; Liu, T. A cost effective cobalt nickel nanoparticles catalyst with exceptional performance for hydrolysis of ammonia-borane. J. Nanosci. Nanotechnol. 2017, 17, 9333–9338. [Google Scholar] [CrossRef]
- Cheng, S.; Liu, Y.; Zhao, Y.; Zhao, X.; Lang, Z.; Tan, H.; Qiu, T.; Wang, Y. Superfine CoNi alloy embedded in Al2O3 nanosheets for efficient tandem catalytic reduction of nitroaromatic compounds by ammonia borane. Dalton Trans. 2019, 48, 17499–17506. [Google Scholar] [CrossRef]
- Fan, D.; Lv, X.; Feng, J.; Zhang, S.; Bai, J.; Lu, R.; Liu, J. Cobalt nickel nanoparticles encapsulated within hexagonal boron nitride as stable, catalytic dehydrogenation nanoreactor. Int. J. Hydrogen Energy 2017, 42, 11312–11320. [Google Scholar] [CrossRef]
- Yang, C.; Men, Y.; Xu, Y.; Liang, L.; Cai, P.; Luo, W. In situ synthesis of NiCoP nanoparticles supported on reduced graphene oxide for catalytic hydrolysis of ammonia borane. ChemPlusChem 2019, 84, 382–386. [Google Scholar] [CrossRef]
- Cong, W.; Zhang, H.; Bing, L.; Wang, F.; Han, D.; Wang, G. CoNi nanoparticles supported on hierarchical SAPO-34 zeolite as a catalyst for the hydrolytic dehydrogenation of ammonia borane. ACS Appl. Nano Mater. 2023, 6, 21991–22000. [Google Scholar] [CrossRef]
- Deka, J.R.; Saikia, D.; Lu, N.-F.; Chen, K.-T.; Kao, H.-M.; Yang, Y.-C. Space confined synthesis of highly dispersed bimetallic CoCu nanoparticles as effective catalysts for ammonia borane dehydrogenation and 4-nitrophenol reduction. Appl. Surf. Sci. 2021, 538, 148091. [Google Scholar] [CrossRef]
- Deka, J.R.; Lee, M.-H.; Saikia, D.; Kao, H.-M.; Yang, Y.-C. Confinement of Cu nanoparticles in the nanocages of large pore SBA-16 functionalized with carboxylic acid: Enhanced activity and improved durability for 4-nitrophenol reduction. Dalton Trans. 2019, 48, 8227–8237. [Google Scholar] [CrossRef]
- Fiorilli, S.; Camarota, B.; Perrachon, D.; Bruzzoniti, M.C.; Garrone, E.; Onida, B. Direct synthesis of large-pore ethane-bridged mesoporous organosilica functionalized with carboxylic groups. Chem. Commun. 2009, 29, 4402–4404. [Google Scholar] [CrossRef]
- Guan, D.; Zhong, J.; Xu, H.; Huang, Y.-C.; Hu, Z.; Chen, B.; Zhang, Y.; Ni, M.; Xu, X.; Zhou, W.; et al. A universal chemical-induced tensile strain tuning strategy to boost oxygen-evolving electrocatalysis on perovskite oxides. Appl. Phys. Rev. 2022, 9, 011422. [Google Scholar] [CrossRef]
- Gao, S.; Yang, S.-H.; Wang, H.-Y.; Wang, G.-S.; Yin, P.-G.; Zhang, X.-J. CoNi alloy with tunable magnetism encapsulated by N-doped carbon nanosheets toward high-performance microwave attenuation. Compos. Part B 2021, 215, 108781. [Google Scholar] [CrossRef]
- Coey, J.M. Magnetism and Magnetic Materials; Cambridge University Press: Cambridge, UK, 2010; pp. 244–251. [Google Scholar]
- Dai, J.; Zhu, Y.; Tahini, H.A.; Lin, Q.; Chen, Y.; Guan, D.; Zhou, C.; Hu, Z.; Lin, H.-J.; Chan, T.-S.; et al. Single-phase perovskite oxide with super-exchange induced atomic-scale synergistic active centers enables ultrafast hydrogen evolution. Nat. Commun. 2020, 11, 5657. [Google Scholar] [CrossRef] [PubMed]
- Osman, A.I.; Meudal, J.; Laffir, F.; Thompson, J.; Rooney, D. Enhanced catalytic activity of Ni on η-Al2O3 and ZSM-5 on the addition of ceria-zirconia for the partial oxidation of methane. Appl. Catal. B 2017, 212, 68–79. [Google Scholar] [CrossRef]
- Sheng, Y.; Lin, X.; Yue, S.; Liu, Y.; Zou, X.; Wang, X.; Lu, X. Highly efficient non-noble metallic NiCu nanoalloy catalysts for hydrogenation of nitroarenes. Mater. Adv. 2021, 2, 6722–6730. [Google Scholar] [CrossRef]
- Xu, Q.; Chandra, M. A portable hydrogen generation system: Catalytic hydrolysis of ammonia–borane. J. Alloys Compd. 2007, 446, 729–732. [Google Scholar] [CrossRef]
- Peng, S.; Cao, Y.; Zhou, F.; Xu, Z.; Li, Y. CoP decorated with Co3O4 as a cocatalyst for enhanced photocatalytic hydrogen evolution via dye sensitization. Appl. Surf. Sci. 2019, 487, 315–321. [Google Scholar] [CrossRef]
- Zhang, Q.; Xiao, Y.; Li, Y.; Zhao, K.; Deng, H.; Lou, Y.; Chen, J.; Yu, H.; Cheng, L. Efficient photocatalytic overall water splitting by synergistically enhancing bulk charge separation and surface reaction kinetics in Co3O4-decorated ZnO@ZnS core-shell structures. Chem. Eng. J. 2020, 393, 124681. [Google Scholar] [CrossRef]
- Lee, M.-H.; Deka, J.R.; Cheng, C.-J.; Lu, N.-F.; Saikia, D.; Yang, Y.-C.; Kao, H.-M. Synthesis of highly dispersed ultra-small cobalt nanoparticles within the cage-type mesopores of 3D cubic mesoporous silica via double agent reduction method for catalytic hydrogen generation. Appl. Surf. Sci. 2019, 470, 764–772. [Google Scholar] [CrossRef]
- Akdim, O.; Demirci, U.B.; Miele, P. Deactivation and reactivation of cobalt in hydrolysis of sodium borohydride. Int. J. Hydrogen Energy 2011, 36, 13669–13675. [Google Scholar] [CrossRef]
Sample | Surface Area (m2 g−1) | Pore Volume (cm3 g−1) | Pore Size (nm) | Metal Amount (wt.%) a | |
---|---|---|---|---|---|
CMS | 616 | 1.16 | 6.0 | - | |
Ni@CMS | 450 | 1.05 | 6.0 | 6.11 | Ni (6.11) |
Co (-) | |||||
Co@CMS | 468 | 1.05 | 6.0 | 4.95 | Ni (-) |
Co (4.95) | |||||
Ni80Co20@CMS | 444 | 1.04 | 6.0 | 4.87 | Ni (3.84) |
Co (1.03) | |||||
Ni60Co40@CMS | 435 | 1.03 | 5.8 | 5.07 | Ni (2.07) |
Co (3.00) | |||||
Ni40Co60@CMS | 490 | 1.09 | 5.9 | 5.83 | Ni (2.22) |
Co (3.61) | |||||
Ni20Co80@CMS | 454 | 1.05 | 6.0 | 5.90 | Ni (1.13) |
Co (4.77) |
Catalysts | Temperature (°C) | TOF (molH2min−1molCatalyst−1) | Ea (kJ mol−1) | Ref. |
---|---|---|---|---|
Ni40Co60@CMS | 30 | 18.95 | 36.43 | This work |
NiCo-NC | 25 | 16.7 | 43.6 | [33] |
CoNi/MCNTs | 30 | 33 | 52.1 | [49] |
CoNi@RGO | 25 | 19.54 | 39.89 | [53] |
NiCo-GO | 25 | 6.78 | - | [54] |
CoNi/XC-72 | 50 | 49 | 28.9 | [55] |
CoNi/Al2O3 | 25 | 34.5 | 32.9 | [56] |
CoNi@h-BN | 20 | - | 28 | [57] |
Co89.8Ni10.8P11.7/rGO | 25 | 18.6 | 25.0 | [58] |
Co3.33Ni1.67/SAPO-34-N | 30 | 9.25 | 55.01 | [59] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deka, J.R.; Saikia, D.; Lu, N.-F.; Chen, C.-Y.; Kao, H.-M.; Yang, Y.-C. Bimetallic NiCo Nanoparticles Embedded in Organic Group Functionalized Mesoporous Silica for Efficient Hydrogen Production from Ammonia Borane Hydrolysis. Nanomaterials 2024, 14, 1818. https://doi.org/10.3390/nano14221818
Deka JR, Saikia D, Lu N-F, Chen C-Y, Kao H-M, Yang Y-C. Bimetallic NiCo Nanoparticles Embedded in Organic Group Functionalized Mesoporous Silica for Efficient Hydrogen Production from Ammonia Borane Hydrolysis. Nanomaterials. 2024; 14(22):1818. https://doi.org/10.3390/nano14221818
Chicago/Turabian StyleDeka, Juti Rani, Diganta Saikia, Ning-Fang Lu, Chieh-Yu Chen, Hsien-Ming Kao, and Yung-Chin Yang. 2024. "Bimetallic NiCo Nanoparticles Embedded in Organic Group Functionalized Mesoporous Silica for Efficient Hydrogen Production from Ammonia Borane Hydrolysis" Nanomaterials 14, no. 22: 1818. https://doi.org/10.3390/nano14221818
APA StyleDeka, J. R., Saikia, D., Lu, N. -F., Chen, C. -Y., Kao, H. -M., & Yang, Y. -C. (2024). Bimetallic NiCo Nanoparticles Embedded in Organic Group Functionalized Mesoporous Silica for Efficient Hydrogen Production from Ammonia Borane Hydrolysis. Nanomaterials, 14(22), 1818. https://doi.org/10.3390/nano14221818