Nanomaterials in Smart Energy-Efficient Coatings
1. Introduction
2. An Overview of Published Articles
3. Conclusions
Funding
Acknowledgments
Conflicts of Interest
List of Contributions
- Wang, Z.; Ma, Y.; Li, M.; Wu, L.; Guo, T.; Zheng, Y.; Chen, Q.; Fu, Y. A Thermal-Switchable Metamaterial Absorber Based on the Phase-Change Material of Vanadium Dioxide. Nanomaterials 2022, 12, 3000. https://doi.org/10.3390/nano12173000.
- Hao, Y.; Xu, W.; Li, M.; Wang, S.; Liu, H.; Yang, X.; Yang, J. One-Step Hydrothermal Synthesis, Thermochromic and Infrared Camouflage Properties of Vanadium Dioxide Nanorods. Nanomaterials 2022, 12, 3534. https://doi.org/10.3390/nano12193534.
- Hendaoui, A. Low Solar Absorptance, High Emittance Performance Thermochromic VO2-Based Smart Radiator Device. Nanomaterials 2022, 12, 4422. https://doi.org/10.3390/nano12244422.
- Song, J.; Huang, B.; Xu, Y.; Yang, K.; Li, Y.; Mu, Y.; Du, L.; Yun, S.; Kang, L.A Low Driving-Voltage Hybrid-Electrolyte Electrochromic Window with Only Ferreous Redox Couples. Nanomaterials 2023, 13, 213. https://doi.org/10.3390/nano13010213.
- Li, M.; Shao, Z.; Li, Z.; Zhu, D.; Wang, J.; Karazhanov, S.Z.; Jin, P.; Cao, X. Co-Sputtering Crystal Lattice Selection for Rare Earth Metal-Based Multi Cation and Mixed Anion Photochromic Films. Nanomaterials 2023, 13, 684. https://doi.org/10.3390/nano13040684.
References
- Li, X.; Cao, C.; Liu, C.; He, W.; Wu, K.; Wang, Y.; Xu, B.; Tian, Z.; Song, E.; Cui, J.; et al. Self-rolling of vanadium dioxide nanomembranes for enhanced multi-level solar modulation. Nat. Commun. 2022, 13, 7819. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, S.; Li, Z.; Javed, M.S.; Ma, T. A review on the integration of radiative cooling and solar energy harvesting. Mater. Today Energy 2021, 21, 100776. [Google Scholar] [CrossRef]
- Xiao, C.; Liao, B.; Hawkes, E.W. Passively adaptive radiative switch for thermoregulation in buildings. Device 2024, 2, 100186. [Google Scholar] [CrossRef]
- Ferroukhi, R.; Frankl, P.; Adib, R. Renewable Energy Policies in a Time of Transition: Heating and Cooling; International Renewable Energy Agency (IRENA): Masdar City, United Arab Emirates, 2020.
- Zhang, Q.; Wang, Y.; Lv, Y.; Yu, S.; Ma, R. Bioinspired zero-energy thermal-management device based on visible and infrared thermochromism for all-season energy saving. Proc. Natl. Acad. Sci. USA 2022, 119, 2207353119. [Google Scholar] [CrossRef] [PubMed]
- Zhai, H.; Fan, D.; Li, Q. Dynamic radiation regulations for thermal comfort. Nano Energy 2022, 100, 107435. [Google Scholar] [CrossRef]
- Chang, T.; Cao, X.; Li, N.; Long, S.; Zhu, Y.; Huang, J.; Luo, H.; Jin, P. Mitigating deterioration of vanadium dioxide thermochromic films by interfacial encapsulation. Matter 2019, 1, 734–744. [Google Scholar] [CrossRef]
- Wang, J.; Tan, G.; Yang, R.; Zhao, D. Materials, structures, and devices for dynamic radiative cooling. Cell Rep. Phys. Sci. 2022, 3, 101198. [Google Scholar] [CrossRef]
- Morin, F.J. Oxides which show a metal-to-insulator transition at the Neel temperature. Phys. Rev. Lett. 1959, 3, 34. [Google Scholar] [CrossRef]
- Blum, R.P.; Niehus, H.; Hucho, C.; Fortrie, R.; Ganduglia-Pirovano, M.V.; Sauer, J.; Shaikhutdinov, F.S.; Freund, H.J. Surface metal-insulator transition on a vanadium pentoxide (001) single crystal. Phys. Rev. Lett. 2007, 99, 226103. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.; Feng, F.; Xie, Y. Design of vanadium oxide structures with controllable electrical properties for energy applications. Chem. Soc. Rev. 2013, 42, 5157–5183. [Google Scholar] [CrossRef] [PubMed]
- Xie, B.; Zhang, W.; Zhao, J.; Zheng, C.; Liu, L. Design of VO2-based spacecraft smart radiator with low solar absorptance. Appl. Therm. Eng. 2024, 236, 121751. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, X. Nanomaterials in Smart Energy-Efficient Coatings. Nanomaterials 2024, 14, 1820. https://doi.org/10.3390/nano14221820
Cao X. Nanomaterials in Smart Energy-Efficient Coatings. Nanomaterials. 2024; 14(22):1820. https://doi.org/10.3390/nano14221820
Chicago/Turabian StyleCao, Xun. 2024. "Nanomaterials in Smart Energy-Efficient Coatings" Nanomaterials 14, no. 22: 1820. https://doi.org/10.3390/nano14221820
APA StyleCao, X. (2024). Nanomaterials in Smart Energy-Efficient Coatings. Nanomaterials, 14(22), 1820. https://doi.org/10.3390/nano14221820