High-Performance Self-Powered Dual-Mode Ultraviolet Photodetector Based on (PEA)2PbI4/GaN Heterojunction
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chen, H.; Liu, K.; Hu, L.; Al-Ghamdi, A.A.; Fang, X. New concept ultraviolet photodetectors. Mater. Today 2015, 18, 493–502. [Google Scholar] [CrossRef]
- Shen, G.; Liu, Z.; Tan, C.-K.; Jiang, M.; Li, S.; Guo, Y.; Tang, W. Solar-blind UV communication based on sensitive β-Ga2O3 photoconductive detector array. Appl. Phys. Lett. 2023, 123, 041103. [Google Scholar] [CrossRef]
- Xia, K.; Liu, Z.; Sha, S.; Xi, Z.; Zhang, J.H.; Jiang, M.; Guo, Y.; Tang, W. Self-powered solar-blind detector array based on epsilon-Ga2O3 Schottky photodiodes for dual-mode binary UV communication. Opt. Lett. 2023, 48, 6384–6387. [Google Scholar] [CrossRef]
- Liu, Z.; Huang, Y.; Li, H.; Zhang, C.; Jiang, W.; Guo, D.; Wu, Z.; Li, P.; Tang, W. Fabrication and characterization of Mg-doped ε-Ga2O3 solar-blind photodetector. Vacuum 2020, 177, 109425. [Google Scholar] [CrossRef]
- Fan, Z. An Analysis of GaN-based Ultraviolet Photodetector. IOP Conf. Ser. Mater. Sci. Eng. 2020, 738, 012006. [Google Scholar] [CrossRef]
- De Napoli, M. SiC detectors: A review on the use of silicon carbide as radiation detection material. Front. Phys. 2022, 10, 898833. [Google Scholar] [CrossRef]
- Salvatori, S.; Girolami, M.; Oliva, P.; Conte, G.; Bolshakov, A.; Ralchenko, V.; Konov, V. Diamond device architectures for UV laser monitoring. Laser Phys. 2016, 26, 084005. [Google Scholar] [CrossRef]
- Borelli, C.; Bosio, A.; Parisini, A.; Pavesi, M.; Vantaggio, S.; Fornari, R. Electronic properties and photo-gain of UV-C photodetectors based on high-resistivity orthorhombic κ-Ga2O3 epilayers. Mater. Sci. Eng. B 2022, 286, 116056. [Google Scholar] [CrossRef]
- Yao, S.; Liu, Z.; Zhang, M.; Shu, L.; Xi, Z.; Li, L.; Yan, S.; Guo, Y.; Tang, W. Photogain-Enhanced Signal-to-Noise Performance of a Polycrystalline Sn:Ga2O3 UV Detector via Impurity-Level Transition and Multiple Carrier Transport. ACS Appl. Electron. Mater. 2023, 5, 7061–7069. [Google Scholar] [CrossRef]
- Li, D.; Li, Z.; Sun, Y.; Zhou, J.; Xu, X.; Wang, H.; Chen, Y.; Song, X.; Liu, P.; Luo, Z.; et al. In-Sublattice Carrier Transition Enabled Polarimetric Photodetectors with Reconfigurable Polarity Transition. Adv. Mater. 2024, 36, e2407010. [Google Scholar] [CrossRef]
- Sun, Y.; Jiang, M.; Li, B.; Xie, X.; Shan, C.; Shen, D. Electron-hole plasma Fabry-Perot lasing in a Ga-incorporated ZnO microbelt via Ag nanoparticle deposition. Opt. Express 2022, 30, 740–753. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Shan, L.; Ying, Y.; Shen, L.; Fu, Y.; Fei, L.; Lei, Y.; Yue, N.; Zhang, W.; Zhang, H.; et al. Day-Night imaging without Infrared Cutfilter removal based on metal-gradient perovskite single crystal photodetector. Nat. Commun. 2024, 15, 7516. [Google Scholar] [CrossRef] [PubMed]
- Xue, J.; Wang, R.; Yang, Y. The surface of halide perovskites from nano to bulk. Nat. Rev. Mater. 2020, 5, 809–827. [Google Scholar] [CrossRef]
- Liu, Z.; Tang, W. A review of Ga2O3 deep-ultraviolet metal–semiconductor Schottky photodiodes. J. Phys. D Appl. Phys. 2023, 56, 093002. [Google Scholar] [CrossRef]
- Girolami, M.; Matteocci, F.; Pettinato, S.; Serpente, V.; Bolli, E.; Paci, B.; Generosi, A.; Salvatori, S.; Di Carlo, A.; Trucchi, D.M. Metal-Halide Perovskite Submicrometer-Thick Films for Ultra-Stable Self-Powered Direct X-Ray Detectors. Nanomicro Lett. 2024, 16, 182. [Google Scholar] [CrossRef]
- Wang, Q.H.; Wang, H.Y.; Xue, R.Z.; Ning, M.X.; Li, S.; Chen, P.; Sun, M.; Li, Z.J. High-performance UV light detector using layered perovskites and textured silicon heterojunction. J. Alloys Compd. 2023, 965, 171399. [Google Scholar] [CrossRef]
- Zhou, H.; Mei, J.; Xue, M.; Song, Z.; Wang, H. High-Stability, Self-Powered Perovskite Photodetector Based on a CH3NH3PbI3/GaN Heterojunction with C60 as an Electron Transport Layer. J. Phys. Chem. C 2017, 121, 21541–21545. [Google Scholar] [CrossRef]
- Zdanowicz, E.; Herman, A.P.; Przypis, L.; Opolczynska, K.; Serafinczuk, J.; Chlipala, M.; Skierbiszewski, C.; Kudrawiec, R. The influence of Fermi level position at the GaN surface on carrier transfer across the MAPbI3/GaN interface. Phys. Chem. Chem. Phys. 2023, 25, 16492–16498. [Google Scholar] [CrossRef]
- Zhou, X.; Wang, C.; Luo, J.; Zhang, L.; Zhao, F.; Ke, Q. High-performance self-powered UV photodetector based on CuI/CsCu2I3/GaN heterojunction. Chem. Eng. J. 2022, 450, 136364. [Google Scholar] [CrossRef]
- Dong, L.; Pang, T.; Yu, J.; Wang, Y.; Zhu, W.; Zheng, H.; Yu, J.; Jia, R.; Chen, Z. Performance-enhanced solar-blind photodetector based on a CH3NH3PbI3/β-Ga2O3 hybrid structure. J. Mater. Chem. C 2019, 7, 14205–14211. [Google Scholar] [CrossRef]
- Hidouri, T.; Pavesi, M.; Vaccari, M.; Parisini, A.; Jarmouni, N.; Cristofolini, L.; Fornari, R. Physical Properties of an Efficient MAPbBr3/GaAs Hybrid Heterostructure for Visible/Near-Infrared Detectors. Nanomater 2024, 14, 1472. [Google Scholar] [CrossRef] [PubMed]
- Xi, Z.; Liu, Z.; Yang, L.; Tang, K.; Li, L.; Shen, G.; Zhang, M.; Li, S.; Guo, Y.; Tang, W. Comprehensive Study on Ultra-Wide Band Gap La2O3/ε-Ga2O3 p–n Heterojunction Self-Powered Deep-UV Photodiodes for Flame Sensing. ACS Appl. Mater. Interfaces 2023, 15, 40744–40752. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Wu, W.; Zhong, X.; Du, L.; Fu, Z.; WenBao, S.; Liu, J.; Song, X.; Zhang, J.; Liang, Y.; et al. High responsivity VIS-NIR photodetector based on (PEA)2PbI4/P3HT heterojunction. Phys. Scr. 2024, 99, 065957. [Google Scholar] [CrossRef]
- He, Y.; Li, X.; Li, J.; Huang, J.; Zhu, H.; Feng, Y.; Yi, Q.; Hu, W.; Miao, L.; Zhao, C. Dispersion of the third-order optical nonlinearities in 2D (PEA)2PbI4 perovskite film. Opt. Express 2023, 31, 34292–34299. [Google Scholar] [CrossRef]
- Liu, H.; Ye, B.; Gu, Y.; Liu, Y.; Yang, X.; Xie, F.; Zhang, X.; Qian, W.; Zhang, X.; Lu, N.; et al. UV–visible dual-band photodetector based on an all-inorganic Mn-doped CsPbCl3/GaN type-II heterojunction. Appl. Phys. Lett. 2023, 123, 232105. [Google Scholar] [CrossRef]
- Tauc, J.; Grigorovici, R.; Vancu, A. Optical Properties and Electronic Structure of Amorphous Germanium. Phys. Status Solidi B 2006, 15, 627–637. [Google Scholar] [CrossRef]
- NF, S.; Francis, N.; Davis, E.A. Electronic Processes in Non-Crystalline Materials; Oxford University Press: Oxford, UK, 1971; Volume 14. [Google Scholar]
- Tung, R.T. Electron transport at metal-semiconductor interfaces: General theory. Phys. Rev. B Condens. Matter 1992, 45, 13509–13523. [Google Scholar] [CrossRef]
- Fang, Y.; Armin, A.; Meredith, P.; Huang, J. Accurate characterization of next-generation thin-film photodetectors. Nat. Photonics 2018, 13, 1–4. [Google Scholar] [CrossRef]
- Saleh, B.E.A.; Teich, M.C. Fundamentals of Photonics; John Wiley and Sons: Hoboken, NJ, USA, 1991. [Google Scholar]
- Pettinato, S.; Girolami, M.; Rossi, M.C.; Salvatori, S. Accurate Signal Conditioning for Pulsed-Current Synchronous Measurements. Sensors 2022, 22, 5360. [Google Scholar] [CrossRef]
- Salvatori, S.; Pettinato, S.; Girolami, M.; Trucchi, D.M.; Rossi, M.C. Improving the Performance of HPHT-Diamond Detectors for Pulsed X-Ray Dosimetry Using the Synchronous Detection Technique. IEEE Trans. Electron. Devices 2023, 70, 2330–2335. [Google Scholar] [CrossRef]
- Girolami, M.; Bosi, M.; Serpente, V.; Mastellone, M.; Seravalli, L.; Pettinato, S.; Salvatori, S.; Trucchi, D.M.; Fornari, R. Orthorhombic undoped κ-Ga2O3 epitaxial thin films for sensitive, fast, and stable direct X-ray detectors. J. Mater. Chem. C 2023, 11, 3759–3769. [Google Scholar] [CrossRef]
- Liu, N.; Fang, G.; Zeng, W.; Zhou, H.; Cheng, F.; Zheng, Q.; Yuan, L.; Zou, X.; Zhao, X. Direct Growth of Lateral ZnO Nanorod UV Photodetectors with Schottky Contact by a Single-Step Hydrothermal Reaction. ACS Appl. Mater. Interfaces 2010, 2, 1973–1979. [Google Scholar] [CrossRef]
- Jiang, S.; Wei, W.; Li, S.; Tian, Y.; Yun, Y.; Chen, M.; Huang, K.; Li, C.; Zhang, R. Perovskite/GaN-Based Light-Modulated Bipolar Junction Transistor for High Comprehensive Performance Visible-Blind Ultraviolet Photodetection. ACS Photonics 2024, 11, 3026–3036. [Google Scholar] [CrossRef]
- Ye, B.; Wang, B.; Gu, Y.; Guo, J.; Zhang, X.; Qian, W.; Zhang, X.; Yang, G.; Gan, Z.; Liu, Y. Visible-ultraviolet dual-band photodetectors based on an all-inorganic CsPbCl3/p-GaN heterostructure. Nanoscale Adv. 2024, 6, 3073–3081. [Google Scholar] [CrossRef]
- Li, Q.; Liu, G.; Yu, J.; Wang, G.; Wang, S.; Cheng, T.; Chen, C.; Liu, L.; Yang, J.-Y.; Xu, X.; et al. A perovskite/porous GaN crystal hybrid structure for ultrahigh sensitivity ultraviolet photodetectors. J. Mater. Chem. C 2022, 10, 8321–8328. [Google Scholar] [CrossRef]
- Guo, J.; Ye, B.; Gu, Y.; Liu, Y.; Yang, X.; Xie, F.; Zhang, X.; Qian, W.; Zhang, X.; Lu, N.; et al. Broadband Photodetector for Ultraviolet to Visible Wavelengths Based on the BA2PbI4/GaN Heterostructure. ACS Appl. Mater. Interfaces 2023, 15, 56014–56021. [Google Scholar] [CrossRef]
Dark Current (A) | R (mA/W) | D* (Jones) | Rise Time/Decay Time (s) | Refs. | |
---|---|---|---|---|---|
CuI/CsCu2I3/GaN | 3.6 × 10−10 | 71.7 | 3.3 × 1012 | 8.8/0.32 | [19] |
CsPbCl3/GaN | 2.42 × 10−9 | 11.5 | 5.82 × 1010 | 0.56/0.52 | [36] |
MAPbBr3/GaN | 3.76 × 10−7 | 1.1 × 10−4 | 4.25 × 1011 | 0.21/0.44 | [18,37] |
BA2PbI4/GaN | 0.91 × 10−9 | —— | 1.08 × 1011 | —— | [38] |
(PEA)2PbI4/GaN | 2.34 × 10−10 | 1390 | 8.71 × 1010 | 0.13/0.18 | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bian, A.; Shen, S.; Yang, C.; Dai, J. High-Performance Self-Powered Dual-Mode Ultraviolet Photodetector Based on (PEA)2PbI4/GaN Heterojunction. Nanomaterials 2024, 14, 1819. https://doi.org/10.3390/nano14221819
Bian A, Shen S, Yang C, Dai J. High-Performance Self-Powered Dual-Mode Ultraviolet Photodetector Based on (PEA)2PbI4/GaN Heterojunction. Nanomaterials. 2024; 14(22):1819. https://doi.org/10.3390/nano14221819
Chicago/Turabian StyleBian, Ang, Songchao Shen, Chen Yang, and Jun Dai. 2024. "High-Performance Self-Powered Dual-Mode Ultraviolet Photodetector Based on (PEA)2PbI4/GaN Heterojunction" Nanomaterials 14, no. 22: 1819. https://doi.org/10.3390/nano14221819
APA StyleBian, A., Shen, S., Yang, C., & Dai, J. (2024). High-Performance Self-Powered Dual-Mode Ultraviolet Photodetector Based on (PEA)2PbI4/GaN Heterojunction. Nanomaterials, 14(22), 1819. https://doi.org/10.3390/nano14221819