Design of Thermo-Responsive Pervaporation Membrane Based on Hyperbranched Polyglycerols and Elastin-like Protein Conjugates
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of Hyperbranched Polyglycerol Methacrylate
2.2. Nuclear Magnetic Resonance
2.3. UV–Vis Spectra
2.4. Scanning Electron Microscopy
2.5. Atomic Force Microscopy (AFM)
2.6. Crosslinking Procedure
2.7. Permeation Studies
3. Results and Discussion
3.1. NMR Analysis
3.2. UV–VIS Analysis
3.3. SEM Analysis
3.4. AFM
3.5. Permeation
3.6. Advantages of Designing ELP-HPG Membranes
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hao, O.J.; Kim, H.; Chiang, P.-C. Decolorization of Wastewater. Crit. Rev. Environ. Sci. Technol. 2000, 30, 449–505. [Google Scholar] [CrossRef]
- Zollinger, H. Color Chemistry: Syntheses, Properties, and Applications of Organic Dyes and Pigments; VCH: Weinheim, NY, USA, 1987. [Google Scholar]
- Gupta, G.; Shukla, S.; Prasad, G.; Singh, V. China clay as an adsorbent for dye house wastewaters. Environ. Technol. 1992, 13, 925–936. [Google Scholar] [CrossRef]
- Chakraborty, S.; Purkait, M.; DasGupta, S.; De, S.; Basu, J. Nanofiltration of textile plant effluent for color removal and reduction in COD. Sep. Purif. Technol. 2003, 31, 141–151. [Google Scholar] [CrossRef]
- Purkait, M.; DasGupta, S.; De, S. Removal of dye from wastewater using micellar-enhanced ultrafiltration and recovery of surfactant. Sep. Purif. Technol. 2004, 37, 81–92. [Google Scholar] [CrossRef]
- Yagub, M.T.; Sen, T.K.; Afroze, S.; Ang, H.M. Dye and its removal from aqueous solution by adsorption: A review. Adv. Colloid Interface Sci. 2014, 209, 172–184. [Google Scholar] [CrossRef]
- Crini, G. Non-conventional low-cost adsorbents for dye removal: A review. Bioresour. Technol. 2006, 97, 1061–1085. [Google Scholar] [CrossRef]
- Wilms, D.; Stiriba, S.E.; Frey, H. Hyperbranched polyglycerols: From the controlled synthesis of biocompatible polyether polyols to multipurpose applications. Acc. Chem. Res. 2010, 43, 129–141. [Google Scholar] [CrossRef]
- Gao, C.; Yan, D. Hyperbranched polymers: From synthesis to applications. Prog. Polym. Sci. 2004, 29, 183–275. [Google Scholar] [CrossRef]
- Abbina, S.; Vappala, S.; Kumar, P.; Siren, E.M.J.; La, C.C.; Abbasi, U.; Brooks, D.E.; Kizhakkedathu, J.N. Hyperbranched polyglycerols: Recent advances in synthesis, biocompatibility and biomedical applications. J. Mater. Chem. B 2017, 5, 9249–9277. [Google Scholar] [CrossRef]
- Sunder, A.; Hanselmann, R.; Frey, H.; Mülhaupt, R. Controlled Synthesis of Hyperbranched Polyglycerols by Ring-Opening Multibranching Polymerization. Macromolecules 1999, 32, 4240–4246. [Google Scholar] [CrossRef]
- Wei, X.-Z.; Liu, X.-F.; Zhu, B.-K.; Xu, Y.-Y. Membranes of crosslinked hyperbranch polymers and their pervaporation properties. Desalination 2009, 247, 647–656. [Google Scholar] [CrossRef]
- Oudshoorn, M.H.; Rissmann, R.; Bouwstra, J.A.; Hennink, W.E. Synthesis and characterization of hyperbranched polyglycerol hydrogels. Biomaterials 2006, 27, 5471–5479. [Google Scholar] [CrossRef] [PubMed]
- Burakowska, E.; Quinn, J.R.; Zimmerman, S.C.; Haag, R. Cross-Linked Hyperbranched Polyglycerols as Hosts for Selective Binding of Guest Molecules. J. Am. Chem. Soc. 2009, 131, 10574–10580. [Google Scholar] [CrossRef] [PubMed]
- Zimmerman, S.C.; Quinn, J.R.; Burakowska, E.; Haag, R. Cross-Linked Glycerol Dendrimers and Hyperbranched Polymers as Ionophoric, Organic Nanoparticles Soluble in Water and Organic Solvents. Angew. Chem. Int. Ed. 2007, 46, 8164–8167. [Google Scholar] [CrossRef]
- Zhou, L.; Gao, C.; Xu, W. Magnetic Dendritic Materials for Highly Efficient Adsorption of Dyes and Drugs. ACS Appl. Mater. Interfaces 2010, 2, 1483–1491. [Google Scholar] [CrossRef]
- Ying, H.; He, G.; Zhang, L.; Lei, Q.; Guo, Y.; Fang, W. Hyperbranched polyglycerol/poly(acrylic acid) hydrogel for the efficient removal of methyl violet from aqueous solutions. J. Appl. Polym. Sci. 2016, 133, 42951–42962. [Google Scholar] [CrossRef]
- Meyer, D.E.; Chilkoti, A. Genetically encoded synthesis of protein-based polymers with precisely specified molecular weight and sequence by recursive directional ligation: Examples from the elastin-like polypeptide system. Biomacromolecules 2002, 3, 357–367. [Google Scholar] [CrossRef]
- Rao, G.V.R.; Balamurugan, S.; Meyer, D.E.; Chilkoti, A.; López, G.P. Hybrid Bioinorganic Smart Membranes That Incorporate Protein-Based Molecular Switches. Langmuir 2002, 18, 1819–1824. [Google Scholar] [CrossRef]
- Costa, R.R.; Custódio, C.A.; Testera, A.M.; Arias, F.J.; Rodríguez-Cabello, J.C.; Alves, N.M.; Mano, J.F. Stimuli-Responsive Thin Coatings Using Elastin-Like Polymers for Biomedical Applications. Adv. Funct. Mater. 2009, 19, 3210–3218. [Google Scholar] [CrossRef]
- Kim, J.D.; Jung, Y.J.; Woo, C.H.; Choi, Y.C.; Choi, J.S.; Cho, Y.W. Thermo-responsive human α-elastin self-assembled nanoparticles for protein delivery. Coll. Interf. B 2017, 149, 122–129. [Google Scholar] [CrossRef]
- Xiao, Y.; Chinoy, Z.; Pécastaings, G.; Bathany, K.; Garanger, E. Design of polysaccharide-b-elastin like polypeptide bioconjugates and their thermoresponsive self-assembly. Biomacromolecules 2020, 21, 114–125. [Google Scholar] [CrossRef] [PubMed]
- Khalili, M.; Zarebkohan, A.; Dianat-Moghadam, H.; Panahi, M.; Andre, H.; Alizadeh, E. Corneal endothelial cell sheet bioengineering from neural crest cell-derived adipose stem cells on novel thermo-responsive elastin-mimetic dendrimers decorated with RGD. Chem. Eng. J. 2022, 429, 132523. [Google Scholar] [CrossRef]
- Taylor, D.K.; Jayes, F.L.; House, A.J.; Ochieng, M.A. Temperature-responsive biocompatible copolymers incorporating hyperbranched polyglycerols for adjustable functionality. J. Funct. Biomater. 2011, 2, 173–194. [Google Scholar] [CrossRef] [PubMed]
- Thomann, Y.; Haag, R.; Brenn, R.; Delto, R.; Weickman, H.; Thomann, R.; Mülhaupt, R. PMMA Gradient Materials and in situ Nanocoating via Self-Assembly of Semifluorinated Hyperbranched Amphiphiles. Macromol. Chem. Phys. 2005, 206, 135–141. [Google Scholar] [CrossRef]
- Bidwell, G.L., 3rd; Raucher, D. Application of thermally responsive polypeptides directed against c-Myc transcriptional function for cancer therapy. Mol. Cancer Ther. 2005, 4, 1076–1085. [Google Scholar] [CrossRef]
- MacEwan, S.R.; Chilkoti, A. Elastin-like polypeptides: Biomedical applications of tunable biopolymers. Biopolymers 2010, 94, 60–77. [Google Scholar] [CrossRef]
- Wu, X.; Sallach, R.E.; Caves, J.M.; Conticello, V.P.; Chaikof, E.L. Deformation responses of a physically cross-linked high molecular weight elastin-like protein polymer. Biomacromolecules 2008, 9, 1787–1794. [Google Scholar] [CrossRef]
- Zhao, Y.-H.; Zhu, B.-K.; Ma, X.-T.; Xu, Y.-Y. Porous membranes modified by hyperbranched polymers: I. Preparation and characterization of PVDF membrane using hyperbranched polyglycerol as additive. J. Membr. Sci. 2007, 290, 222–229. [Google Scholar] [CrossRef]
- Barriau, E.; Frey, H.; Kiry, A.; Stamm, M.; Gröhn, F. Negatively charged hyperbranched polyether-based polyelectrolytes. Colloid Polym. Sci. 2006, 284, 1293–1301. [Google Scholar] [CrossRef]
HPG-X | GMA (mM) | Degree of Crosslink (1H NMR) | Appearance | Pore Size (AFM) | Pore Size (SEM) |
---|---|---|---|---|---|
HPG-28 | 0.111 | 28% | White, solid | 3–12 mm | 1–30 mm |
HPG-15 | 0.054 | 15% | Sticky solid | 6–20 mm | 20–30 mm |
HPG-10 | 0.022 | 10% | Viscous film | indistinguishable | indistinguishable |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kallon, J.; Bang, J.J.; Riaz, U.; Taylor, D.K. Design of Thermo-Responsive Pervaporation Membrane Based on Hyperbranched Polyglycerols and Elastin-like Protein Conjugates. Nanomaterials 2024, 14, 1821. https://doi.org/10.3390/nano14221821
Kallon J, Bang JJ, Riaz U, Taylor DK. Design of Thermo-Responsive Pervaporation Membrane Based on Hyperbranched Polyglycerols and Elastin-like Protein Conjugates. Nanomaterials. 2024; 14(22):1821. https://doi.org/10.3390/nano14221821
Chicago/Turabian StyleKallon, Juliet, John J. Bang, Ufana Riaz, and Darlene K. Taylor. 2024. "Design of Thermo-Responsive Pervaporation Membrane Based on Hyperbranched Polyglycerols and Elastin-like Protein Conjugates" Nanomaterials 14, no. 22: 1821. https://doi.org/10.3390/nano14221821
APA StyleKallon, J., Bang, J. J., Riaz, U., & Taylor, D. K. (2024). Design of Thermo-Responsive Pervaporation Membrane Based on Hyperbranched Polyglycerols and Elastin-like Protein Conjugates. Nanomaterials, 14(22), 1821. https://doi.org/10.3390/nano14221821