An Evaluation of Moderate-Refractive-Index Nanoantennas for Enhancing the Photoluminescence Signal of Quantum Dots
Abstract
:1. Introduction
2. Methodology
3. Results and Discussion
3.1. Single Nanoparticles
3.2. Homogeneous Dimers
3.2.1. Electric Field Enhancement and Scattering Efficiency Spectra
3.2.2. Purcell Factor and Radiation Efficiency
3.3. Hybrid Dimers
3.3.1. Electric Field Enhancement and Scattering Efficiency Spectra
3.3.2. Purcell Factor and Radiation Efficiency
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
FEM | Finite element method |
HRI | High refractive index |
LDOS | Local density of states |
MRI | Moderate refractive index |
NP | Nanoparticle |
PML | Perfectly matched layer |
QD | Quantum dot |
References
- Esmann, M.; Wein, S.C.; Antón-Solanas, C. Solid-State Single-Photon Sources: Recent Advances for Novel Quantum Materials. Adv. Funct. Mater. 2024, 34, 2315936. [Google Scholar] [CrossRef]
- Khalid, S.; Laussy, F.P. Perfect single-photon sources. Sci. Rep. 2024, 14, 2684. [Google Scholar] [CrossRef] [PubMed]
- Maring, N.; Fyrillas, A.; Pont, M.; Ivanov, E.; Stepanov, P.; Margaria, N.; Hease, W.; Pishchagin, A.; Lemaître, A.; Sagnes, I.; et al. A versatile single-photon-based quantum computing platform. Nat. Photonics 2024, 18, 603–609. [Google Scholar] [CrossRef]
- Michler, P. Quantum Dot Single-Photon Sources. In Single Semiconductor Quantum Dots; Springer: Berlin/Heidelberg, Germany, 2009; pp. 185–225. [Google Scholar] [CrossRef]
- Buckley, S.; Rivoire, K.; Vučković, J. Engineered quantum dot single-photon sources. Rep. Prog. Phys. 2012, 75, 126503. [Google Scholar] [CrossRef]
- Lu, C.Y.; Pan, J.W. Quantum-dot single-photon sources for the quantum internet. Nat. Nanotechnol. 2021, 16, 1294–1296. [Google Scholar] [CrossRef]
- Tang, X.; Chen, M.; Kamath, A.; Ackerman, M.M.; Guyot-Sionnest, P. Colloidal Quantum-Dots/Graphene/Silicon Dual-Channel Detection of Visible Light and Short-Wave Infrared. ACS Photonics 2020, 7, 1117–1121. [Google Scholar] [CrossRef]
- Uppu, R.; Midolo, L.; Zhou, X.; Carolan, J.; Lodahl, P. Quantum-dot-based deterministic photon–emitter interfaces for scalable photonic quantum technology. Nat. Nanotechnol. 2021, 16, 1308–1317. [Google Scholar] [CrossRef]
- Almeida, G.; Ubbink, R.F.; Stam, M.; Du Fossé, I.; Houtepen, A. InP colloidal quantum dots for visible and near-infrared photonics. Nat. Rev. Mater. 2023, 8, 742–758. [Google Scholar] [CrossRef]
- Li, Y.; Gao, Y.; Deng, Z.; Cao, Y.; Wang, T.; Wang, Y.; Zhang, C.; Yuan, M.; Xie, W. Visible-light-driven reversible shuttle vicinal dihalogenation using lead halide perovskite quantum dot catalysts. Nat. Commun. 2023, 14, 4673. [Google Scholar] [CrossRef]
- Jung, D.; Park, J.W.; Min, S.; Lee, H.J.; Park, J.S.; Kim, G.M.; Shin, D.; Im, S.; Lim, J.; Kim, K.H.; et al. Strain-graded quantum dots with spectrally pure, stable and polarized emission. Nat. Commun. 2024, 15, 5561. [Google Scholar] [CrossRef]
- Ge, Z.; Chung, T.; He, Y.M.; Benyoucef, M. Polarized and bright telecom C-band single-photon source from InP- based quantum dots coupled to elliptical Bragg gratings. Nano Lett. 2024, 24, 1746–1752. [Google Scholar] [CrossRef] [PubMed]
- Katsumi, R.; Ota, Y.; Benyoucef, M. Telecom-Band Quantum Dots Compatible with Silicon Photonics for Photonic Quantum Applications. Adv. Quantum Technol. 2024, 2300423. [Google Scholar] [CrossRef]
- Finazzer, M.; Tanos, R.; Curé, Y.; Artioli, A.; Kotal, S.; Bleuse, J.; Genuist, Y.; Gérard, J.-M.; Donatini, F.; Claudon, J. On-Chip Electrostatic Actuation of a Photonic Wire Antenna Embedding Quantum Dots. Nano Lett. 2023, 23, 2203–2209. [Google Scholar] [CrossRef]
- Chai, Y.; Li, T.; Zhang, M.; Liu, M.; Yang, G.; Karvinen, P.; Kuittinen, M.; Kang, G. Brilliant quantum dots’ photoluminescence from a dual-resonance plasmonic grating. Opt. Express 2024, 32, 19950–19962. [Google Scholar] [CrossRef]
- Yang, Y.; Dev, A.; Sychugov, I.; Hägglund, C.; Zhang, S.L. Plasmon-Enhanced Fluorescence of Single Quantum Dots Immobilized in Optically Coupled Aluminum Nanoholes. J. Phys. Chem. Lett. 2023, 14, 2339–2346. [Google Scholar] [CrossRef]
- Sortino, L.; Zotev, P.G.; Phillips, C.L.; Brash, A.J.; Cambiasso, J.; Marensi, E.; Fox, A.M.; Maier, S.A.; Sapienza, R.; Tartakovskii, A.I. Bright single photon emitters with enhanced quantum efficiency in a two-dimensional semiconductor coupled with dielectric nano-antennas. Nat. Commun. 2021, 12, 6063. [Google Scholar] [CrossRef]
- Cai, T.; Kim, J.; Yang, Z.; Dutta, S.; Aghaeimeibodi, S.; Waks, E. Radiative Enhancement of Single Quantum Emitters in WSe2 Monolayers Using Site-Controlled Metallic Nanopillars. ACS Photonics 2018, 5, 3466–3471. [Google Scholar] [CrossRef]
- Zhang, X.; Hu, H.; Qie, Y.; Lin, L.; Guo, T.; Li, F. Boosting the Efficiency of High-Resolution Quantum Dot Light-Emitting Devices Based on Localized Surface Plasmon Resonance. ACS Appl. Mater. Interfaces 2024, 16, 13219–13224. [Google Scholar] [CrossRef]
- Kumar, G.; Lin, C.C.; Kuo, H.C.; Chen, F.C. Enhancing photoluminescence performance of perovskite quantum dots with plasmonic nanoparticles: Insights into mechanisms and light-emitting applications. Nanoscale Adv. 2024, 6, 782–791. [Google Scholar] [CrossRef]
- Kroychuk, M.K.; Shorokhov, A.S.; Yagudin, D.F.; Rakhlin, M.V.; Klimko, G.V.; Toropov, A.A.; Shubina, T.V.; Fedyanin, A.A. Quantum Dot Photoluminescence Enhancement in GaAs Nanopillar Oligomers Driven by Collective Magnetic Modes. Nanomaterials 2023, 13, 507. [Google Scholar] [CrossRef]
- Su, G.; Hu, P.; Xiao, Y.; Hu, J.; Pan, D.; Zhan, P.; Haas, S.; Wu, W.; Liu, F. Tuning Photoluminescence of CsPbBr3 Quantum Dots through Plasmonic Nanofingers. Adv. Opt. Mater. 2023, 11, 2202750. [Google Scholar] [CrossRef]
- Gao, Y.; Liu, L.; Murai, S.; Shinozaki, K.; Tanaka, K. Enhancing Up-Conversion Luminescence Using Dielectric Metasurfaces: Role of the Quality Factor of Resonance at a Pumping Wavelength. ACS Appl. Mater. Interfaces 2023, 15, 45960–45969. [Google Scholar] [CrossRef] [PubMed]
- Jeong, M.; Ko, B.; Jung, C.; Kim, J.; Jang, J.; Mun, J.; Lee, J.; Yun, S.; Kim, S.; Rho, J. Printable Light-Emitting Metasurfaces with Enhanced Directional Photoluminescence. Nano Lett. 2024, 24, 5783–5790. [Google Scholar] [CrossRef]
- Sun, Y.; Yaroshenko, V.; Chebykin, A.; Ageev, E.; Makarov, S.; Zuev, D. Metal-dielectric nanoantenna for radiation control of a single-photon emitter. Opt. Mater. Express 2020, 10, 29–35. [Google Scholar] [CrossRef]
- Barreda, A.; Hell, S.; Weissflog, M.A.; Minovich, A.; Pertsch, T.; Staude, I. Metal, dielectric and hybrid nanoantennas for enhancing the emission of single quantum dots: A comparative study. J. Quant. Spectrosc. Radiat. Transfer 2021, 276, 107900. [Google Scholar] [CrossRef]
- Wang, Q.; Chen, Z.; Gu, Z.; Li, L.; Guo, D.; Shi, B.; Wang, Y. Numerical study of nanochannel on a silicon-silver dimer gap for significantly enhanced fluorescence. Results Phys. 2024, 62, 107807. [Google Scholar] [CrossRef]
- Barreda, A.; Vitale, F.; Minovich, A.E.; Ronning, C.; Staude, I. Applications of Hybrid Metal-Dielectric Nanostructures: State of the Art. Adv. Photonics Res. 2022, 3, 2100286. [Google Scholar] [CrossRef]
- Wang, M.; Krasnok, A.; Lepeshov, S.; Hu, G.; Jiang, T.; Fang, J.; Korgel, B.A.; Alù, A.; Zheng, Y. Suppressing material loss in the visible and near-infrared range for functional nanophotonics using bandgap engineering. Nat. Commun. 2020, 11, 5055. [Google Scholar] [CrossRef]
- Wu, Y.; Sun, R.; Zhang, S.; Wu, S. Synthesis of Dielectric Nanospheres with Moderate-Refractive-Index and Applications in Photon Manipulating. Eur. J. Inorg. Chem. 2023, 26, e202200665. [Google Scholar] [CrossRef]
- Yang, Z.J.; Jiang, R.; Zhuo, X.; Xie, Y.M.; Wang, J.; Lin, H.Q. Dielectric nanoresonators for light manipulation. Phys. Rep. 2017, 701, 1–50. [Google Scholar] [CrossRef]
- Fang, J.; Yao, K.; Wang, M.; Yu, Z.; Zhang, T.; Jiang, T.; Huang, S.; Korgel, B.A.; Terrones, M.; Alù, A.; et al. Observation of Room-Temperature Exciton-Polariton Emission from Wide-Ranging 2D Semiconductors Coupled with a Broadband Mie Resonator. Nano Lett. 2023, 23, 9803–9810. [Google Scholar] [CrossRef] [PubMed]
- Palik, E.D. Handbook of Optical Constants of Solids; Academic Press: Cambridge, MA, USA, 1997. [Google Scholar]
- Moriyasu, T.; Kinan, A.; Baba, Y.; Kumakura, M. Emission spectral change of CdSe/ZnS quantum dots caused by the dilution with organic solvents. J. Lumin. 2020, 221, 117089. [Google Scholar] [CrossRef]
- Kambhampati, P. Nanoparticles, Nanocrystals, and Quantum Dots: What are the Implications of Size in Colloidal Nanoscale Materials? J. Phys. Chem. Lett. 2021, 12, 4769–4779. [Google Scholar] [CrossRef]
- Naifar, A.; Hasanirokh, K. Exploring the microscopic effects of surrounding matrices (HfO2 and SiO2) on CdSe/ZnS and ZnS/CdSe cylindrical core/shell quantum dot for microelectronic transport applications. Mater. Sci. Eng. B 2024, 304, 117325. [Google Scholar] [CrossRef]
- Lim, J.; Jeong, B.G.; Park, M.; Kim, J.K.; Pietryga, J.M.; Park, Y.S.; Klimov, V.I.; Lee, C.; Lee, D.C.; Bae, W.K. Influence of Shell Thickness on the Performance of Light-Emitting Devices Based on CdSe/Zn1-XCdXS Core/Shell Heterostructured Quantum Dots. Adv. Mater. 2014, 26, 8034–8040. [Google Scholar] [CrossRef]
- Dmitriev, P.A.; Lassalle, E.; Ding, L.; Pan, Z.; Neo, D.C.J.; Valuckas, V.; Paniagua-Dominguez, R.; Yang, J.K.W.; Demir, H.V.; Kuznetsov, A.I. Hybrid Dielectric-Plasmonic Nanoantenna with Multiresonances for Subwavelength Photon Sources. ACS Photonics 2023, 10, 582–594. [Google Scholar] [CrossRef]
- Gurvitz, E.A.; Ladutenko, K.S.; Dergachev, P.A.; Evlyukhin, A.B.; Miroshnichenko, A.E.; Shalin, A.S. The High-Order Toroidal Moments and Anapole States in All-Dielectric Photonics. Laser Photonics Rev. 2019, 13, 1800266. [Google Scholar] [CrossRef]
- Palstra, I.M.; Doeleman, H.M.; Koenderink, A.F. Hybrid cavity-antenna systems for quantum optics outside the cryostat? Nanophotonics 2019, 8, 1513–1531. [Google Scholar] [CrossRef]
- Barreda, A.I.; Zapata-Herrera, M.; Palstra, I.M.; Mercadé, L.; Aizpurua, J.; Koenderink, A.F.; Martínez, A. Hybrid photonic-plasmonic cavities based on the nanoparticle-on-a-mirror configuration. Photon. Res. 2021, 9, 2398–2419. [Google Scholar] [CrossRef]
- Barreda, A.; Mercadé, L.; Zapata-Herrera, M.; Aizpurua, J.; Martínez, A. Hybrid Photonic-Plasmonic Cavity Design for Very Large Purcell Factors at Telecommunication Wavelengths. Phys. Rev. Appl. 2022, 18, 044066. [Google Scholar] [CrossRef]
- Tang, X.T.; Ma, L.; You, Y.; Du, X.J.; Qiu, H.; Guan, X.H.; He, J.; Yang, Z.J. Relations between near-field enhancements and Purcell factors in hybrid nanostructures of plasmonic antennas and dielectric cavities. Opt. Express 2024, 32, 16746–16760. [Google Scholar] [CrossRef] [PubMed]
- Granchi, N.; Gurioli, M. Tailoring Fano Lineshape in Photonic Local Density of States by Losses Engineering. Adv. Quantum Technol. 2024, 7, 2300199. [Google Scholar] [CrossRef]
- Yang, G.; Niu, Y.; Wei, H.; Bai, B.; Sun, H.B. Greatly amplified spontaneous emission of colloidal quantum dots mediated by a dielectric-plasmonic hybrid nanoantenna. Nanophotonics 2019, 8, 2313–2319. [Google Scholar] [CrossRef]
- Sun, S.; Zhang, T.; Liu, Q.; Ma, L.; Du, Q.; Duan, H. Enhanced Directional Fluorescence Emission of Randomly Oriented Emitters via a Metal–Dielectric Hybrid Nanoantenna. J. Phys. Chem. C 2019, 123, 21150–21160. [Google Scholar] [CrossRef]
Materials | NP1 | NP2 | F | ||||||
---|---|---|---|---|---|---|---|---|---|
[nm] | [nm] | [nm] | [nm] | ||||||
1 | Au-Au | 50 | 150 | 50 | 150 | 285.64 | 0.66 | 8.612 | 21,185 |
2 | MRI-MRI | 150 | 200 | 150 | 200 | 7.63 | 1 | 3.18 | 77 |
3 | Si-Si | 80 | 120 | 80 | 120 | 31.80 | 0.96 | 5.39 | 922 |
Materials | NP1 | NP2 | F | ||||||
---|---|---|---|---|---|---|---|---|---|
[nm] | [nm] | [nm] | [nm] | ||||||
4 | MRI-Au | 150 | 200 | 50 | 150 | 109.47 | 0.66 | 4.64 | 2361 |
5 | MRI-Si | 150 | 200 | 80 | 120 | 18.31 | 0.97 | 4.06 | 302 |
6 | Si-Au | 80 | 120 | 50 | 150 | 138.39 | 0.72 | 7.44 | 7660 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ramos Uña, R.; García Cámara, B.; Barreda, Á.I. An Evaluation of Moderate-Refractive-Index Nanoantennas for Enhancing the Photoluminescence Signal of Quantum Dots. Nanomaterials 2024, 14, 1822. https://doi.org/10.3390/nano14221822
Ramos Uña R, García Cámara B, Barreda ÁI. An Evaluation of Moderate-Refractive-Index Nanoantennas for Enhancing the Photoluminescence Signal of Quantum Dots. Nanomaterials. 2024; 14(22):1822. https://doi.org/10.3390/nano14221822
Chicago/Turabian StyleRamos Uña, Rafael, Braulio García Cámara, and Ángela I. Barreda. 2024. "An Evaluation of Moderate-Refractive-Index Nanoantennas for Enhancing the Photoluminescence Signal of Quantum Dots" Nanomaterials 14, no. 22: 1822. https://doi.org/10.3390/nano14221822
APA StyleRamos Uña, R., García Cámara, B., & Barreda, Á. I. (2024). An Evaluation of Moderate-Refractive-Index Nanoantennas for Enhancing the Photoluminescence Signal of Quantum Dots. Nanomaterials, 14(22), 1822. https://doi.org/10.3390/nano14221822