Improvement in Curcumin’s Stability and Release by Formulation in Flexible Nano-Liposomes
Abstract
:1. Introduction
2. Material and Methods
2.1. Preparation of Curcumin-Loaded Flexible Nano-Liposomes
2.2. Particle Size Measure
2.3. Encapsulation Efficiency and Thermal Stability of Curcumin Liposome
3. Results and Discussion
3.1. Morphology Analysis of Flexible Nano-Liposomes by Transmission Electron Microscopy
3.2. Zeta Potential Analysis of Flexible Nano-Liposomes
3.3. Evaluation of Heat-Sensitive Properties of Curcumin
3.4. Storage Stability of Curcumin
3.5. Release of Curcumin from Flexible Nano-Liposomes
3.6. Effect of Tween 80 Concentration in Flexible Nano-Liposomes
3.7. Effect of Soy Lecithin Concentration in Curcumin Flexible Nano-Liposomes
3.8. Effect of Cholesterol Concentration in Flexible Curcumin Nano-Liposomes
3.9. Effect of Curcumin Concentration in Flexible Nano-Liposomes
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Niu, Y.; Ke, D.; Yang, Q.; Wang, X.; Chen, Z.; An, X.; Shen, W. Temperature-dependent stability and DPPH scavenging activity of liposomal curcumin at pH 7.0. Food Chem. 2012, 135, 1377–1382. [Google Scholar] [CrossRef] [PubMed]
- Hussain, Z.; Thu, H.E.; Amjad, M.W.; Hussain, F.; Ahmed, T.A.; Khan, S. Exploring recent developments to improve antioxidant, anti-inflammatory and antimicrobial efficacy of curcumin: A review of new trends and future perspectives. Mater. Sci. Eng. 2017, 77, 1316–1326. [Google Scholar] [CrossRef] [PubMed]
- Srimal, R.C.; Dhawan, B.N. Pharmacology of diferuloyl methane (curcumin), a non-steroidal anti-inflammatory agent. J. Pharm. Pharmacol. 1973, 25, 447–452. [Google Scholar] [CrossRef] [PubMed]
- Senft, C.; Polacin, M.; Priester, M.; Seifert, V.; Kögel, D.; Weissenberger, J. The nontoxic natural compound Curcumin exerts anti-proliferative, anti-migratory, and anti-invasive properties against malignant gliomas. BMC Cancer 2010, 10, 491. [Google Scholar] [CrossRef]
- Hatcher, H.; Planalp, R.; Cho, J.; Torti, F.M.; Torti, S.V. Curcumin: From ancient medicine to current clinical trials. Cell. Mol. Life Sci. 2008, 65, 1631–1652. [Google Scholar] [CrossRef]
- Jantan, I.; Bukhari, S.N.; Lajis, N.H.; Abas, F.; Wai, L.K.; Jasamai, M. Effects of diarylpentanoid analogues of curcumin on chemiluminescence and chemotactic activities of phagocytes. J. Pharm. Pharmacol. 2012, 64, 404–412. [Google Scholar] [CrossRef]
- Suresh, D.; Manjunatha, H.; Srinivasan, K. Effect of heat processing of spices on the concentrations of their bioactive principles: Turmeric (Curcuma longa), red pepper (Capsicum annuum) and black pepper (Piper nigrum). J. Food Compos. Anal. 2007, 20, 346–351. [Google Scholar] [CrossRef]
- Suresh, D.; Gurudutt, K.N.; Srinivasan, K. Degradation of bioactive spice compound: Curcumin during domestic cooking. Eur. Food Res. Technol. 2009, 228, 807–812. [Google Scholar] [CrossRef]
- Chen, Z.; Xia, Y.; Liao, S.; Huang, Y.; Li, Y.; He, Y.; Tong, Z.; Li, B. Thermal degradation kinetics study of curcumin with nonlinear methods. Food Chem. 2014, 155, 81–86. [Google Scholar] [CrossRef]
- Chen, H.W.; Wu, P.F. A novel method for the microencapsulation of curcumin by high-pressure processing for enhancing the stability and preservation. Int. J. Pharm. 2022, 613, 121403. [Google Scholar] [CrossRef]
- Chen, L.; Bai, G.; Yang, S.; Yang, R.; Zhao, G.; Xu, C.; Leung, W. Encapsulation of curcumin in recombinant human H-chain ferritin increases its water-solubility and stability. Food Res. Int. 2014, 62, 1147–1153. [Google Scholar] [CrossRef]
- Wang, S.; Chen, P.; Zhang, L.; Yang, C.; Zhai, G. Formulation and evaluation of microemulsion-based in situ ion-sensitive gelling systems for intranasal administration of curcumin. J. Drug Target. 2012, 20, 831–840. [Google Scholar] [CrossRef] [PubMed]
- Martins, A.F.; Bueno, P.V.; Almeida, E.A.; Rodrigues, F.H.; Rubira, A.F.; Muniz, E.C. Characterization of N-trimethyl chitosan/alginate complexes and curcumin release. Int. J. Biol. Macromol. 2013, 57, 174–184. [Google Scholar] [CrossRef] [PubMed]
- William, B.; Noémie, P.; Brigitte, E.; Géraldine, P. Supercritical fluid methods: An alternative to conventional methods to prepare liposomes. Chem. Eng. J. 2020, 383, 123106. [Google Scholar] [CrossRef]
- Peng, S.; Zou, L.; Liu, W.; Gan, L.; Liu, W.; Liang, R.; Liu, C.; Niu, J.; Cao, Y.; Liu, Z.; et al. Storage stability and antibacterial activity of eugenol nanoliposomes prepared by an ethanol injection-dynamic high-pressure microfluidization method. J. Food Prot. 2015, 78, 22–30. [Google Scholar] [CrossRef]
- Zou, L.; Liu, W.; Liu, W.; Liang, R.; Li, T.; Liu, C.; Cao, Y.; Niu, J.; Liu, Z. Characterization and bioavailability of tea polyphenol nanoliposome prepared by combining an ethanol injection method with dynamic high-pressure microfluidization. J. Agric. Food Chem. 2014, 62, 934–941. [Google Scholar] [CrossRef]
- Zou, L.; Peng, S.; Liu, W.; Gan, L.; Liu, W.; Liang, R.; Liu, C.; Niu, J.; Cao, Y.; Liu, Z.; et al. Improved in vitro digestion stability of (−)-epigallocatechin gallate through nanoliposome encapsulation. Food Res. Int. 2014, 64, 492–499. [Google Scholar] [CrossRef]
- Liu, Y.; Wu, K.; Wang, J.; Le, Y.; Zhang, L. Continuous production of antioxidant liposome for synergistic cancer treatment using high-gravity rotating packed bed. Chem. Eng. J. 2018, 334, 1766–1774. [Google Scholar] [CrossRef]
- Tsumoto, K.; Hayashi, Y.; Tabata, J.; Tomita, M. A reverse-phase method revisited: Rapid high-yield preparation of giant unilamellar vesicles (GUVs) using emulsification followed by centrifugation. Colloids Surf. A 2018, 546, 74–82. [Google Scholar] [CrossRef]
- Sebaaly, C.; Greige-Gerges, H.; Stainmesse, S.; Fessi, H.; Charcosset, C. Effect of composition, hydrogenation of phospholipids and lyophilization on the characteristics of eugenol-loaded liposomes prepared by ethanol injection method. Food Biosci. 2016, 15, 1–10. [Google Scholar] [CrossRef]
- Chun, J.-Y.; Min, S.-G.; Jo, Y.-J. Production of low molecular collagen peptides-loaded liposomes using different charged lipids. Chem. Phys. Lipids 2017, 209, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Zhang, Q.; Wang, X.; Zhang, W.; Lin, C.; Chen, F.; Yang, X.; Pan, W. Drug-in-cyclodextrin-in-liposomes: A novel drug delivery system for flurbiprofen. Int. J. Pharm. 2015, 492, 40–45. [Google Scholar] [CrossRef] [PubMed]
- Ong, S.G.M.; Chitneni, M.; Lee, K.S.; Ming, L.C.; Yuen, K.H. Evaluation of extrusion technique for nanosizing liposomes. Pharmaceutics 2016, 8, 36. [Google Scholar] [CrossRef]
- Castile, J.D.; Taylor, K.M.G. Factors affecting the size distribution of liposomes produced by freeze–thaw extrusion. Int. J. Pharm. 1999, 188, 87–95. [Google Scholar] [CrossRef]
- Schubert, R.; Beyer, K.; Wolburg, H.; Schmidt, K.H. Structural changes in membranes of large unilamellar vesicles after binding of sodium cholate. Biochemistry 1986, 25, 5263–5269. [Google Scholar] [CrossRef]
- Lu, W.L.; Qi, X.R. Liposome-Based Drug Delivery Systems; Biomaterial Engineering; Springer: Berlin/Heidelberg, Germany, 2021. [Google Scholar]
- Chen, H.-W.; Chang, Y.-W.; Fang, W.-P. A new approach for the microencapsulation of Clitoria Ternatea petal extracts by a high-pressure processing method. Pharmaceutics 2021, 13, 23. [Google Scholar] [CrossRef] [PubMed]
- Harashima, H.; Sakata, K.; Funato, K.; Kiwada, H. Enhanced hepatic uptake of liposomes through complement activation depending on the size of liposomes. Pharm. Res. 1994, 11, 402–406. [Google Scholar] [CrossRef]
- Woodle, M.C. Sterically stabilized liposome therapeutics. Adv. Drug Deliv. Rev. 1995, 16, 249–265. [Google Scholar] [CrossRef]
- Duangjit, S.; Obata, Y.; Sano, H.; Onuki, Y.; Opanasopit, P.; Ngawhirunpat, T.; Miyoshi, T.; Kato, S.; Takayama, K. Comparative Study of Novel Ultradeformable Liposomes: Menthosomes, Transfersomes and Liposomes for Enhancing Skin Permeation of Meloxicam. Biol. Pharm. Bull. 2014, 37, 239–247. [Google Scholar] [CrossRef]
- Lee, M.-H.; Lee, K.-K.; Park, M.-H.; Hyun, S.-S.; Kahn, S.-Y.; Joo, K.-S.; Kang, H.-C.; Kwon, W.-T. In vivo anti-melanogenesis activity and in vitro skin permeability of niacinamide-loaded flexible liposomes (Bounsphere™). J. Drug Deliv. Sci. Technol. 2016, 31, 147–152. [Google Scholar] [CrossRef]
- Touitou, E.; Godin, B.; Dayan, N.; Weiss, C.; Piliponsky, A.; Levi-Schaffer, F. Intracellular delivery mediated by an ethosomal carrier. Biomaterials 2001, 22, 3053–3059. [Google Scholar] [CrossRef] [PubMed]
- Hussain, A.; Altamimi, M.A.; Alshehri, S.; Imam, S.S.; Singh, S.K. Vesicular elastic liposomes for transdermal delivery of rifampicin: In-vitro, in-vivo and in silico GastroPlus™ prediction studies. Eur. J. Pharm. Sci. 2020, 151, 105411. [Google Scholar] [CrossRef] [PubMed]
- Dar, M.J.; Khalid, S.; Varikuti, S.; Satoskar, A.R.; Khan, G.M. Nano-elastic liposomes as multidrug carrier of sodium stibogluconate and ketoconazole: A potential new approach for the topical treatment of cutaneous Leishmaniasis. Eur. J. Pharm. Sci. 2020, 145, 105256. [Google Scholar] [CrossRef]
- Pan, K.; Zhong, Q.; Baek, S.J. Enhanced dispersibility and bioactivity of curcumin by encapsulation in casein nanocapsules. J. Agric. Food Chem. 2013, 61, 6036–6043. [Google Scholar] [CrossRef]
- Schiborr, C.; Kocher, A.; Behnam, D.; Jandasek, J.; Toelstede, S.; Frank, J. The oral bioavailability of curcumin from micronized powder and liquid micelles is significantly increased in healthy humans and differs between sexes. Mol. Nutr. Food Res. 2014, 58, 516–527. [Google Scholar] [CrossRef]
- Akbarzadeh, A.; Rezaei-Sadabady, R.; Davaran, S.; Joo, S.W.; Zarghami, N.; Hanifehpour, Y.; Samiei, M.; Kouhi, M.; Nejati-Koshki, K. Liposome: Classification, preparation, and applications. Nanoscale Res. Lett. 2013, 8, 102. [Google Scholar] [CrossRef]
- Zhang, Y.; Ng, W.; Feng, X.; Cao, F.; Xu, H. Lipid vesicular nanocarrier: Quick encapsulation efficiency determination and transcutaneous application. Int. J. Pharm. 2017, 516, 225–230. [Google Scholar] [CrossRef] [PubMed]
- Ogunsola, O.A.; Kraeling, M.E.; Zhong, S.; Pochan, D.J.; Bronaugh, R.L.; Raghavan, S.R. Structural analysis of “flexible” liposome formulations: New insights into the skin-penetrating ability of soft nanostructures. Soft Matter 2012, 8, 10226–10232. [Google Scholar] [CrossRef]
- Tasharrofi, N.; Nourozi, M.; Marzban, A. How liposomes pave the way for ocular drug delivery after topical administration. J. Drug Deliv. Sci. Technol. 2022, 67, 103045. [Google Scholar] [CrossRef]
- de Toledo, A.M.N.; Silva, N.C.C.; Sato, A.C.K.; Picone, C.S.F. A comprehensive study of physical, antimicrobial and emulsifying properties of self-assembled chitosan/lecithin complexes produced in aqueous media. Future Foods 2021, 4, 100083. [Google Scholar] [CrossRef]
- Alomrani, A.; Badran, M.; Harisa, G.I.; ALshehry, M.; Alhariri, M.; Alshamsan, A.; Alkholief, M. The use of chitosan-coated flexible liposomes as a remarkable carrier to enhance the antitumor efficacy of 5-fluorouracil against colorectal cancer. Saudi Pharm. J. 2019, 27, 603–611. [Google Scholar] [CrossRef] [PubMed]
- Sayyar, Z.; Jafarizadeh-Malmiri, H. Effectiveness of temperature and preparation method on stability kinetic of Curcumin nanodispersion: Cytotoxicity and in vitro release assessment. J. Drug Deliv. Sci. Technol. 2023, 80, 104190. [Google Scholar] [CrossRef]
- Idris, A.; Man, Z.B.; Maulud, A.; Ahmed, I. Modified Higuchi Model Applied to Permeation Prediction of Nanocomposite Membranes. Procedia Eng. 2016, 148, 208–214. [Google Scholar] [CrossRef]
- Talevi, A.; Ruiz, M.E. Higuchi Model. In The ADME Encyclopedia; Springer: Cham, Switzerland, 2021. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, D.; Zhu, L.; Gan, Q.; Le, X. Temperature-dependent structure stability and in vitro release of chitosan-coated curcumin liposome. Food Res. Int. 2015, 74, 97–105. [Google Scholar] [CrossRef]
- Doppalapudi, S.; Mahira, S.; Khan, W. Development and in vitro assessment of psoralen and resveratrol co-loaded ultradeformable liposomes for the treatment of vitiligo. J. Photochem. Photobiol. B 2017, 174, 44–57. [Google Scholar] [CrossRef]
- Kaddah, S.; Khreich, N.; Kaddah, F.; Charcosset, C.; Greige-Gerges, H. Cholesterol modulates the liposome membrane fluidity and permeability for a hydrophilic molecule. Food Chem. Toxicol. 2018, 113, 40–48. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.-T.; Wu, H.-T.; Chang, I.-C.; Chen, H.-W.; Fang, W.-P. Preparation of curcumin-loaded liposome with high bioavailability by a novel method of high pressure processing. Chem. Phys. Lipids 2022, 244, 105191. [Google Scholar] [CrossRef]
- Chen, W.-T.; Kuo, Y.-L.; Chen, C.-H.; Wu, H.-T.; Chen, H.-W.; Fang, W.-P. Improving the stability and bioactivity of curcumin using chitosan-coated liposomes through a combination mode of high-pressure processing. LWT-Food Sci. Technol. 2022, 168, 113946. [Google Scholar] [CrossRef]
Method | Advantages | Disadvantages | Particle Size (nm) | Encapsulation Efficiency (EE) (%) |
---|---|---|---|---|
Reverse phase evaporation [19] | High encapsulation efficiency (EE; >65%) | Complex preparation process | 2.0 × 103 | - |
Ether or ethanol injection [20] | Simple preparation process, no harmful substances, and high EE | The removal of organic solvents is difficult in large-scale production | 160–210 | 65.4 |
Probe sonication [21] | Single-layered and smaller-sized liposomes | Oxidation of lipids and deposition of metal debris at the probe tip | 147.8 | 44.02 |
Thin film/hand shaking [22] | Easily accessible equipment and simple preparation process | Potential safety concerns due to residual chloroform | 969 | 67.34 |
Membrane extrusion [23] | Uniform distribution of particle size | More complex preparation process | 100–320 | - |
Freeze–thaw [24] | Uniformly sized single-layer liposomes | Lower EE (approximately 20–30%) | 2.6–8.2 × 103 | 20–30 |
Supercritical fluid, DELOS [25] | Smaller-sized liposomes, uniform distribution, and large-scale production | Low EE of hydrophilic compounds in liposomes | 150−200 | 20–50 |
Detergent dialysis [26] | Easily accessible equipment | Requires a large amount of organic solvents (hazardous health) | - | - |
Ethanol injection with HPP [27] | Environmentally friendly, uniform distribution, and large-scale production | Requires a high-pressure equipment | 240.7 | 77.8 |
Ethanol injection with surfactant (this study) | Nano-sized liposomes, uniform distribution, and large-scale production | Low EE | 20–300 | 20.7–62.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, H.-W.; Chen, S.-D.; Wu, H.-T.; Cheng, C.-H.; Chiou, C.-S.; Chen, W.-T. Improvement in Curcumin’s Stability and Release by Formulation in Flexible Nano-Liposomes. Nanomaterials 2024, 14, 1836. https://doi.org/10.3390/nano14221836
Chen H-W, Chen S-D, Wu H-T, Cheng C-H, Chiou C-S, Chen W-T. Improvement in Curcumin’s Stability and Release by Formulation in Flexible Nano-Liposomes. Nanomaterials. 2024; 14(22):1836. https://doi.org/10.3390/nano14221836
Chicago/Turabian StyleChen, Hua-Wei, Su-Der Chen, Hung-Ta Wu, Chun-Hung Cheng, Chyow-San Chiou, and Wei-Ting Chen. 2024. "Improvement in Curcumin’s Stability and Release by Formulation in Flexible Nano-Liposomes" Nanomaterials 14, no. 22: 1836. https://doi.org/10.3390/nano14221836
APA StyleChen, H. -W., Chen, S. -D., Wu, H. -T., Cheng, C. -H., Chiou, C. -S., & Chen, W. -T. (2024). Improvement in Curcumin’s Stability and Release by Formulation in Flexible Nano-Liposomes. Nanomaterials, 14(22), 1836. https://doi.org/10.3390/nano14221836