Enhancement of the Physical and Mechanical Properties of Cellulose Nanofibril-Reinforced Lignocellulosic Foams for Packaging and Building Applications
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Fabrication Process of the Lignocellulosic Foam
2.3. Characterization
3. Results
3.1. Stability of Aqueous Foams by Drainage Test
3.2. Foamability of the Aqueous Foams
3.3. Morphology of the Dry Foams
3.4. SEM, EDS, and FTIR Analysis
3.5. Mechanical and Foam Resilience Properties
3.6. Tensile Properties of the Films
3.7. Water Absorption and Thickness Swelling
3.8. Thermal Conductivity of the Foams
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Solomon, S.; Plattner, G.-K.; Knutti, R.; Friedlingstein, P. Irreversible climate change due to carbon dioxide emissions. Proc. Natl. Acad. Sci. USA 2009, 106, 1704–1709. [Google Scholar] [CrossRef] [PubMed]
- Qader, M.R.; Khan, S.; Kamal, M.; Usman, M.; Haseeb, M. Forecasting carbon emissions due to electricity power generation in Bahrain. Environ. Sci. Pollut. Res. 2022, 29, 17346–17357. [Google Scholar] [CrossRef] [PubMed]
- UNEP, United Nations Environment Programme. 2022 Global Status Report for Buildings and Construction: Towards a Zero-Emission, Efficient and Resilient Buildings and Construction Sector; UNEP: Nairobi, Kenya, 2022. [Google Scholar]
- Grand View Research Inc. Insulation Market Analysis 2017–2030. Available online: https://www.grandviewresearch.com/compass (accessed on 11 May 2024).
- Jelle, B.P. Traditional, state-of-the-art and future thermal building insulation materials and solutions—Properties, requirements and possibilities. Energy Build. 2011, 43, 2549–2563. [Google Scholar] [CrossRef]
- Schiavoni, S.; D’Alessandro, F.; Bianchi, F.; Asdrubali, F. Insulation materials for the building sector: A review and comparative analysis. Renew. Sustain. Energy Rev. 2016, 62, 988–1011. [Google Scholar] [CrossRef]
- Porta, R.; Sabbah, M.; Di Pierro, P. Biopolymers as food packaging materials. Int. J. Mol. Sci. 2020, 21, 4942. [Google Scholar] [CrossRef]
- Razza, F.; Innocenti, F.D.; Dobon, A.; Aliaga, C.; Sanchez, C.; Hortal, M. Environmental profile of a bio-based and biodegradable foamed packaging prototype in comparison with the current benchmark. J. Clean. Prod. 2015, 102, 493–500. [Google Scholar] [CrossRef]
- Amaraweera, S.M.; Gunathilake, C.; Gunawardene, O.H.P.; Dassanayake, R.S.; Fernando, N.M.L.; Wanninayaka, D.B.; Rajapaksha, S.M.; Manamperi, A.; Gangoda, M.; Manchanda, A.; et al. Preparation and Characterization of Dual-Modified Cassava Starch-Based Biodegradable Foams for Sustainable Packaging Applications. ACS Omega 2022, 7, 19579–19590. [Google Scholar] [CrossRef]
- Davis, G.; Song, J.H. Biodegradable packaging based on raw materials from crops and their impact on waste management. Ind. Crops Prod. 2006, 23, 147–161. [Google Scholar] [CrossRef]
- Kaza, S.; Yao, L.; Bhada-Tata, P.; Van Woerden, F. What a Waste 2.0 Introduction—“Snapshot of Solid Waste Management to 2050”; Overview Booklet; Urban Development Series; World Bank Group: Washington DC, USA, 2018; pp. 1–38. [Google Scholar]
- Hou, Y.; Liao, J.; Huang, L.; Guo, S.; Zhang, Y.; Liu, Z.; Mo, L.; Zhang, X.; Li, J. Plant bio-inspired laminar cellulose-based foam with flame retardant, thermal insulation and excellent mechanical properties. J. Mater. Chem. A Mater. 2022, 11, 1138–1147. [Google Scholar] [CrossRef]
- Wu, M.; Yu, G.; Chen, W.; Dong, S.; Wang, Y.; Liu, C.; Li, B. A pulp foam with highly improved physical strength, fire-resistance and antibiosis by incorporation of chitosan and CPAM. Carbohydr. Polym. 2022, 278, 118963. [Google Scholar] [CrossRef]
- Zhu, Y.; Zhu, J.; Yu, Z.; Ye, Y.; Sun, X.; Zhang, Y.; Zhu, P.; Jiang, F. Air drying scalable production of hydrophobic, mechanically stable, and thermally insulating lignocellulosic foam. Chem. Eng. J. 2022, 450, 138300. [Google Scholar] [CrossRef]
- Liu, Y.; Kong, S.; Xiao, H.; Bai, C.Y.; Lu, P.; Wang, S.F. Comparative study of ultra-lightweight pulp foams obtained from various fibers and reinforced by MFC. Carbohydr. Polym. 2018, 182, 92–97. [Google Scholar] [CrossRef] [PubMed]
- Trache, D.; Tarchoun, A.F.; Derradji, M.; Hamidon, T.S.; Masruchin, N.; Brosse, N.; Hussin, M.H. Nanocellulose: From Fundamentals to Advanced Applications. Front Chem. 2020, 8, 392. [Google Scholar] [CrossRef] [PubMed]
- Tayeb, A.H.; Amini, E.; Ghasemi, S.; Tajvidi, M. Cellulose nanomaterials-binding properties and applications: A review. Molecules 2018, 23, 2684. [Google Scholar] [CrossRef]
- Lohtander, T.; Herrala, R.; Laaksonen, P.; Franssila, S.; Österberg, M. Lightweight lignocellulosic foams for thermal insulation. Cellulose 2022, 29, 1855–1871. [Google Scholar] [CrossRef]
- Nechita, P.; Năstac, S. Foam-formed cellulose composite materials with potential applications in sound insulation. J. Compos. Mater. 2018, 52, 747–754. [Google Scholar] [CrossRef]
- Cervin, N.T.; Andersson, L.; Ng, J.B.S.; Olin, P.; Bergström, L.; Waìšgberg, L. Lightweight and strong cellulose materials made from aqueous foams stabilized by nanofibrillated cellulose. Biomacromolecules 2013, 14, 503–511. [Google Scholar] [CrossRef]
- Ferreira, E.S.; Rezende, C.A.; Cranston, E.D. Fundamentals of cellulose lightweight materials: Bio-based assemblies with tailored properties. Green. Chem. 2021, 23, 3542–3568. [Google Scholar] [CrossRef]
- ASTM C578-22; Standard Specification for Rigid, Cellular Polystyrene Thermal Insulation. ASTM International: West Conshohocken, PA, USA, 2022.
- Islam, M.S.; Miao, M. Manufacture and Characterization of hemp-Acrodur Biocomposites: Variation of Process Parameters. Fibers Polym. 2022, 23, 2261–2270. [Google Scholar] [CrossRef]
- Wang, R.; Chen, C.; Pang, Z.; Wang, X.; Zhou, Y.; Dong, Q.; Guo, M.; Gao, J.; Ray, U.; Xia, Q.; et al. Fabrication of Cellulose-Graphite Foam via Ion Cross-linking and Ambient-Drying. Nano Lett. 2022, 22, 3931–3938. [Google Scholar] [CrossRef]
- El Hajam, M.; Sun, W.; Hossain, R.; Hafez, I.; Howell, C.; Tajvidi, M. Surfactant-assisted foam-forming of high performance ultra-low density structures made from lignocellulosic materials and cellulose nanofibrils (CNFs). Ind. Crops Prod. 2024, 221, 119357. [Google Scholar] [CrossRef]
- Bilodeau, M.A. and Paradis, M.A. High efficiency production of nanofibrillated cellulose. U.S. Patent No. 9,988,762, 5 June 2018. [Google Scholar]
- ASTM C1763-20; Standard Test Method for Water Absorption by Immersion of Thermal Insulation Materials. ASTM International: West Conshohocken, PA, USA, 2020; 545-545–3.
- ASTM C165-07; Standard Test Method for Measuring Compressive Properties of Thermal Insulations. ASTM International: West Conshohocken, PA, USA, 2007.
- ASTM C518-15; Standard Test Method for Steady-State Thermal Transmission Properties by Means of the Heat Flow Meter Apparatus. ASTM International: West Conshohocken, PA, USA, 2015.
- Hjelt, T.; Ketoja, J.A.; Kiiskinen, H.; Koponen, A.I.; Pääkkönen, E. Foam forming of fiber products: A review. J. Dispers. Sci. Technol. 2022, 43, 1462–1497. [Google Scholar] [CrossRef]
- Ristić, M.; Štajdohar, J.; Opačak, I.; Musić, S. The effect of sodium dodecyl sulphate on the forced hydrolysis of FeCl3 solutions, Contributions, Section of Natural. Math. Biotech. Sci. 2017, 38, 57. [Google Scholar] [CrossRef]
- Li, Y.; Ma, G.; Bilal, M.; Sha, J.; Bu, X. Effect of Bulk Nanobubbles on the Flocculation and Filtration Characteristics of Kaolin Using Cationic Polyacrylamide. Minerals 2024, 14, 405. [Google Scholar] [CrossRef]
- Tenhunen, T.M.; Pöhler, T.; Kokko, A.; Orelma, H.; Gane, P.; Schenker, M.; Tammelin, T. Enhancing the stability of aqueous dispersions and foams comprising cellulose nanofibrils (CNF) with CaCO3 particles. Nanomaterials 2018, 8, 651. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Lu, P.; Xiao, H.; Heydarifard, S.; Wang, S. Novel aqueous spongy foams made of three-dimensionally dispersed wood-fiber: Entrapment and stabilization with NFC/MFC within capillary foams. Cellulose 2017, 24, 241–251. [Google Scholar] [CrossRef]
- Hubbe, M.A.; Heitmann, J.A. Review of factors affecting the release of water from cellulosic fibers during paper manufacture. BioResources 2007, 2, 500–533. [Google Scholar]
- Mira, I.; Andersson, M.; Boge, L.; Blute, I.; Carlsson, G.; Salminen, K.; Lappalainen, T.; Kinnunen, K. Foam forming revisited Part I. Foaming behaviour of fibre-surfactant systems. Nord. Pulp Pap. Res. J. 2014, 29, 679–689. [Google Scholar] [CrossRef]
- Ma, G.; He, M.; Yang, G.; Ji, X.; Lucia, L.A.; Chen, J. A feasible approach efficiently redisperse dried cellulose nanofibrils in water: Vacuum or freeze drying in the presence of sodium chloride. Cellulose 2021, 28, 829–842. [Google Scholar] [CrossRef]
- Lavoine, N.; Bergström, L. Nanocellulose-based foams and aerogels: Processing, properties, and applications. J. Mater. Chem. A Mater. 2017, 5, 16105–16117. [Google Scholar] [CrossRef]
- Ezquerro, C.S.; Miñana, C.C.; Izquierdo, S.; Laspalas, M. A molecular dynamics model to measure forces between cellulose fibril surfaces: On the effect of non-covalent polyelectrolyte adsorption. Cellulose 2019, 26, 1449–1466. [Google Scholar] [CrossRef]
- Tayeb, A.H.; Tajvidi, M. Sustainable Barrier System via Self-Assembly of Colloidal Montmorillonite and Cross-linking Resins on Nanocellulose Interfaces. ACS Appl. Mater. Interfaces 2019, 11, 1604–1615. [Google Scholar] [CrossRef] [PubMed]
- Hafez, I.; Tajvidi, M. Comprehensive Insight into Foams Made of Thermomechanical Pulp Fibers and Cellulose Nanofibrils via Microwave Radiation. ACS Sustain. Chem. Eng. 2021, 9, 10113–10122. [Google Scholar] [CrossRef]
- Paunonen, S.; Timofeev, O.; Torvinen, K.; Turpeinen, T.; Ketoja, J.A. Improving compression recovery of foam-formed fiber materials. Bioresources 2018, 13, 4058–4074. [Google Scholar] [CrossRef]
- ASTM 3574-17; Standard Test Methods for Flexible Cellular Materials—Slab, Bonded, and Molded Urethane Foams. ASTM International: West Conshohocken, PA, USA, 2017.
- Wang, G.; Liu, J.; Zhao, J.; Li, S.; Zhao, G.; Park, C.B. Structure-gradient thermoplastic polyurethane foams with enhanced resilience derived by microcellular foaming. J. Supercrit. Fluids 2022, 188, 105667. [Google Scholar] [CrossRef]
- Tajik, M.; Resalati, H.; Hamzeh, Y.; Torshizi, H.J.; Kermanian, H.; Kord, B. Improving the Properties of Soda Bagasse Pulp by Using Cellulose Nanofibers in the Presence of Cationic Polyacrylamide. BioResources 2016, 11, 9126–9141. [Google Scholar] [CrossRef]
- Meng, C. Straw Pressboard Composites. 2020. Available online: https://uwspace.uwaterloo.ca/ (accessed on 9 November 2024).
- Chin, W.H.A.; Koay, S.C.; Chan, M.Y.; Yeow, T.K.; Pang, M.M. Preparation and characterization of composites made from chrysanthemum waste using resin infusion. AIP Conf. Proc. 2020, 2233, 20004. [Google Scholar] [CrossRef]
- Magazzù, A.; Marcuello, C. Investigation of Soft Matter Nanomechanics by Atomic Force Microscopy and Optical Tweezers: A Comprehensive Review. Nanomaterials 2023, 13, 963. [Google Scholar] [CrossRef]
- González-Ugarte, A.S.; Hafez, I.; Tajvidi, M. Characterization and properties of hybrid foams from nanocellulose and kaolin-microfibrillated cellulose composite. Sci. Rep. 2020, 10, 17459. [Google Scholar] [CrossRef]
- Nair, S.S.; Yan, N. Effect of high residual lignin on the thermal stability of nanofibrils and its enhanced mechanical performance in aqueous environments. Cellulose 2015, 22, 3137–3150. [Google Scholar] [CrossRef]
- Diniz, J.M.B.F.; Gil, M.H.; Castro, J.A.A.M. Hornification—Its origin and interpretation in wood pulps. Wood Sci. Technol. 2004, 37, 489–494. [Google Scholar] [CrossRef]
- Li, R.; Du, J.; Zheng, Y.; Wen, Y.; Zhang, X.; Yang, W.; Lue, A.; Zhang, L. Ultra-lightweight cellulose foam material: Preparation and properties. Cellulose 2017, 24, 1417–1426. [Google Scholar] [CrossRef]
- Yildirim, N.; Shaler, S.M.; Gardner, D.J.; Rice, R.; Bousfield, D.W. Cellulose nanofibril (CNF) reinforced starch insulating foams. Cellulose 2014, 21, 4337–4347. [Google Scholar] [CrossRef]
- Leng, W.; Pan, B. Thermal Insulating and Mechanical Properties of Cellulose Nanofibrils Modified Polyurethane Foam Composite as Structural Insulated Material. Forests 2019, 10, 200. [Google Scholar] [CrossRef]
- Papadopoulos, A.M. State of the art in thermal insulation materials and aims for future developments. Energy Build. 2005, 37, 77–86. [Google Scholar] [CrossRef]
TMP Content (%) | CNF Content (%) | Additive Type | Additive Content * (pph) | Density (kg/m3) |
---|---|---|---|---|
Neat low temp | 0 | 34 (1%) | ||
Neat high temp | 0 | 37 (5%) | ||
95 | 5 | Acrodur ® | 1 | 36 (1%) |
Iron chloride | 0.5 | 53 (4%) | ||
Iron chloride | 1 | 70 (7%) | ||
CPAM | 0.5 | 63 (3%) | ||
CPAM | 1 | 94 (3%) |
Foam Type | Density (kg/m3) | Thermal Conductivity (W/m·K) | Reference |
---|---|---|---|
CNFs/TMP in x–y direction | 100 | 0.046 | [41] |
CNFs/TMP in z direction | 100 | 0.056 | [41] |
Pulp/Na2B4O7/CNFs | 12 | 0.049 | [12] |
CNFs/starch | 82 | 0.042 | [53] |
Pulp/chitosan/CPAM | 53 | 0.068 | [13] |
Polyurethane modified with CNFs | 50 | 0.044 | [54] |
Polyurethane | 30–80 | 0.020–0.027 | [55] |
EPS | 18–50 | 0.029–0.041 | [55] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alonso, M.P.; Hossain, R.; El Hajam, M.; Tajvidi, M. Enhancement of the Physical and Mechanical Properties of Cellulose Nanofibril-Reinforced Lignocellulosic Foams for Packaging and Building Applications. Nanomaterials 2024, 14, 1837. https://doi.org/10.3390/nano14221837
Alonso MP, Hossain R, El Hajam M, Tajvidi M. Enhancement of the Physical and Mechanical Properties of Cellulose Nanofibril-Reinforced Lignocellulosic Foams for Packaging and Building Applications. Nanomaterials. 2024; 14(22):1837. https://doi.org/10.3390/nano14221837
Chicago/Turabian StyleAlonso, Mara Paulette, Rakibul Hossain, Maryam El Hajam, and Mehdi Tajvidi. 2024. "Enhancement of the Physical and Mechanical Properties of Cellulose Nanofibril-Reinforced Lignocellulosic Foams for Packaging and Building Applications" Nanomaterials 14, no. 22: 1837. https://doi.org/10.3390/nano14221837
APA StyleAlonso, M. P., Hossain, R., El Hajam, M., & Tajvidi, M. (2024). Enhancement of the Physical and Mechanical Properties of Cellulose Nanofibril-Reinforced Lignocellulosic Foams for Packaging and Building Applications. Nanomaterials, 14(22), 1837. https://doi.org/10.3390/nano14221837