Nano-Silver-Loaded Activated Carbon Material Derived from Waste Rice Noodles: Adsorption and Antibacterial Performance
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials
2.2. Synthesis
2.3. General Characterization
2.4. Measurement of Adsorption Performance for Cr(VI)
2.5. Measurement of Antibacterial Performance
3. Result and Discussion
3.1. Structural Characterization
3.2. Adsorption Performance for Cr(VI)
3.3. Antibacterial Performance
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
WRN | Waste rice noodle |
AC | Activated carbon |
CQDs | Carbon quantum dots |
References
- Singh, G.; Lakhi, K.S.; Sil, S.; Bhosale, S.V.; Kim, I.; Albahily, K.; Vinu, A. Biomass derived porous carbon for CO2 capture. Carbon 2019, 148, 164–186. [Google Scholar] [CrossRef]
- Thi, N.B.D.; Kumar, G.; Lin, C.Y. An overview of food waste management in developing countries: Current status and future perspective. J. Environ. Manag. 2015, 157, 220–229. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.J.; Cheng, K.; Hu, Y.Y.; He, H.; Wang, P.; Zhu, C.Z. Adsorption and desorption mechanism of toluene gas by iron modified activated carbon fiber. Chem. Phys. 2024, 580, 112240. [Google Scholar] [CrossRef]
- Thirumoolan, D.; Ragupathy, S.; Renukadevi, S.; Rajkumar, P.; Rai, R.S.; Kumar, R.M.S.; Hasan, I.; Durai, M.; Ahn, Y.H. Influence of nickel doping and cotton stalk activated carbon loading on structural, optical, and photocatalytic properties of zinc oxide nanoparticles. J. Photochem. Photobiol. A 2024, 448, 115300. [Google Scholar] [CrossRef]
- Ajitha, B.; Reddy, Y.A.K.; Jeon, H.J.; Ahn, C.W. Synthesis of silver nanoparticles in an eco-friendly way using Phyllanthus amarus leaf extract: Antimicrobial and catalytic activity. Adv. Powder Technol. 2018, 29, 86–93. [Google Scholar] [CrossRef]
- Ramasundaram, S.; Manikandan, V.; Vijayalakshmi, P.; Devanesan, S.; Bin Salah, M.; Babu, A.C.R.; Priyadharsan, A.; Oh, T.H.; Ragupathy, S. Synthesis and investigation on synergetic effect of activated carbon loaded silver nanoparticles with enhanced photocatalytic and antibacterial activities. Environ. Res. 2023, 233, 116431. [Google Scholar] [CrossRef]
- Deb, M.; Roy, S.; Hassan, N.; Chowdhury, D.; Hussain, S.M.D.; Nandy, P.; Maiti, D.K.; Chang, M.; Rahaman, M.; Hasant, M.A.; et al. Synthesis and optimization of chitosan-incorporated semisynthetic polymer/alpha-Fe2O3 nanoparticle hybrid polymer to explore optimal efficacy of fluorescence resonance energy transfer/charge transfer for Co(II) and Ni(II) sensing. Int. J. Biol. Macromol. 2024, 280, 135831. [Google Scholar] [CrossRef]
- Li, H.; Cui, F.; Zhang, F.; Cui, J.; Meng, Q.; Cheng, J. Preparation and DEA removal performance of iron-modified activated carbon. Int. J. Environ. Sci. Technol. 2018, 16, 2927–2936. [Google Scholar] [CrossRef]
- Makkawi, Y.; Pour, F.H.; Elsayed, Y.; Khan, M.; Moussa, O.; Masek, O.; Badrelzaman, M.; El Tahir, W. Recycling of post-consumption food waste through pyrolysis: Feedstock characteristics, products analysis, reactor performance, and assessment of worldwide implementation potentials. Energy Convers. Manag. 2022, 272, 116348. [Google Scholar] [CrossRef]
- Bhatia, L.; Jha, H.; Sarkar, T.; Sarangi, P.K. Food waste utilization for reducing carbon footprints towards sustainable and cleaner environment: A review. Int. J. Environ. Res. Public. Health 2023, 20, 2318. [Google Scholar] [CrossRef]
- Hu, C.; Yan, B.; Wang, K.J.; Xiao, X.M. Modeling the performance of anaerobic digestion reactor by the anaerobic digestion system model (ADSM). J. Environ. Chem. Eng. 2018, 6, 2095–2104. [Google Scholar] [CrossRef]
- Li, M.; Li, F.; Zhou, J.; Yuan, Q.B.; Hu, N. Fallen leaves are superior to tree pruning as bulking agents in aerobic composting disposing kitchen waste. Bioresour. Technol. 2022, 346, 126374. [Google Scholar] [CrossRef]
- Wu, X.H.; Yue, B.; Huang, Q.F.; Wang, Q.; Lin, Y.; Zhang, W.; Yan, Z.Y. Spatio-temporal variation of landfill gas in pilot-scale semi-aerobic and anaerobic landfills over 5 years. J. Environ. Sci. 2017, 54, 288–297. [Google Scholar] [CrossRef]
- Liu, H.Q.; Qiao, H.Y.; Liu, S.Q.; Wei, G.X.; Zhao, H.L.; Li, K.; Weng, F.K. Energy, environment and economy assessment of sewage sludge incineration technologies in China. Energy 2023, 264, 126294. [Google Scholar] [CrossRef]
- Sarker, T.R.; Khatun, M.L.; Ethen, D.Z.; Ali, M.R.; Islam, M.S.; Chowdhury, S.; Rahman, K.S.; Sayem, N.S.; Akm, R.S. Recent evolution in thermochemical transformation of municipal solid wastes to alternate fuels. Heliyon 2024, 10, e37105. [Google Scholar] [CrossRef]
- Yu, G.Q.; Li, F.; Chin, T.; Fiano, F.; Usai, A. Preventing food waste in the Chinese catering supply chain: From a tacit knowledge viewpoint. J. Knowl. Manag. 2022, 26, 2805–2814. [Google Scholar] [CrossRef]
- Venna, S.; Sharma, H.B.; Reddy, P.H.P.; Chowdhury, S.; Dubey, B.K. Landfill leachate as an alternative moisture source for hydrothermal carbonization of municipal solid wastes to solid biofuels. Bioresour. Technol. 2021, 320 Pt B, 124410. [Google Scholar] [CrossRef]
- Parshetti, G.K.; Chowdhury, S.; Balasubramanian, R. Hydrothermal conversion of urban food waste to chars for removal of textile dyes from contaminated waters. Bioresour. Technol. 2014, 161, 310–319. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.Q.; Shan, H.M.; Pang, Y.Y.; Zhan, H.B.; Zeng, C.Y. Iron modified chitosan/coconut shell activated carbon composite beads for Cr(VI) removal from aqueous solution. Int. J. Biol. Macromol. 2023, 224, 156–169. [Google Scholar] [CrossRef]
- Dhapola, P.S.; Kumar, S.; Karakoti, M.; Yahya, M.Z.A.; Punetha, V.D.; Pandey, S.; Chowdhury, F.I.; Savilov, S.V.; Singh, P.K. O, N co-doped porous activated carbon from polyvinyl chloride for super capacitors and solar cells application. Chem. Phys. 2024, 9, 100721. [Google Scholar] [CrossRef]
- Rai, M.K.; Shahi, G.; Meena, V.; Meena, R.; Chakraborty, S.; Singh, R.S.; Rai, B.N. Removal of hexavalent chromium Cr (VI) using activated carbon prepared from mango kernel activated with H3PO4. Resour. Effic. Technol. 2016, 2, S63–S70. [Google Scholar]
- Duwiejuah, A.B.; Adjei, E.F.; Alhassan, E.H. Adsorption of toxic metals from greywater using coconut husk biochar and spent green tea. Heliyon 2024, 10, e38189. [Google Scholar] [CrossRef] [PubMed]
- Areti, H.A.; Jabesa, A.; Muleta, M.D.; Emana, A.N. Adsorptive performances and valorization of green synthesized biochar-based activated carbon from banana peel and corn cob composites for the abatement of Cr(VI) from synthetic solutions: Parameters, isotherms, and remediation studies. Heliyon 2024, 10, e33811. [Google Scholar] [CrossRef]
- Doke, K.M.; Khan, E.M. Equilibrium, kinetic and diffusion mechanism of Cr (VI) adsorption onto activated carbon derived from wood apple shell. Arabian J. Chem. 2017, 10, S252–S260. [Google Scholar] [CrossRef]
- Blancas, J.; Cayetano-Castro, N.; Pérez, R.; Rosas, G. A novel hydrothermal approach to preparing ZnO flower-like using CQDs as growth seeds. Mater. Sci. Eng. B 2024, 309, 117654. [Google Scholar] [CrossRef]
- Nkuna, S.G.; Olwal, T.O.; Chowdhury, S.P.D.; Ndambuki, J.M. A review of wastewater sludge-to-energy generation focused on thermochemical technologies: An improved technological, economical and socio-environmental aspect. Clean. Waste Syst. 2024, 7, 100130. [Google Scholar] [CrossRef]
- Jin, X.Y.; Che, R.J.; Yang, J.; Liu, Y.; Chen, X.B.; Jiang, Y.E.; Liang, J.Q.; Chen, S.P.; Su, H.P. Activated carbon and carbon quantum dots/titanium dioxide composite based on waste rice noodles: Simultaneous synthesis and application in water pollution control. Nanomaterials 2022, 12, 472. [Google Scholar] [CrossRef]
- Jin, X.Y.; Ying, W.Y.; Che, R.J.; Xiao, P.; Zhou, Y.Q.; Liu, Y.; Liu, M.Y.; Chen, S.P. CQDs/ZnO composites based on waste rice noodles: Preparation and photocatalytic capability. RSC Adv. 2022, 12, 23692–23703. [Google Scholar] [CrossRef]
- Che, R.J.; Tu, B.Y.; Zhu, Y.N.; Miao, J.H.; Jin, X.Y.; Chen, S.P. Waste rice noodle-based CQDs/ZnO composite nanorod array on steel wire mesh: Preparation and photocatalytic capability. Arabian J. Chem. 2023, 16, 105231. [Google Scholar] [CrossRef]
- Ying, W.Y.; Liu, Q.; Jin, X.Y.; Ding, G.Z.; Liu, M.Y.; Wang, P.Y.; Chen, S.P. Magnetic carbon quantum dots/iron oxide composite based on waste rice noodle and iron oxide scale: Preparation and photocatalytic capability. Nanomaterials 2023, 13, 2506. [Google Scholar] [CrossRef]
- Alamier, W.M.; Oteef, M.; Bakry, A.M.; Hasan, N.; Ismail, K.S.; Awad, F.S. Green synthesis of silver nanoparticles using acacia ehrenbergiana plant cortex extract for efficient removal of rhodamine B cationic dye from wastewater and the evaluation of antimicrobial activity. ACS Omega 2023, 8, 18901–18914. [Google Scholar] [CrossRef] [PubMed]
- Baran, M.F.; Keskin, C.; Baran, A.; Hatipoglu, A.; Yildiztekin, M.; Kucukaydin, S.; Kurt, K.; Hosgoren, H.; Sarker, M.M.R.; Sufianov, A.; et al. Green synthesis of silver nanoparticles from allium cepa L. Peel extract, their antioxidant, antipathogenic, and anticholinesterase activity. Molecules 2023, 28, 2310. [Google Scholar] [CrossRef] [PubMed]
- Parvathalu, K.; Chinmayee, S.; Preethi, B.; Swetha, A.; Maruthi, G.; Pritam, M.; Sreenivas, B.; Naidu, S.R.; Merlinsheeba, G.L.; Murali, B.; et al. Green synthesis of silver nanoparticles using argyreia nervosa leaf extract and their antimicrobial activity. Plasmonics 2023, 18, 1075–1081. [Google Scholar] [CrossRef]
- Liu, H.; Wang, S.Z.; Li, Z.C.; Zhuo, R.S.; Zhao, J.A.; Duan, Y.W.; Liu, L.; Yang, J.Q. Experimental study on the preparation of monodisperse nano-silver by hydrothermal synthesis. Mater. Chem. Phys. 2024, 314, 128902. [Google Scholar] [CrossRef]
- Nemma, P.; Verma, S.K.; Shaz, M.A. Physically activated resorcinol-formaldehyde derived carbon aerogels for enhanced hydrogen storage. Int. J. Hydrogen Energy. 2024. [Google Scholar] [CrossRef]
- Chen, X.J.; Wang, L.L.; Ding, C.C.; Xie, H.; Zou, H.; Deng, J.M.; Liu, Z.; Shi, J.P.; Ding, Y. Highly efficient removal of radioactive iodine anions by nano silver modified activated carbon fiber. Appl. Surf. Sci. 2023, 643, 158644. [Google Scholar] [CrossRef]
- Kaur, J.; Kaur, M.; Ubhi, M.K.; Kaur, N.; Greneche, J.M. Composition optimization of activated carbon-iron oxide nanocomposite for effective removal of Cr (VI) ions. Mater. Chem. Phys. 2020, 258, 124002. [Google Scholar] [CrossRef]
- Wu, Z.Y.; Zhang, H.; Ali, E.; Shahab, A.; Huang, H.Y.; Ullah, H.; Zeng, H.H. Synthesis of novel magnetic activated carbon for effective Cr (VI) removal via synergistic adsorption and chemical reduction. Environ. Technol. Innov. 2023, 30, 103092. [Google Scholar] [CrossRef]
- Taha, A.; Da’na, E.; Hassanin, H.A. Modified activated carbon loaded with bio-synthesized Ag/ZnO nanocomposite and its application for the removal of Cr (VI) ions from aqueous solution. Surf. Interfaces 2021, 23, 100928. [Google Scholar] [CrossRef]
- Baithi, I.J.; Mottalib, M.A.; Nahar, H.; Miran, M.S.; Ehsan, M.F.; Rahman, M.M. Removal of Cr (VI) from wastewater by impregnated activated carbon generated from vegetable tanned leather waste with aluminium oxide. Results Surf. Interfaces 2024, 14, 100197. [Google Scholar] [CrossRef]
- Vo, A.T.; Nguyen, V.P.; Ouakouak, A.; Nieva, A.; Doma, B.T.; Tran, H.N.; Chao, H.P. Efficient removal of Cr (VI) from water by biochar and activated carbon prepared through hydrothermal carbonization and pyrolysis: Adsorption-coupled reduction mechanism. Water 2019, 11, 1164. [Google Scholar] [CrossRef]
- Li, F.Y.; Zimmerman, A.R.; Hu, X.; Gao, B. Removal of aqueous Cr (VI) by Zn- and Al-modified hydrochar. Chemosphere 2020, 260, 127610. [Google Scholar] [CrossRef] [PubMed]
- Ghanim, B.; Leahy, J.J.; O’Dwyer, T.F.; Kwapinski, W.; Pembroke, J.T.; Murnane, J.G. Removal of hexavalent chromium (Cr (VI)) from aqueous solution using acid-modified poultry litter-derived hydrochar: Adsorption, regeneration and reuse. J. Chem. Technol. Biotechnol. 2021, 97, 55–66. [Google Scholar] [CrossRef]
- Luo, Y.D.; Lan, Y.W.; Liu, X.Z.; Xue, M.S.; Zhang, L.S.; Yin, Z.Z.; He, X.S.; Li, X.B.; Yang, J.; Hong, Z.; et al. Hydrochar effectively removes aqueous Cr(VI) through synergistic adsorption and photoreduction. Sep. Purif. Technol. 2023, 317, 123926. [Google Scholar] [CrossRef]
- Prajapati, A.K.; Das, S.; Mondal, M.K. Exhaustive studies on toxic Cr (VI) removal mechanism from aqueous solution using activated carbon of Aloe vera waste leaves. J. Mol. Liq. 2020, 307, 112956. [Google Scholar] [CrossRef]
- Norouzi, S.; Heidari, M.; Alipour, V.; Rahmanian, O.; Fazlzadeh, M.; Mohammadi-Moghadam, F.; Nourmoradi, H.; Goudarzi, B.; Dindarloo, K. Preparation, characterization and Cr (VI) adsorption evaluation of NaOH-activated carbon produced from Date Press Cake; an agro-industrial waste. Bioresour. Technol. 2018, 258, 48–56. [Google Scholar] [CrossRef]
- Zhu, T.; Fu, S.J.; Xie, W.; Li, F.R.; Liu, Y.S. Comparison of inactivation characteristics of Escherichia coli and Staphylococcus aureus in water by rotary plasma jet sterilization. Environ. Technol. Innov. 2024, 36, 103746. [Google Scholar] [CrossRef]
- Shin, K.Y.; Hong, J.Y.; Jang, J. Heavy metal ion adsorption behavior in nitrogen-doped magnetic carbon nanoparticles: Isotherms and kinetic study. J. Hazard. Mater. 2011, 190, 36–44. [Google Scholar] [CrossRef]
- Gorzin, F.; Ghoreyshi, A.A. Synthesis of a new low-cost activated carbon from activated sludge for the removal of Cr (VI) from aqueous solution: Equilibrium, kinetics, thermodynamics and desorption studies. Korean J. Chem. Eng. 2013, 30, 1594–1602. [Google Scholar] [CrossRef]
- McKay, G.; Bino, M.J.; Altamemi, A.R. The adsorption of various pollutants from aqueous solutions on to activated carbon. Water Res. 1985, 19, 491–495. [Google Scholar] [CrossRef]
Element | Peak (eV) | Surface Group | Assignment | |
---|---|---|---|---|
AC | C 1s | 284.80 | C | Graphitic carbon |
285.91 | C–O | Alcoholic or etheric structure in AC | ||
288.93 | C=C | π-electrons in aromatic ring | ||
O 1s | 531.69 | C–O | Oxygen atom bonded to aromatic rings | |
532.98 | O–H | Hydroxyl group | ||
Ag/AC | C 1s | 284.80 | C | Graphitic carbon |
286.43 | C–O | Alcoholic or etheric structure in AC | ||
288.89 | C=C | π-electrons in aromatic ring | ||
O 1s | 530.67 | C–O | Oxygen atom bonded to aromatic rings | |
532.30 | O–H | Hydroxyl group | ||
534.78 | C–O–Ag | Oxygen bonded to silver | ||
Ag 3d | 368.64 | Ag | Ag 3d5/2 | |
374.63 | Ag | Ag 3d3/2 |
Sample | SBET (m2/g) | Smic (m2/g) | Vtot (cm3/g) | Vmic (cm3/g) | Dave (nm) |
---|---|---|---|---|---|
AC | 819.19 | 740.98 | 0.58 | 0.38 | 3.00 |
Ag/AC | 2025.96 | 966.73 | 0.56 | 0.48 | 2.14 |
T (K) | Langmuir Models | Freundlich Models | ||||
---|---|---|---|---|---|---|
qm (mmol·g−1) | b (L·mg−1) | R2 | kf (mmol·g−1) | 1/n | R2 | |
293 | 1.8667 | 0.399 | 0.9998 | 1.2429 | 0.073 | 0.9461 |
303 | 1.9168 | 0.591 | 0.9993 | 1.7317 | 0.166 | 0.7953 |
313 | 1.9657 | 0.850 | 0.9996 | 1.8181 | 0.013 | 0.7772 |
323 | 2.0370 | 1.534 | 0.9998 | 1.9037 | 0.012 | 0.9261 |
Adsorbent | Carbon Source | Metal Source | Adsorbent Dosage (g·L−1) | pH | Adsorption Capacity (mg·g−1) | Reference |
---|---|---|---|---|---|---|
AC | Banana peels, corn cobs | - | 0.4 | 2 | 19.16 | [23] |
AC | Mango kernel | - | 2.5 | 2 | 7.8 | [21] |
AC | Aloe vera waste leaves | - | 2 | 2 | 58.83 | [45] |
AC | Date press cake | - | 1 | 5 | 198 | [46] |
AC | Hard shell of wood apple fruit | - | 1.25 | 2 | 151.51 | [24] |
Zn-modified hydrochar | Bamboo | ZnCl2 | 3.3 | 5 | 14.0 | [42] |
Al-modified hydrochar | Bamboo | AlCl3 | 3.3 | 5 | 12.3 | [42] |
H2SO4-modified hydrochar | Poultry litter | - | 2 | 2 | 26.21 | [43] |
ZnCl2-AC | Tropical hardwood sawdusts of Tectona grandis tree | ZnCl2 | 0.4 | 3 | 127 | [41] |
K2CO3-AC | Tropical hardwood sawdusts of Tectona grandis tree | K2CO3 | 0.4 | 3 | 103 | [41] |
Fe2O3/AC | Commercial AC | FeSO4·5H2O FeCl3·6H2O | 1 | 2 | 83.33 | [37] |
Fe3O4/AC | Commercial AC | FeSO4·7H2O FeCl3·6H2O | 2 | 2 | 45.3 | [38] |
Al2O3/AC | Vegetable crust leather waste | Al2O3 | 6 | 6 | 19.3 | [40] |
Ag-ZnO/AC | Commercial AC | Zn(NO3)2 AgNO3 | 16 | 2.5 | 4.17 | [39] |
Ag/AC | WRN | AgNO3 | 1 | 2 | 97.07 | This work |
AC | WRN | - | 1 | 2 | 65.43 | This work |
Commercial AC | Coal | - | 1 | 2 | 49.98 | This work |
HTC | WRN | - | 1 | 2 | 1.87 | This work |
T (K) | ΔH (kJ·mol−1) | ΔS (kJ·mol−1·K−1) | ΔG (kJ·mol−1) |
---|---|---|---|
293 | 9.582 | 0.03652 | −1.186 |
303 | −1.524 | ||
313 | −1.863 | ||
323 | −2.201 |
Pseudo-First-Order | Pseudo-Second-Order | ||||
---|---|---|---|---|---|
qe1 (mmol·g−1) | K1 (min−1) | R12 | qe2 (mmol·g−1) | K2 (g·mmol·min−1) | R22 |
0.9883 | 0.0566 | 0.9751 | 1.8513 | 0.1436 | 0.9997 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ding, G.; Qin, G.; Ying, W.; Wang, P.; Yang, Y.; Tang, C.; Liu, Q.; Li, M.; Huang, K.; Chen, S. Nano-Silver-Loaded Activated Carbon Material Derived from Waste Rice Noodles: Adsorption and Antibacterial Performance. Nanomaterials 2024, 14, 1857. https://doi.org/10.3390/nano14221857
Ding G, Qin G, Ying W, Wang P, Yang Y, Tang C, Liu Q, Li M, Huang K, Chen S. Nano-Silver-Loaded Activated Carbon Material Derived from Waste Rice Noodles: Adsorption and Antibacterial Performance. Nanomaterials. 2024; 14(22):1857. https://doi.org/10.3390/nano14221857
Chicago/Turabian StyleDing, Guanzhi, Guangzhi Qin, Wanying Ying, Pengyu Wang, Yang Yang, Chuanyang Tang, Qing Liu, Minghui Li, Ke Huang, and Shuoping Chen. 2024. "Nano-Silver-Loaded Activated Carbon Material Derived from Waste Rice Noodles: Adsorption and Antibacterial Performance" Nanomaterials 14, no. 22: 1857. https://doi.org/10.3390/nano14221857
APA StyleDing, G., Qin, G., Ying, W., Wang, P., Yang, Y., Tang, C., Liu, Q., Li, M., Huang, K., & Chen, S. (2024). Nano-Silver-Loaded Activated Carbon Material Derived from Waste Rice Noodles: Adsorption and Antibacterial Performance. Nanomaterials, 14(22), 1857. https://doi.org/10.3390/nano14221857