Oblique Deposited Ultra-Thin Silver Films on Polymer Gratings for Sensitive SERS Performance
Abstract
:1. Introduction
2. Experiment
3. Results and Discussion
3.1. Measurement
3.2. Measurement of SERS
3.3. Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xu, M.-L.; Gao, Y.; Han, X.-X.; Zhao, B. Innovative Application of SERS in Food Quality and Safety: A Brief Review of Recent Trends. Foods 2022, 11, 2097. [Google Scholar] [CrossRef] [PubMed]
- Guerrini, L.; Alvarez-Puebla, R.A. Surface-Enhanced Raman Spectroscopy in Cancer Diagnosis, Prognosis and Monitoring. Cancers 2019, 11, 748. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Cushing, S.K.; Wu, N. Plasmon-Enhanced Optical Sensors: A Review. Analyst 2015, 140, 386–406. [Google Scholar] [CrossRef] [PubMed]
- Pang, S.; Yang, T.; He, L. Review of Surface Enhanced Raman Spectroscopic (SERS) Detection of Synthetic Chemical Pesticides. TrAC Trends Anal. Chem. 2016, 85, 73–82. [Google Scholar] [CrossRef]
- Jen, Y.-J.; Suzuki, M.; Wang, Y.-H.; Lin, M.-J. Near-Field Simulation of Obliquely Deposited Surface-Enhanced Raman Scattering Substrates. J. Appl. Phys. 2012, 112, 113111. [Google Scholar] [CrossRef]
- Suzuki, M.; Maekita, W.; Wada, Y.; Nakajima, K.; Kimura, K.; Fukuoka, T.; Mori, Y. In-Line Aligned and Bottom-Up Ag Nanorods for Surface-Enhanced Raman Spectroscopy. Appl. Phys. Lett. 2006, 88, 203121. [Google Scholar] [CrossRef]
- Laurent, G.; Félidj, N.; Aubard, J.; Lévi, G.; Krenn, J.R.; Hohenau, A.; Schider, G.; Leitner, A.; Aussenegg, F.R. Evidence of Multipolar Excitations in Surface Enhanced Raman Scattering. Phys. Rev. B 2005, 71, 045430. [Google Scholar] [CrossRef]
- Yu, Q.; Braswell, S.; Christin, B.; Xu, J.; Wallace, P.; Gong, H.; Kaminsky, D. Surface-Enhanced Raman Scattering on Gold Quasi-3D Nanostructure and 2D Nanohole Arrays. Nanotechnology 2010, 21, 355301. [Google Scholar] [CrossRef] [PubMed]
- Mayer, K.M.; Hafner, J.H. Localized Surface Plasmon Resonance Sensors. Chem. Rev. 2011, 111, 3828–3857. [Google Scholar] [CrossRef] [PubMed]
- Almehmadi, L.M.; Curley, S.M.; Tokranova, N.A.; Tenenbaum, S.A.; Lednev, I.K. Surface Enhanced Raman Spectroscopy for Single Molecule Protein Detection. Sci. Rep. 2019, 9, 12356. [Google Scholar] [CrossRef] [PubMed]
- Moskovits, M. Surface-Enhanced Raman Spectroscopy: A Brief Retrospective. J. Raman Spectrosc. 2005, 36, 485–496. [Google Scholar] [CrossRef]
- Camden, J.P.; Dieringer, J.A.; Zhao, J.; Van Duyne, R.P. Controlled Plasmonic Nanostructures for Surface-Enhanced Spectroscopy and Sensing. Acc. Chem. Res. 2008, 41, 1653–1661. [Google Scholar] [CrossRef] [PubMed]
- Weisheng, Y.; Zhihong, W.; Yang, Y.; Longqing, C.; Ahad, S.; Kimchong, W.; Xianbin, W. Electron-Beam Lithography of Gold Nanostructures for Surface-Enhanced Raman Scattering. J. Micromech. Microeng. 2012, 22, 125007. [Google Scholar]
- Chou, S.Y.; Krauss, P.R.; Renstrom, P.J. Imprint of Sub-25 nm Vias and Trenches in Polymers. Appl. Phys. Lett. 1996, 67, 3114–3116. [Google Scholar] [CrossRef]
- Cottat, M.; Lidgi-Guigui, N.; Tijunelyte, I.; Barbillon, G.; Hamouda, F.; Gogol, P.; Aassime, A.; Lourtioz, J.-M.; Bartenlian, B.; Lamy de la Chapelle, M. Soft UV Nanoimprint Lithography-Designed Highly Sensitive Substrates for SERS Detection. Nanoscale Res. Lett. 2014, 9, 623. [Google Scholar] [CrossRef]
- Lee, T.; Kwon, S.; Jung, S.; Lim, H.; Lee, J.-J. Macroscopic Ag Nanostructure Array Patterns with High-Density Hotspots for Reliable and Ultra-Sensitive SERS Substrates. Nano Res. 2019, 12, 2554–2558. [Google Scholar] [CrossRef]
- Colniță, A.; Marconi, D.; Dina, N.E.; Brezeștean, I.; Bogdan, D.; Turcu, I. 3D Silver Metallized Nanotrenches Fabricated by Nanoimprint Lithography as Flexible SERS Detection Platform. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2022, 276, 121232. [Google Scholar] [CrossRef] [PubMed]
- Jen, Y.-J.; Lin, P.-C.; Lo, X.-H. Silver Split Nano-Tube Array as a Meta-Atomic Monolayer for High-Reflection Band. Sci. Rep. 2022, 12, 13611. [Google Scholar] [CrossRef] [PubMed]
- Jen, Y.-J.; Lin, T.-Y. Tunable Magnetic Field Reversal and Optical Response from a Split Nanotube Array Prepared by Obliquely Depositing Gold on a Polymer Grating. Opt. Mater. 2024, 148, 114848. [Google Scholar] [CrossRef]
- Thin Film Center Inc. Optical Thin-Film Software; Version 10.1.487; The Essential Macleod; Thin Film Center Inc.: Tucson, AZ, USA.
Sample | GR20nm | GR80nm | GR150nm |
---|---|---|---|
H | 58.2 ± 4.8 nm | 76.8 ± 7.4 nm | 115.5 ± 12.5 nm |
W | 49.2 ± 2.7 nm | 91.5 ± 4.4 nm | 129.6 ± 11.1 nm |
D | 89.9 ± 1.4 nm | 81.6 ± 1.6 nm | 88.8 ± 5.7 nm |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jen, Y.-J.; Lin, M.-J. Oblique Deposited Ultra-Thin Silver Films on Polymer Gratings for Sensitive SERS Performance. Nanomaterials 2024, 14, 1871. https://doi.org/10.3390/nano14231871
Jen Y-J, Lin M-J. Oblique Deposited Ultra-Thin Silver Films on Polymer Gratings for Sensitive SERS Performance. Nanomaterials. 2024; 14(23):1871. https://doi.org/10.3390/nano14231871
Chicago/Turabian StyleJen, Yi-Jun, and Meng-Jie Lin. 2024. "Oblique Deposited Ultra-Thin Silver Films on Polymer Gratings for Sensitive SERS Performance" Nanomaterials 14, no. 23: 1871. https://doi.org/10.3390/nano14231871
APA StyleJen, Y. -J., & Lin, M. -J. (2024). Oblique Deposited Ultra-Thin Silver Films on Polymer Gratings for Sensitive SERS Performance. Nanomaterials, 14(23), 1871. https://doi.org/10.3390/nano14231871