Permanent Strain Engineering of Molybdenum Disulfide Using Laser-Driven Stressors for Energy-Efficient Resistive Switching Memory Devices
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of Graphene
2.3. Synthesis of MoS2
2.4. Fabrication of the Stressor
2.5. Fabrication of ReRAM
2.6. DFT Calculations
2.7. Measurement and Analysis
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Welser, J.; Hoyt, J.; Takagi, S.-I.; Gibbons, J. Strain dependence of the performance enhancement in strained-Si n-MOSFETs. In Proceedings of the 1994 IEEE International Electron Devices Meeting, San Francisco, CA, USA, 1–14 December 1994; pp. 373–376. [Google Scholar]
- Rim, K.; Welser, J.; Hoyt, J.; Gibbons, J. Enhanced hole mobilities in surface-channel strained-Si p-MOSFETs. In Proceedings of the International Electron Devices Meeting, Washington, DC, USA, 10–13 December 1995; pp. 517–520. [Google Scholar]
- Ghani, T.; Armstrong, M.; Auth, C.; Bost, M.; Charvat, P.; Glass, G.; Hoffmann, T.; Johnson, K.; Kenyon, C.; Klaus, J. A 90nm high volume manufacturing logic technology featuring novel 45nm gate length strained silicon CMOS transistors. In Proceedings of the IEEE International Electron Devices Meeting 2003, Washington, DC, USA, 8–10 December 2003; pp. 11.16.1–11.16.3. [Google Scholar]
- Lemme, M.C.; Wagner, S.; Lee, K.; Fan, X.; Verbiest, G.J.; Wittmann, S.; Lukas, S.; Dolleman, R.J.; Niklaus, F.; van der Zant, H.S. Nanoelectromechanical sensors based on suspended 2D materials. Research 2020, 2020, 8748602. [Google Scholar] [CrossRef] [PubMed]
- Conley, H.J.; Wang, B.; Ziegler, J.I.; Haglund Jr, R.F.; Pantelides, S.T.; Bolotin, K.I. Bandgap engineering of strained monolayer and bilayer MoS2. Nano Lett. 2013, 13, 3626–3630. [Google Scholar] [CrossRef] [PubMed]
- He, K.; Poole, C.; Mak, K.F.; Shan, J. Experimental demonstration of continuous electronic structure tuning via strain in atomically thin MoS2. Nano Lett. 2013, 13, 2931–2936. [Google Scholar] [CrossRef] [PubMed]
- Gu, Z.; Zhang, T.; Luo, J.; Wang, Y.; Liu, H.; Chen, L.; Liu, X.; Yu, W.; Zhu, H.; Sun, Q.-Q. MoS2-on-AlN enables high-performance MoS2 field-effect transistors through strain engineering. ACS Appl. Mater. Interfaces 2020, 12, 54972–54979. [Google Scholar] [CrossRef]
- Li, Z.; Lv, Y.; Ren, L.; Li, J.; Kong, L.; Zeng, Y.; Tao, Q.; Wu, R.; Ma, H.; Zhao, B. Efficient strain modulation of 2D materials via polymer encapsulation. Nat. Commun. 2020, 11, 1151. [Google Scholar] [CrossRef]
- Datye, I.M.; Daus, A.; Grady, R.W.; Brenner, K.; Vaziri, S.; Pop, E. Strain-enhanced mobility of monolayer MoS2. Nano Lett. 2022, 22, 8052–8059. [Google Scholar] [CrossRef]
- Pang, F.; Cao, F.; Lei, L.; Meng, L.; Ye, S.; Xing, S.; Guo, J.; Dong, H.; Hussain, S.; Gu, S. Strain-engineered rippling and manipulation of single-layer WS2 by atomic force microscopy. J. Phys. Chem. C 2021, 125, 8696–8703. [Google Scholar] [CrossRef]
- Ahn, G.H.; Amani, M.; Rasool, H.; Lien, D.-H.; Mastandrea, J.P.; Ager III, J.W.; Dubey, M.; Chrzan, D.C.; Minor, A.M.; Javey, A. Strain-engineered growth of two-dimensional materials. Nat. Commun. 2017, 8, 608. [Google Scholar] [CrossRef]
- Wang, J.; Han, M.; Wang, Q.; Ji, Y.; Zhang, X.; Shi, R.; Wu, Z.; Zhang, L.; Amini, A.; Guo, L. Strained epitaxy of monolayer transition metal dichalcogenides for wrinkle arrays. ACS Nano 2021, 15, 6633–6644. [Google Scholar] [CrossRef]
- Martella, C.; Mennucci, C.; Cinquanta, E.; Lamperti, A.; Cappelluti, E.; Buatier de Mongeot, F.; Molle, A. Anisotropic MoS2 nanosheets grown on self-organized nanopatterned substrates. Adv. Mater. 2017, 29, 1605785. [Google Scholar] [CrossRef]
- Xie, S.; Tu, L.; Han, Y.; Huang, L.; Kang, K.; Lao, K.U.; Poddar, P.; Park, C.; Muller, D.A.; DiStasio, R.A., Jr. Coherent, atomically thin transition-metal dichalcogenide superlattices with engineered strain. Science 2018, 359, 1131–1136. [Google Scholar] [CrossRef] [PubMed]
- Castellanos-Gomez, A.; Roldán, R.; Cappelluti, E.; Buscema, M.; Guinea, F.; Van Der Zant, H.S.; Steele, G.A. Local strain engineering in atomically thin MoS2. Nano Lett. 2013, 13, 5361–5366. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Contryman, A.W.; Qian, X.; Ardakani, S.M.; Gong, Y.; Wang, X.; Weisse, J.M.; Lee, C.H.; Zhao, J.; Ajayan, P.M. Optoelectronic crystal of artificial atoms in strain-textured molybdenum disulphide. Nat. Commun. 2015, 6, 7381. [Google Scholar] [CrossRef]
- Bae, S.; Kim, H.; Lee, Y.; Xu, X.; Park, J.-S.; Zheng, Y.; Balakrishnan, J.; Lei, T.; Ri Kim, H.; Song, Y.I. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat. Nanotechnol. 2010, 5, 574–578. [Google Scholar] [CrossRef] [PubMed]
- Jain, A.; Bharadwaj, P.; Heeg, S.; Parzefall, M.; Taniguchi, T.; Watanabe, K.; Novotny, L. Minimizing residues and strain in 2D materials transferred from PDMS. Nanotechnology 2018, 29, 265203. [Google Scholar] [CrossRef]
- Wang, X.; Fan, W.; Fan, Z.; Dai, W.; Zhu, K.; Hong, S.; Sun, Y.; Wu, J.; Liu, K. Substrate modified thermal stability of mono-and few-layer MoS2. Nanoscale 2018, 10, 3540–3546. [Google Scholar] [CrossRef]
- Kim, H.G.; Kihm, K.D.; Lee, W.; Lim, G.; Cheon, S.; Lee, W.; Pyun, K.R.; Ko, S.H.; Shin, S. Effect of graphene-substrate conformity on the in-plane thermal conductivity of supported graphene. Carbon 2017, 125, 39–48. [Google Scholar] [CrossRef]
- Fitch, J.; Bjorkman, C.; Lucovsky, G.; Pollak, F.; Yin, X. Intrinsic stress and stress gradients at the SiO2/Si interface in structures prepared by thermal oxidation of Si and subjected to rapid thermal annealing. J. Vac. Sci. Technol. B Microelectron. Process. Phenom. 1989, 7, 775–781. [Google Scholar] [CrossRef]
- EerNisse, E. Stress in thermal SiO2 during growth. Appl. Phys. Lett. 1979, 35, 8–10. [Google Scholar] [CrossRef]
- Park, S.; Song, J.; Kim, T.K.; Choi, K.H.; Hyeong, S.K.; Ahn, M.; Kim, H.R.; Bae, S.; Lee, S.K.; Hong, B.H. Photothermally Crumpled MoS2 Film as an Omnidirectionally Stretchable Platform. Small Methods 2022, 6, 2200116. [Google Scholar] [CrossRef]
- Serrano, J.R.; Cahill, D.G. Micron-scale buckling of SiO2 on Si. J. Appl. Phys. 2002, 92, 7606–7610. [Google Scholar] [CrossRef]
- Hobart, K.; Kub, F.; Fatemi, M.; Twigg, M.; Thompson, P.; Kuan, T.; Inoki, C. Compliant substrates: A comparative study of the relaxation mechanisms of strained films bonded to high and low viscosity oxides. J. Electron. Mater. 2000, 29, 897–900. [Google Scholar] [CrossRef]
- Hu, Y.; Zhang, F.; Titze, M.; Deng, B.; Li, H.; Cheng, G.J. Straining effects in MoS2 monolayer on nanostructured substrates: Temperature-dependent photoluminescence and exciton dynamics. Nanoscale 2018, 10, 5717–5724. [Google Scholar] [CrossRef]
- Li, H.; Zhang, Q.; Yap, C.C.R.; Tay, B.K.; Edwin, T.H.T.; Olivier, A.; Baillargeat, D. From bulk to monolayer MoS2: Evolution of Raman scattering. Adv. Funct. Mater. 2012, 22, 1385–1390. [Google Scholar] [CrossRef]
- Lee, J.-U.; Woo, S.; Park, J.; Park, H.C.; Son, Y.-W.; Cheong, H. Strain-shear coupling in bilayer MoS2. Nat. Commun. 2017, 8, 1370. [Google Scholar] [CrossRef]
- Kolhe, P.; Thorat, A.; Phatangare, A.; Jadhav, P.; Dalvi, S.; Dhole, S.; Dahiwale, S. Strain induced study on MoS2 thin films due to ion and gamma irradiation. J. Alloys Compd. 2022, 896, 162969. [Google Scholar] [CrossRef]
- Gan, Y.; Zhao, H. Chirality and vacancy effect on phonon dispersion of MoS2 with strain. Phys. Lett. A 2016, 380, 745–752. [Google Scholar] [CrossRef]
- Jiang, J.-W. Phonon bandgap engineering of strained monolayer MoS2. Nanoscale 2014, 6, 8326–8333. [Google Scholar] [CrossRef]
- Tornatzky, H.; Gillen, R.; Uchiyama, H.; Maultzsch, J. Phonon dispersion in MoS2. Phys. Rev. B 2019, 99, 144309. [Google Scholar] [CrossRef]
- Chang, C.-H.; Fan, X.; Lin, S.-H.; Kuo, J.-L. Orbital analysis of electronic structure and phonon dispersion in MoS2, MoSe2, WS2, and WSe2 monolayers under strain. Phys. Rev. B-Condens. Matter Mater. Phys. 2013, 88, 195420. [Google Scholar] [CrossRef]
- Mignuzzi, S.; Pollard, A.J.; Bonini, N.; Brennan, B.; Gilmore, I.S.; Pimenta, M.A.; Richards, D.; Roy, D. Effect of disorder on Raman scattering of single-layer MoS2. Phys. Rev. B 2015, 91, 195411. [Google Scholar] [CrossRef]
- Vandalon, V.; Sharma, A.; Perrotta, A.; Schrode, B.; Verheijen, M.A.; Bol, A.A. Polarized Raman spectroscopy to elucidate the texture of synthesized MoS2. Nanoscale 2019, 11, 22860–22870. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Cui, X.; Zhang, J.; Wang, K.; Shen, M.; Zeng, S.; Dayeh, S.A.; Feng, L.; Xiang, B. Lattice strain effects on the optical properties of MoS2 nanosheets. Sci. Rep. 2014, 4, 5649. [Google Scholar] [CrossRef] [PubMed]
- Miao, Y.-P.; Ma, F.; Huang, Y.-H.; Xu, K.-W. Strain effects on electronic states and lattice vibration of monolayer MoS2. Phys. E Low-Dimens. Syst. Nanostruct. 2015, 71, 1–6. [Google Scholar] [CrossRef]
- Li, T. Ideal strength and phonon instability in single-layer MoS2. Phys. Rev. B-Condens. Matter Mater. Phys. 2012, 85, 235407. [Google Scholar] [CrossRef]
- Bendavid, L.I.; Zhong, Y.; Che, Z.; Konuk, Y. Strain-engineering in two-dimensional transition metal dichalcogenide alloys. J. Appl. Phys. 2022, 132, 225303. [Google Scholar] [CrossRef]
- Peelaers, H.; Van de Walle, C.G. Effects of strain on band structure and effective masses in MoS2. Phys. Rev. B-Condens. Matter Mater. Phys. 2012, 86, 241401. [Google Scholar] [CrossRef]
- Phuc, H.V.; Hieu, N.N.; Hoi, B.D.; Hieu, N.V.; Thu, T.V.; Hung, N.M.; Ilyasov, V.V.; Poklonski, N.A.; Nguyen, C.V. Tuning the Electronic Properties, Effective mass and carrier mobility of MoS2 monolayer by strain engineering: First-principle calculations. J. Electron. Mater. 2018, 47, 730–736. [Google Scholar] [CrossRef]
- Nguyen, L.; Hashimoto, T.; Zakharov, D.N.; Stach, E.A.; Rooney, A.P.; Berkels, B.; Thompson, G.E.; Haigh, S.J.; Burnett, T.L. Atomic-scale insights into the oxidation of aluminum. ACS Appl. Mater. Interfaces 2018, 10, 2230–2235. [Google Scholar] [CrossRef]
- Kindsmüller, A.; Meledin, A.; Mayer, J.; Waser, R.; Wouters, D.J. On the role of the metal oxide/reactive electrode interface during the forming procedure of valence change ReRAM devices. Nanoscale 2019, 11, 18201–18208. [Google Scholar] [CrossRef]
- Kumar, R.; Kalaboukhov, A.; Weng, Y.-C.; Rathod, K.; Johansson, T.; Lindblad, A.; Kamalakar, M.V.; Sarkar, T. Vacancy-Engineered Nickel Ferrite Forming-Free Low-Voltage Resistive Switches for Neuromorphic Circuits. ACS Appl. Mater. Interfaces 2024, 16, 19225. [Google Scholar]
- Yen, T.J.; Chin, A.; Gritsenko, V. High performance all nonmetal SiNx resistive random access memory with strong process dependence. Sci. Rep. 2020, 10, 2807. [Google Scholar] [CrossRef] [PubMed]
- Kumari, C.; Varun, I.; Tiwari, S.P.; Dixit, A. Robust non-volatile bipolar resistive switching in sol-gel derived BiFeO3 thin films. Superlattices Microstruct. 2018, 120, 67–74. [Google Scholar] [CrossRef]
- Kwan, C.-P.; Street, M.; Mahmood, A.; Echtenkamp, W.; Randle, M.; He, K.; Nathawat, J.; Arabchigavkani, N.; Barut, B.; Yin, S. Space-charge limited conduction in epitaxial chromia films grown on elemental and oxide-based metallic substrates. AIP Adv. 2019, 9, 055018. [Google Scholar] [CrossRef]
- Hosseini, M.; Elahi, M.; Pourfath, M.; Esseni, D. Strain induced mobility modulation in single-layer MoS2. J. Phys. D Appl. Phys. 2015, 48, 375104. [Google Scholar] [CrossRef]
- Khan, M.; Tripathi, M.N.; Tripathi, A. Strain-induced structural, elastic, and electronic properties of 1L-MoS2. J. Mater. Res. 2022, 37, 3340–3351. [Google Scholar] [CrossRef]
- Al-Hamadany, R.; Goss, J.; Briddon, P.; Mojarad, S.A.; O’Neill, A.; Rayson, M. Impact of tensile strain on the oxygen vacancy migration in SrTiO3: Density functional theory calculations. J. Appl. Phys. 2013, 113, 224108. [Google Scholar] [CrossRef]
- Kim, K.; Siegel, D.J. Correlating lattice distortions, ion migration barriers, and stability in solid electrolytes. J. Mater. Chem. A 2019, 7, 3216–3227. [Google Scholar] [CrossRef]
- Yan, H.; Zhuang, P.; Li, B.; Ye, T.; Zhou, C.; Chen, Y.; Li, T.; Cai, W.; Yu, D.; Liu, J.; et al. Metal Penetration and Grain Boundary in MoS2 Memristors. Adv. Electron. Mater. 2024, 2400264. [Google Scholar] [CrossRef]
- Choudhary, S.; Soni, M.; Sharma, S.K. Low voltage & controlled switching of MoS2-GO resistive layers based ReRAM for non-volatile memory applications. Semicond. Sci. Technol. 2019, 34, 085009. [Google Scholar]
- Lei, X.; Zhu, X.; Wang, H.; Zhang, H.; Zhai, C.; Wang, S.; Yan, J.; Zhao, W. Nonvolatile and volatile resistive switching characteristics in MoS2 thin film for RRAM application. J. Alloys Compd. 2023, 969, 172443. [Google Scholar] [CrossRef]
- Krishnaprasad, A.; Dev, D.; Shawkat, M.S.; Martinez-Martinez, R.; Islam, M.M.; Chung, H.-S.; Bae, T.-S.; Jung, Y.; Roy, T. Graphene/MoS2/SiOx memristive synapses for linear weight update. Npj 2d Mater. Appl. 2023, 7, 22. [Google Scholar] [CrossRef]
- Kim, M.; Ge, R.; Wu, X.; Lan, X.; Tice, J.; Lee, J.C.; Akinwande, D. Zero-static power radio-frequency switches based on MoS2 atomristors. Nat. Commun. 2018, 9, 2524. [Google Scholar] [CrossRef] [PubMed]
- Belete, M.; Kataria, S.; Turfanda, A.; Vaziri, S.; Wahlbrink, T.; Engström, O.; Lemme, M.C. Nonvolatile resistive switching in nanocrystalline molybdenum disulfide with ion-based plasticity. Adv. Electron. Mater. 2020, 6, 1900892. [Google Scholar] [CrossRef]
- Bhattacharjee, S.; Caruso, E.; McEvoy, N.; Ó Coileáin, C.; O’Neill, K.; Ansari, L.; Duesberg, G.S.; Nagle, R.; Cherkaoui, K.; Gity, F. Insights into multilevel resistive switching in monolayer MoS2. ACS Appl. Mater. Interfaces 2020, 12, 6022–6029. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jang, H.; Hyeong, S.-K.; Park, B.; Kim, T.-W.; Bae, S.; Jang, S.K.; Kim, Y.; Lee, S.-K. Permanent Strain Engineering of Molybdenum Disulfide Using Laser-Driven Stressors for Energy-Efficient Resistive Switching Memory Devices. Nanomaterials 2024, 14, 1872. https://doi.org/10.3390/nano14231872
Jang H, Hyeong S-K, Park B, Kim T-W, Bae S, Jang SK, Kim Y, Lee S-K. Permanent Strain Engineering of Molybdenum Disulfide Using Laser-Driven Stressors for Energy-Efficient Resistive Switching Memory Devices. Nanomaterials. 2024; 14(23):1872. https://doi.org/10.3390/nano14231872
Chicago/Turabian StyleJang, Heeyoon, Seok-Ki Hyeong, Byeongjin Park, Tae-Wook Kim, Sukang Bae, Sung Kyu Jang, Yonghun Kim, and Seoung-Ki Lee. 2024. "Permanent Strain Engineering of Molybdenum Disulfide Using Laser-Driven Stressors for Energy-Efficient Resistive Switching Memory Devices" Nanomaterials 14, no. 23: 1872. https://doi.org/10.3390/nano14231872
APA StyleJang, H., Hyeong, S. -K., Park, B., Kim, T. -W., Bae, S., Jang, S. K., Kim, Y., & Lee, S. -K. (2024). Permanent Strain Engineering of Molybdenum Disulfide Using Laser-Driven Stressors for Energy-Efficient Resistive Switching Memory Devices. Nanomaterials, 14(23), 1872. https://doi.org/10.3390/nano14231872