TCAD Simulation of Resistive Switching Devices: Impact of ReRAM Configuration on Neuromorphic Computing
Abstract
:1. Introduction
2. ReRAM Features
2.1. ReRAM Device Physics
2.2. ReRAM Materials
3. TCAD Modeling
4. NeuroSim Simulation
5. Result and Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Silver, D.; Huang, A.; Maddison, C.J.; Guez, A.; Sifre, L.; van den Driessche, G.; Schrittwieser, J.; Antonoglou, I.; Panneershelvam, V.; Lanctot, M.; et al. Mastering the game of Go with deep neural networks and tree search. Nature 2016, 529, 484–489. [Google Scholar] [CrossRef]
- Graves, A.; Wayne, G.; Reynolds, M.; Harley, T.; Danihelka, I.; Grabska-Barwińska, A.; Colmenarejo, S.G.; Grefenstette, E.; Ramalho, T.; Agapiou, J.; et al. Hybrid computing using a neural network with dynamic external memory. Nature 2016, 538, 471–476. [Google Scholar] [CrossRef]
- Ielmini, D.; Wong, H.-S.P. In-memory computing with resistive switching devices. Nat. Electron. 2018, 1, 333–343. [Google Scholar] [CrossRef]
- Merces, L.; Ferro, L.M.M.; Thomas, A.; Karnaushenko, D.D.; Luo, Y.; Egunov, A.I.; Zhang, W.; Bandari, V.K.; Lee, Y.; McCaskill, J.S.; et al. Bio-inspired dynamically morphing microelectronics toward high-density energy applications and intelligent biomedical Implants. Adv. Mater. 2024, 36, e2313327. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Chen, X.; Zhao, C.; Kong, Y.; Lin, B.; Wu, Y.; Bi, Z.; Xuan, Z.; Li, T.; Li, Y.; et al. An organic electrochemical transistor for multi-modal sensing, memory and processing. Nat. Electron. 2023, 6, 281–291. [Google Scholar] [CrossRef]
- Najafabadi, M.M.; Villanustre, F.; Khoshgoftaar, T.M.; Seliya, N.; Wald, R.; Muharemagic, E. Deep learning applications and challenges in big data analytics. J. Big Data 2015, 2, 1. [Google Scholar] [CrossRef]
- Peteiro-Barral, D.; Guijarro-Berdiñas, B. A survey of methods for distributed machine learning. Prog. Artif. Intell. 2012, 2, 1–11. [Google Scholar] [CrossRef]
- Maass, W.; Markram, H. On the computational power of circuits of spiking neurons. J. Comput. Syst. Sci. 2004, 69, 593–616. [Google Scholar] [CrossRef]
- Gambuzza, L.V.; Frasca, M.; Fortuna, L.; Ntinas, V.; Vourkas, I.; Sirakoulis, G.C. Memristor crossbar for adaptive synchronization. IEEE Trans. Circuits Syst. I Regul. Pap. 2017, 64, 2124–2133. [Google Scholar] [CrossRef]
- Ding, G.; Li, H.; Zhao, J.; Zhou, K.; Zhai, Y.; Lv, Z.; Zhang, M.; Yan, Y.; Han, S.-T.; Zhou, Y. Nanomaterials for flexible neuromorphics. Chem. Rev. 2024. [Google Scholar] [CrossRef]
- Merces, L.; Ferro, L.M.M.; Nawaz, A.; Sonar, P. Advanced neuromorphic applications enabled by synaptic ion-gating vertical transistors. Adv. Sci. 2024, 11, e2305611. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Huang, A.; Hu, Q.; Xiao, Z.; Chu, P.K. Neuromorphic computing with memristor crossbar. Phys. Status Solidi (A) 2018, 215, 1700875. [Google Scholar] [CrossRef]
- Choi, B.J.; Torrezan, A.C.; Strachan, J.P.; Kotula, P.G.; Lohn, A.J.; Marinella, M.J.; Li, Z.; Williams, R.S.; Yang, J.J. High-speed and low-energy nitride memristors. Adv. Funct. Mater. 2016, 26, 5290–5296. [Google Scholar] [CrossRef]
- Chua, L. Memristor-the missing circuit element. IEEE Trans. Circuit Theory 1971, 18, 507–519. [Google Scholar] [CrossRef]
- Wang, H.; Yan, X. Overview of resistive random access memory (RRAM): Materials, filament mechanisms, performance optimization, and prospects. Phys. Status Solidi (RRL) 2019, 13, 1900073. [Google Scholar] [CrossRef]
- Younis, A.; Li, S. Microscopic investigations of switching phenomenon in memristive systems: A mini review. RSC Adv. 2018, 8, 28763–28774. [Google Scholar] [CrossRef]
- Dong, X.; Jouppi, N.P.; Xie, Y. PCRAMsim: System-level performance, energy, and area modeling for phase-change RAM. In Proceedings of the 2009 International Conference on Computer-Aided Design, San Jose, CA, USA, 26–29 November 2009; pp. 269–275. [Google Scholar] [CrossRef]
- Li, Y.; Wang, Z.; Midya, R.; Xia, Q.; Yang, J.J. Review of memristor devices in neuromorphic computing: Materials sciences and device challenges. J. Phys. D Appl. Phys. 2018, 51, 503002. [Google Scholar] [CrossRef]
- Yang, Y.; Lu, W. Nanoscale resistive switching devices: Mechanisms and modeling. Nanoscale 2013, 5, 10076. [Google Scholar] [CrossRef]
- Ishiwara, H. FeFET and ferroelectric random access memories. In Multifunctional Oxide Heterostructures; Oxford University Press: Oxford, UK, 2012; pp. 340–363. [Google Scholar] [CrossRef]
- Garbin, D.; Vianello, E.; Bichler, O.; Rafhay, Q.; Gamrat, C.; Ghibaudo, G.; DeSalvo, B.; Perniola, L. HfO2-based OxRAM devices as synapses for convolutional neural networks. IEEE Trans. Electron Devices 2015, 62, 2494–2501. [Google Scholar] [CrossRef]
- Gao, B.; Bi, Y.; Chen, H.-Y.; Liu, R.; Huang, P.; Chen, B.; Liu, L.; Liu, X.; Yu, S.; Wong, H.-S.P.; et al. Ultra-low-energy three-dimensional oxide-based electronic synapses for implementation of robust high-accuracy neuromorphic computation systems. ACS Nano 2014, 8, 6998–7004. [Google Scholar] [CrossRef]
- Liu, G.; Li, Q.; Shi, W.; Liu, Y.; Liu, K.; Yang, X.; Shao, M.; Guo, A.; Huang, X.; Zhang, F.; et al. Ultralow-power and multisensory artificial synapse based on electrolyte-gated vertical organic transistors. Adv. Funct. Mater. 2022, 32, 2200959. [Google Scholar] [CrossRef]
- Hong, X.; Loy, D.J.; Dananjaya, P.A.; Tan, F.; Ng, C.; Lew, W. Oxide-based RRAM materials for neuromorphic computing. J. Mater. Sci. 2018, 53, 8720–8746. [Google Scholar] [CrossRef]
- Vianello, E.; Thomas, O.; Molas, G.; Turkyilmaz, O.; Jovanovic, N.; Garbin, D.; Palma, G.; Alayan, M.; Nguyen, C.; Coignus, J.; et al. Resistive memories for ultra-low-power embedded computing design. In Proceedings of the 2014 IEEE International Electron Devices Meeting, San Francisco, CA, USA, 15–17 December 2014; Volume 40, pp. 1–6. [Google Scholar] [CrossRef]
- Chen, P.-Y.; Peng, X.; Yu, S. NeuroSim+: An integrated device-to-algorithm framework for benchmarking synaptic devices and array architectures. In Proceedings of the 2017 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 2–6 December 2017. [Google Scholar] [CrossRef]
- Brivio, S.; Tallarida, G.; Cianci, E.; Spiga, S. Formation and disruption of conductive filaments in a HfO2/TiN structure. Nanotechnology 2014, 25, 385705. [Google Scholar] [CrossRef] [PubMed]
- Lanza, M. A review on resistive switching in high-k dielectrics: A nanoscale point of view using conductive atomic force microscope. Materials 2014, 7, 2155–2182. [Google Scholar] [CrossRef]
- Ielmini, D. Modeling the universal set/reset characteristics of bipolar RRAM by field- and temperature-driven filament growth. IEEE Trans. Electron Devices 2011, 58, 4309–4317. [Google Scholar] [CrossRef]
- Brivio, S.; Frascaroli, J.; Spiga, S. Role of metal-oxide interfaces in the multiple resistance switching regimes of Pt/HfO2/TiN devices. Appl. Phys. Lett. 2015, 107, 023504. [Google Scholar] [CrossRef]
- Yu, S.; Wong, H.-S.P. A phenomenological model for the reset mechanism of metal oxide RRAM. IEEE Electron Device Lett. 2010, 31, 1455–1457. [Google Scholar] [CrossRef]
- Jiang, R.; Han, Z.; Du, X. Reliability/uniformity improvement induced by an ultrathin TiO2 insertion in Ti/HfO2/Pt resistive switching memories. Microelectron. Reliab. 2016, 63, 37–41. [Google Scholar] [CrossRef]
- Nakajima, R.; Azuma, A.; Yoshida, H.; Shimizu, T.; Ito, T.; Shingubara, S. Hf layer thickness dependence of resistive switching characteristics of Ti/Hf/HfO2/Au resistive random access memory device. Jpn. J. Appl. Phys. 2018, 57, 06HD06. [Google Scholar] [CrossRef]
- Tsunoda, K.; Kinoshita, K.; Noshiro, H.; Yamazaki, Y.; Iizuka, T.; Ito, Y.; Takahashi, A.; Okano, A.; Sato, Y.; Fukano, T.; et al. Low power and high speed switching of Ti-doped NiO ReRAM under the unipolar voltage source of less than 3 V. In Proceedings of the 2007 IEEE International Electron Devices Meeting, Washington, DC, USA, 10–12 December 2007; pp. 767–770. [Google Scholar] [CrossRef]
- Chen, Y.Y.; Pourtois, G.; Clima, S.; Govoreanu, B.; Goux, L.; Fantini, A.; Degreave, R.; Groeseneken, G.; Wouters, D.; Jurczak, M. Hf Cap Thickness Dependence in Bipolar-Switching TiN\HfO2\Hf\TiN RRAM Device. ECS Trans. 2012, 50, 3. [Google Scholar] [CrossRef]
- De Stefano, F.; Houssa, M.; Afanas’ev, V.V.; Kittl, J.A.; Jurczak, M.; Stesmans, A. Nature of the filament formed in HfO2-based resistive random access memory. Thin Solid Films 2013, 533, 15–18. [Google Scholar] [CrossRef]
- Zhang, W.; Kong, J.-Z.; Cao, Z.-Y.; Li, A.-D.; Wang, L.-G.; Zhu, L.; Li, X.; Cao, Y.-Q.; Wu, D. Bipolar resistive switching characteristics of HfO2/TiO2/HfO2 trilayer-structure RRAM devices on Pt and TiN-coated substrates fabricated by atomic layer deposition. Nanoscale Res. Lett. 2017, 12, 393. [Google Scholar] [CrossRef] [PubMed]
- Vinuesa, G.; Ossorio, O.; García, H.; Sahelices, B.; Castán, H.; Dueñas, S.; Kull, M.; Tarre, A.; Jogiaas, T.; Tamm, A.; et al. Effective control of filament efficiency by means of spacer HfAlOx layers and growth temperature in HfO2 based ReRAM devices. Solid-State Electron. 2021, 183, 108085. [Google Scholar] [CrossRef]
- Alayan, M.; Vianello, E.; Larcher, L.; Padovani, A.; Levisse, A.; Castellani, N.; Charpin, C.; Bernasconi, S.; Molas, G.; Portal, J.-M.; et al. Self-rectifying behavior and analog switching under identical pulses using tri-layer RRAM crossbar array for neuromorphic systems. In Proceedings of the 2017 IEEE International Memory Workshop (IMW), Monterey, CA, USA, 14–17 May 2017; pp. 1–4. [Google Scholar] [CrossRef]
- Guan, X.; Yu, S.; Wong, H.-S.P. On the switching parameter variation of metal-oxide RRAM—Part I: Physical modeling and simulation methodology. IEEE Trans. Electron Devices 2012, 59, 1172–1182. [Google Scholar] [CrossRef]
- Russo, U.; Ielmini, D.; Cagli, C.; Lacaita, A.L. Self-accelerated thermal dissolution model for reset programming in unipolar resistive-switching memory (RRAM) devices. IEEE Trans. Electron Devices 2009, 56, 193–200. [Google Scholar] [CrossRef]
- Synopsys. Available online: https://solvnet.synopsys.com (accessed on 15 August 2024).
- Azadmanjiri, J.; Berndt, C.C.; Wang, J.; Kapoor, A.; Srivastava, V.K.; Wen, C. A review on hybrid nanolaminate materials synthesized by deposition techniques for energy storage applications. J. Mater. Chem. A 2014, 2, 3695–3708. [Google Scholar] [CrossRef]
- Dominguez, O.; McGinnity, T.L.; Roeder, R.K.; Hoffman, A.J. Optical characterization of polar HfO2 nanoparticles in the mid- and far-infrared. Appl. Phys. Lett. 2017, 111, 011101. [Google Scholar] [CrossRef]
- Taha, T.A. Optical properties of PVC/Al2O3 nanocomposite films. Polym. Bull. 2018, 76, 903–918. [Google Scholar] [CrossRef]
- Fadida, S.; Eizenberg, M.; Nyns, L.; Van Elshocht, S.; Caymax, M. Band alignment of Hf–Zr oxides on Al2O3/GeO2/Ge stacks. Microelectron. Eng. 2011, 88, 1557–1559. [Google Scholar] [CrossRef]
- Filatova, E.O.; Konashuk, A.S. Interpretation of the changing the band gap of Al2O3 depending on its crystalline form: Connection with different local symmetries. J. Phys. Chem. C 2015, 119, 20755–20761. [Google Scholar] [CrossRef]
- Sarkar, B.; Lee, B.; Misra, V. Implications of lower zero-field activation energy of dielectric in Al2O3/HfO2 bi-layer dielectric RRAM Forming Process. ECS Trans. 2014, 64, 43–48. [Google Scholar] [CrossRef]
- Yu, S.; Wu, Y.; Chai, Y.; Provine, J.; Wong, H.-S.P. Characterization of switching parameters and multilevel capability in HfOx/AlOx Bi-layer RRAM devices. In Proceedings of the 2011 International Symposium on VLSI Technology, Systems and Applications, Hsinchu, Taiwan, 25–27 April 2011; pp. 1–2. [Google Scholar] [CrossRef]
- Kim, W. Effect of inserting Al2O3 layer and device structure in HfO2-based ReRAM for low power operation. In Proceedings of the 2012 4th IEEE International Memory Workshop, Milan, Italy, 20–23 May 2012; pp. 1–4. [Google Scholar] [CrossRef]
- Mahata, C.; Kang, M.; Kim, S. Multi-level analog resistive switching characteristics in tri-Layer HfO2/Al2O3/HfO2 based memristor on ITO electrode. Nanomaterials 2020, 10, 2069. [Google Scholar] [CrossRef] [PubMed]
- Zhao, M.; Gao, B.; Tang, J.; Qian, H.; Wu, H. Reliability of analog resistive switching memory for neuromorphic computing. Appl. Phys. Rev. 2020, 7, 011301. [Google Scholar] [CrossRef]
Physical Event | Keywords | Relevant Equation |
---|---|---|
Diffusion | Diffusion | |
Bulk generation or recombination | Generation, Recombination | |
Interface generation or recombination | Generation, Recombination | |
Filament growth or recession | Filament growth, Filament recession |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, S.; Lee, J. TCAD Simulation of Resistive Switching Devices: Impact of ReRAM Configuration on Neuromorphic Computing. Nanomaterials 2024, 14, 1864. https://doi.org/10.3390/nano14231864
Kim S, Lee J. TCAD Simulation of Resistive Switching Devices: Impact of ReRAM Configuration on Neuromorphic Computing. Nanomaterials. 2024; 14(23):1864. https://doi.org/10.3390/nano14231864
Chicago/Turabian StyleKim, Seonggyeom, and Jonghwan Lee. 2024. "TCAD Simulation of Resistive Switching Devices: Impact of ReRAM Configuration on Neuromorphic Computing" Nanomaterials 14, no. 23: 1864. https://doi.org/10.3390/nano14231864
APA StyleKim, S., & Lee, J. (2024). TCAD Simulation of Resistive Switching Devices: Impact of ReRAM Configuration on Neuromorphic Computing. Nanomaterials, 14(23), 1864. https://doi.org/10.3390/nano14231864