Thin Films of BaM Hexaferrite with an Inclined Orientation of the Easy Magnetization Axis: Crystal Structure and Magnetic Properties
Abstract
:1. Introduction
- (1)
- Does film growth on an already formed crystal structure of BaM hexaferrite lead to the formation of this structure throughout the volume without additional annealing?
- (2)
- How does the value of film thicknesses affect the magnetic properties of the structure obtained using the two-step protocol?
- (3)
- Is it possible to increase the film thickness whilst keeping the rectangular shape of the hysteresis loops?
- -
- to grow by using the LMBE method epitaxial BaM films on the anisotropic (1–102) surface of Al2O3;
- -
- to check whether the expected crystalline anisotropy of the film will result in an incline from the surface normal direction of the remanent magnetization which is attractive for a number of applications;
- -
- to explore possibility of application of two- or multistage growth protocol to improve crystalline and magnetic properties of thicker BaM hexaferrite films.
2. Materials and Methods
3. Results and Discussion
3.1. Surface Morphology
3.2. RHEED Analysis
3.3. XRD Analysis
3.3.1. Powder XRD
3.3.2. Three-Dimensional XRD Reciprocal Space Mapping
3.4. Magnetic Properties
3.4.1. BaFe12O19/Al2O3 (1–102) (R-Cut) Heterostructures
3.4.2. Two-Stage Growth Protocol (Al2O3 (0001) (C-Cut) Substrates
- (1)
- The growth of the second layer on a well-formed structure of BaM hexaferrite without subsequent annealing does not lead to the appearance of a hexaferrite crystal structure of the upper layer.
- (2)
- The growth of a thick layer on an annealed thin layer of BaM hexaferrite is accompanied after annealing by the appearance of a complex hysteresis loop, in which the peculiarities of the hysteresis loops of both the thin and thick layers are visible.
- (3)
- Growing relatively thin films (thickness h = 50 nm) using a two-stage protocol is not accompanied by the deterioration of the magnetic hysteresis loops. This suggests that growth using a multi-stage protocol will allow obtaining thick, high-quality films with narrow rectangular loops.
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Enerdata, Grenoble, France. Available online: https://www.enerdata.net/publications/executive-briefing/between-10-and-20-electricity-consumption-ict-sector-2030.html (accessed on 25 October 2024).
- Kruglyak, V.V.; Demokritov, S.O.; Grundler, D. Magnonics. J. Phys. D. Appl. Phys. 2010, 43, 264001. [Google Scholar] [CrossRef]
- Grundler, D. Nanomagnonics. J. Phys. D. Appl. Phys. 2016, 49, 391002. [Google Scholar] [CrossRef]
- Nikitov, S.A.; Kalyabin, D.V.; Lisenkov, I.V.; Slavin, A.N.; Barabanenkov, Y.N.; Osokin, S.A.; Sadovnikov, A.V.; Beginin, E.N.; Morozova, M.A.; Sharaevsky, Y.P.; et al. Magnonics: A new research area in spintronics and spin wave electronic. Phys. Uspeki. 2015, 58, 1002–1028. [Google Scholar] [CrossRef]
- Serga, A.A.; Chumak, A.V.; Hillebrands, B. YIG magnonics. J. Phys. D. Appl. Phys. 2010, 43, 264002. [Google Scholar] [CrossRef]
- Onbasli, M.C.; Kehlberger, A.; Kim, D.H.; Jakob, G.; Kläui, M.; Chumak, A.V.; Hillebrands, B.; Ross, C.A. Pulsed laser deposition of epitaxial yttrium iron garnet films with low Gilbert damping and bulk-like magnetization. APL Mater. 2014, 2, 106102. [Google Scholar] [CrossRef]
- Sokolov, N.S.; Fedorov, V.V.; Korovin, A.M.; Suturin, S.M.; Baranov, D.A.; Gastev, S.V.; Krichevtsov, B.B.; Maksimova, K.Y.; Grunin, A.I.; Bursian, V.E.; et al. Thin yttrium iron garnet films grown by pulsed laser deposition: Crystal structure, static, and dynamic magnetic properties. J. Appl. Phys. 2016, 119, 023903. [Google Scholar] [CrossRef]
- Yoshimoto, T.; Goto, T.; Shimada, K.; Iwamoto, B.; Nakamura, Y.; Uchida, H.; Ross, C.A.; Inoue, M. Static and Dynamic Magnetic Properties of Single-Crystalline Yttrium Iron Garnet Films Epitaxially Grown on Three Garnet Substrates. Adv. Electron. Mater. 2018, 4, 1800106. [Google Scholar] [CrossRef]
- Rana, G.; Dhiman, P.; Kumar, A.; Vo, D.-V.N.; Sharma, G.; Sharma, S.; Naushad, M. Recent advances on nickel nano-ferrite: A review on processing techniques, properties and diverse applications. Chem. Eng. Res. Des. 2021, 175, 182–208. [Google Scholar] [CrossRef]
- Hao, A.; Ning, X. Recent Advances in Spinel Ferrite-Based Thin Films: Synthesis, Performances, Applications, and Beyond. Front. Mater. 2021, 8, 718869. [Google Scholar] [CrossRef]
- Dixit, G.; Singh, J.P.; Srivastava, R.C.; Agrawal, H.M.; Chaudhary, R.J. Structural, magnetic and optical studies of nickel ferrite thin films. Adv. Mat. Lett. 2012, 3, 21–28. [Google Scholar] [CrossRef]
- Liu, Y.; Zhou, P.; Regmi, S.; Bidthanapally, R.; Popov, M.; Zhang, J.; Zhang, W.; Michael, R.; Zhang, T.; Gupta, A.; et al. Strain induced anisotropy in liquid phase epitaxy grown nickel ferrite on magnesium gallate substrates. Sci. Rep. 2022, 12, 7052. [Google Scholar] [CrossRef] [PubMed]
- Krichevtsov, B.B.; Suturin, S.M.; Korovin, A.M.; Kaveev, A.K.; Bursian, V.E.; Cuňado, J.L.F.; Sokolov, N.S. Diffused magnetic transitions in NiFe2O4/SrTiO3(001) epitaxial heterostructures. J. Magn. Magn. Mater. 2022, 562, 169754. [Google Scholar] [CrossRef]
- Sharma, P.; Rocha, R.A.; Medeiros, S.N.; Hallouche, B.; Paesano, A., Jr. Structural and magnetic studies on mechanosynthesized BaFe12–xMnxO19. J. Magn. Magn. Mater. 2007, 316, 29–33. [Google Scholar] [CrossRef]
- Harris, V.G. Modern Microwave Ferrites. IEEE Trans. Magn. 2012, 48, 1075–1104. [Google Scholar] [CrossRef]
- Harris, V.G.; Chen, Z.; Chen, Y.; Yoon, S.D.; Sakai, T.; Gieler, A.; Yang, A.F.; He, Y.; Ziemer, K.S.; Sun, N.X.; et al. Ba-hexaferrite films for next generation microwave devices, invited. J. Appl. Phys. 2006, 99, 08M911. [Google Scholar] [CrossRef]
- Pullar, P.C. Hexagonal ferrites: A review of the synthesis, properties and applications of hexaferrite ceramics. Prog. Mater. Sci. 2012, 57, 1191–1334. [Google Scholar] [CrossRef]
- Singh, V.P.; Jasrotia, R.; Kumar, R.; Raizada, P.; Thakur, S.; Batoo, K.M.; Singh, M. A Current Review on the Synthesis and Magnetic Properties of M-Type Hexaferrites Material. World J. Condens. Matter Phys. 2018, 8, 36–61. [Google Scholar] [CrossRef]
- Tsuyoshi, K. Magnetoelectric Hexaferrites. Annu. Rev. Condens. Matter Phys. 2012, 3, 93–110. [Google Scholar] [CrossRef]
- Zahid, M.; Siddique, S.; Anum, R.; Shakir, M.F.; Nawab, Y.; Rehan, Z.A. M-Type Barium Hexaferrite-Based Nanocomposites for EMI Shielding Application: A Review. J. Supercond. Nov. Magn. 2021, 34, 1019–1045. [Google Scholar] [CrossRef]
- Mohammed, I.; Mohammed, J.; Kende, A.U.; Mohammed, W.A.; Aliero, Y.A.; Magawata, U.Z.; Umar, A.B.; Srivastava, A.K. Review on Y-type hexaferrite: Synthesis, characterization and properties. Appl. Surf. Sci. Adv. 2023, 16, 100416. [Google Scholar] [CrossRef]
- Mørch, M.I.; Ahlburg, J.V.; Saura-Múzquiz, M.; Eikeland, A.Z.; Cristensen, M. Structure and magnetic properties of W-type Hexaferrites. IUCrJ 2019, 6, 492–499. [Google Scholar] [CrossRef] [PubMed]
- Coey, J.M.D. Perspective and Prospects for Rare Earth Permanent Magnets. Engineering 2020, 6, 119–131. [Google Scholar] [CrossRef]
- Krichevtsov, B.; Korovin, A.; Suturin, S.; Levin, A.A.; Lobov, I.; Telegin, A.; Badalyan, A.; Sakharov, V.; Serenkov, I.; Dorogov, M.; et al. Structural, Magnetic, and Magneto-Optical Properties of Thin Films of BaM Hexaferrite Grown by Laser Molecular Beam Epitaxy. Materials 2023, 16, 4417. [Google Scholar] [CrossRef] [PubMed]
- Tsirelson, V.G.; Antipin, M.Y.; Gerr, R.G.; Ozerov, R.P.; Struchkov, Y.T. Ruby structure peculiarities derived from X-ray data. Localization of chromium atoms and electron deformation density. Phys. Status Solidi A 1985, 87, 425. [Google Scholar] [CrossRef]
- Hylton, T.L.; Parker, M.A.; Coffey, K.R.; Howard, J.K. Properties of epitaxial Ba hexaferrite thin films on A, R, and C plane oriented sapphire substrates. J. Appl. Phys. 1993, 73, 6257. [Google Scholar] [CrossRef]
- Yoon, S.D.; Vittoria, C. Microwave and magnetic properties of barium hexaferrite films having the c-axis in the film plane by liquid phase epitaxy technique. J. Appl. Phys. 2003, 93, 8597. [Google Scholar] [CrossRef]
- Zhang, X.; Meng, S.; Song, D.; Zhang, Y.; Yue, Z.; Harris, V.G. Epitaxially grown BaM hexaferrite films having uniaxial axis in the film plane for self-biased devices. Sci. Rep. 2017, 7, 44193. [Google Scholar] [CrossRef]
- Borisov, P.; Alaria, J.; Yang, T.; McMitchell, S.R.C.; Rosseinsky, M.J. Growth of M-type hexaferrite thin films with conical magnetic structure. Appl. Phys. Lett. 2013, 102, 032902. [Google Scholar] [CrossRef]
- Bruker AXS. Karlsruhe, Diffrac. Suite Eva Version 5.1.0.5; DIFFRAC.SUITE User Manual; Bruker AXS GmbH: Karlsruhe, Germany, 2019. [Google Scholar]
- Fawcett, T.G.; Kabekkodu, S.N.; Blanton, J.R.; Blanton, T.N. Chemical analysis by diffraction: The Powder Diffraction File™. Powder Diffr. 2017, 32, 63–71. [Google Scholar] [CrossRef]
- Langford, J.I.; Cernik, R.J.; Louer, D. The Breadth and Shape of Instrumental Line Profiles in High-Resolution Powder Diffraction. J. Appl. Crystallogr. 1991, 24, 913–919. [Google Scholar] [CrossRef]
- Rehani, B.R.; Joshi, P.B.; Lad, K.N.; Pratap, A. Crystallite size estimation of elemental and composite silver nano-powders using XRD principles. Indian. J. Pure Appl. Phys. 2006, 44, 157–161. [Google Scholar]
- Scherrer, P. Bestimmung der Grösse und der inneren Struktur von Kolloidteilchen mittels Röntgenstrahlen. Nachr. Königl. Ges. Wiss. Göttingen. 1918, 26, 98–100. (In German) [Google Scholar]
- Sharma, P.; Rocha, R.A.; de Medeiros, S.N.; Paesano, A., Jr.; Hallouche, B. Structural, Mössbauer and magnetic studies on Mn-substituted barium hexaferrites prepared by high energy ball milling. Hyperfine Interact. 2007, 175, 77–84. [Google Scholar] [CrossRef]
- Townes, W.D.; Fang, J.H.; Perrota, A.J. The crystal structure and refinement of ferrimagnetic barium ferrite, BaFe12019. Z. Kristallogr. 1967, 125, 437–449. [Google Scholar] [CrossRef]
- Routil, R.J.; Barham, D. Occurrence of Strontium-Iron Oxide SrFe12O19 in the Fe2O3-Na2O-SrSO4 System. Can. J. Chem. 1974, 52, 3235–3246. [Google Scholar] [CrossRef]
- Geiler, A.L.; Yoon, S.D.; Chen, Y.; Chinnasamy, C.N.; Chen, Z.; Geiler, M.; Harris, V.G.; Vittoria, C. BaFe12O19 thin films grown at the atomic scale from BaFe2O4 and α-Fe2O3 targets. Appl. Phys. Lett. 2007, 91, 162510. [Google Scholar] [CrossRef]
- Moore, P.B.; Gupta, P.K.S.; Page, Y.L. Crystal Structure of Magnetoplumbite. Am. Mineral. 1989, 74, 1186–1194. [Google Scholar]
- Ashima; Sanghi, S.; Agarwal, A.; Reetu. Rietveld refinement, electrical properties and magnetic characteristics of Ca-Sr substituted barium hexaferrites. J. Alloys Compd. 2012, 513, 436–444. [Google Scholar] [CrossRef]
- Shepherd, P.; Mallick, K.K.; Green, R.J. Magnetic and structural properties of M-type barium hexaferrite prepared by co-precipitation. J. Magn. Magn. Mater. 2006, 311, 683–692. [Google Scholar] [CrossRef]
- Vinnik, D.A.; Tarasova, A.U.; Zherebtsov, D.A.; Gudkova, S.A.; Galimov, D.M.; Zhivulin, V.E.; Trofimov, E.A.; Nemrava, S.; Perov, N.S.; Isaenko, L.I.; et al. Magnetic and Structural Properties of Barium Hexaferrite BaFe12O19 from Various Growth Techniques. Materials 2017, 10, 578. [Google Scholar] [CrossRef]
- Wong-Ng, W.; McMurdie, H.; Paretzkin, B.; Hubbard, C.; Dragoo, A. Standard X-Ray Diffraction Powder Patterns of Fourteen Ceramic Phases. Powder Diffr. 1988, 3, 249–254. [Google Scholar] [CrossRef]
- Murashko, M.N.; Chukanov, N.V.; Mukhanova, A.; Vapnik, E.; Britvin, S.N.; Polekhovsky, Y.S.; Ivakin, Y.D. Barioferrite BaFe12O19: A New Mineral Species of the Magnetoplumbite Group from the Haturim Formation in Israel. Geol. Ore Depos. 2011, 53, 558–563. [Google Scholar] [CrossRef]
- Kraus, W.; Nolze, G. POWDER CELL–A program for the representation and manipulation of crystal structures and calculation of the resulting X-ray powder patterns. J. Appl. Crystallogr. 1996, 29, 301–303. [Google Scholar] [CrossRef]
- Gómez, M.I.; Lucotti, G.; de Morán, J.A.; Aymonino, P.J.; Pagola, S.; Stephens, P.W.; Carbonio, R.E. Ab initio structure solution of BaFeO2.8–δ, a new polytype in the system BaFeOy (2.5 ≤ y ≤ 3.0) prepared from the oxidative thermal decomposition of BaFe((CN)5 NO)·3(H2O). J. Solid. State Chem. 2001, 160, 17–24. [Google Scholar] [CrossRef]
- Gil de Muro, I.; Insausti, M.; Lezama, L.; Rojo, T. Effect of the synthesis conditions on the magnetic and electrical properties of the BaFeO3–x oxide: A metamagnetic behavior. J. Solid. State Chem. 2005, 178, 1712–1719. [Google Scholar] [CrossRef]
- Winkler, R.; Ciria, M.; Ahmad, M.; Plank, H.; Marcuello, C. A Review of the Current State of Magnetic Force Microscopy to Unravel the Magnetic Properties of Nanomaterials Applied in Biological Systems and Future Directions for Quantum Technologies. Nanomaterials 2023, 13, 2585. [Google Scholar] [CrossRef] [PubMed]
- Gandhi, A.C.; Manjunatha, K.; Chan, T.-S.; Wu, S.Y. Structural and Superconducting Proximity Effect of SnPb Bimetallic Nanoaloys. Nanomaterials 2022, 12, 4323. [Google Scholar] [CrossRef]
- Krichevtsov, B.B.; Pavlov, V.V.; Pisarev, R.V.; Selitsky, A.G. Linear magnetoelectric effect in magnetic garnet thin films. Ferroelectrics 1994, 161, 65–71. [Google Scholar] [CrossRef]
# Sample Number | Film Thickness h, nm | Growth Temperature Tgr, °C | Oxygen Pressure p, mBar | Annealing Time τann, min; Annealing Temperature Tann, °C | Al2O3 Substrate | Number of Growth Experiment |
---|---|---|---|---|---|---|
1 | 50 ± 2 | 700 | 0.06 | 60; 1000 | (1–102) a | 2 |
2 | 20 ± 1 | 700 | 0.06 | 60; 1000 | (0001) | 1 |
3 | 150 (total thickness 20 + 150 = 170 ± 2) | 700 | 0.06 | 60; 1000 | (0001) | 1 |
4 | 50 | 700 | 0.06 | 30; 1000 | (0001) | 1 |
5 | 50 (total thickness 50 + 50 = 100 ± 3) | 700 | 0.06 | 30; 1000 | (0001) | 1 |
6 | 50 ± 2 | 700 | 0.05 b | 60; 1000 b | (0001) | 2 |
# Sample Number | Al2O3 Substrate Orientation | h, nm | Hc, kOe | Hsat, kOe | Mrem/Msat, % | Growth Protocol |
---|---|---|---|---|---|---|
1 a | (1–102) | 50 ± 2 | 5.4 | ~20 | ~50 | one-stage |
2 | (0001) | 20 ± 1 | 2.3 ± 0.1 | 3.9 ± 0.1 | 97 ± 1 | one-stage |
3 | (0001) | 170 ± 2 | 3.7 ± 0.1 | 11.4 ± 0.2 | 83 ± 2 | two-stage |
Loop 1 | (0001) | – | 2.3 ± 0.1 | 6.8 ± 0.2 | 97 ± 1 | – |
Loop 2 | (0001) | – | 7.9 ± 0.1 | 11.3± 0.1 | 72 ± 2 | – |
#8948B b from Ref. [24] | (0001) | 50 ± 2 | 2.1 ± 0.1 | 5.0 ± 0.2 | 98 ± 2 | one-stage |
#8963B from Ref. [24] | (0001) | 250 ± 3 | 3.5 ± 0.1 | 12.4 ± 0.2 | 94 ± 2 | one-stage |
#9001B b from Ref. [24] | (0001) | 500 ± 4 | 7.0 ± 0.2 | 17.4 ± 0.3 | 84 ± 2 | one-stage |
4 | (0001) | 50 ± 2 | 0.7 ± 0.1 | 1.8 ± 0.1 | 90 ± 2 | one-stage |
5 | (0001) | 100 ± 3 | 0.6 ± 0.1 | 1.8 ± 0.1 | 94 ± 2 | two-stage |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krichevtsov, B.; Korovin, A.; Fedorov, V.; Suturin, S.; Levin, A.A.; Telegin, A.; Balashova, E.; Sokolov, N. Thin Films of BaM Hexaferrite with an Inclined Orientation of the Easy Magnetization Axis: Crystal Structure and Magnetic Properties. Nanomaterials 2024, 14, 1883. https://doi.org/10.3390/nano14231883
Krichevtsov B, Korovin A, Fedorov V, Suturin S, Levin AA, Telegin A, Balashova E, Sokolov N. Thin Films of BaM Hexaferrite with an Inclined Orientation of the Easy Magnetization Axis: Crystal Structure and Magnetic Properties. Nanomaterials. 2024; 14(23):1883. https://doi.org/10.3390/nano14231883
Chicago/Turabian StyleKrichevtsov, Boris, Alexander Korovin, Vladimir Fedorov, Sergey Suturin, Aleksandr A. Levin, Andrey Telegin, Elena Balashova, and Nikolai Sokolov. 2024. "Thin Films of BaM Hexaferrite with an Inclined Orientation of the Easy Magnetization Axis: Crystal Structure and Magnetic Properties" Nanomaterials 14, no. 23: 1883. https://doi.org/10.3390/nano14231883
APA StyleKrichevtsov, B., Korovin, A., Fedorov, V., Suturin, S., Levin, A. A., Telegin, A., Balashova, E., & Sokolov, N. (2024). Thin Films of BaM Hexaferrite with an Inclined Orientation of the Easy Magnetization Axis: Crystal Structure and Magnetic Properties. Nanomaterials, 14(23), 1883. https://doi.org/10.3390/nano14231883