On the Stability of Electrohydrodynamic Jet Printing Using Poly(ethylene oxide) Solvent-Based Inks
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Ink Formulation
2.3. Printer Set-Up and Printing Protocol
2.4. Drop Size and Volume Computation
2.5. Fiber Characterization
2.6. Jet Speed and Flow Rate Determination
2.7. Jet Deviation from Its Default Jet Trajectory
3. Results and Discussion
3.1. Influence of the Polymer Molecular Weight
3.2. Stability of the Drop Size
3.3. Pulsating Jet Transient Regime
3.4. Unstable Default Jet Trajectory
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sun, D.; Chang, C.; Li, S.; Lin, L. Near-Field Electrospinning. Nano Lett. 2006, 6, 839–842. [Google Scholar] [CrossRef] [PubMed]
- Castellanos, A. Electrohydrodynamics, 1st ed.; Springer: Vienna, Austria, 1998. [Google Scholar]
- Martinez-Prieto, N.; Ehmann, K.; Cao, J. Near-field electrospinning on nonconductive substrates using AC fields. Procedia CIRP 2020, 93, 120–124. [Google Scholar] [CrossRef]
- Asmatulu, R.; Khan, W.S. Historical background of the electrospinning process. In Synthesis and Applications of Electrospun Nanofibers; Elsevier: Amsterdam, The Netherlands, 2019; pp. 17–39. [Google Scholar]
- Onses, M.S.; Sutanto, E.; Ferreira, P.M.; Alleyne, A.G.; Rogers, J.A. Mechanisms, Capabilities, and Applications of High-Resolution Electrohydrodynamic Jet Printing. Small 2015, 11, 4237–4266. [Google Scholar] [CrossRef] [PubMed]
- Grumezescu, A.M. Nanobiomaterials in Soft Tissue Engineering: Applications of Nanobiomaterials; Elsevier: Neptun, Romania, 2016. [Google Scholar]
- Reznik, S.N.; Zussman, E. Capillary-dominated electrified jets of a viscous leaky dielectric liquid. Phys. Rev. E 2010, 81, 026313. [Google Scholar] [CrossRef]
- Greenfeld, I.; Arinstein, A.; Fezzaa, K.; Rafailovich, M.H.; Zussman, E. Polymer dynamics in semidilute solution during electrospinning: A simple model and experimental observations. Phys. Rev. E 2011, 84, 041806. [Google Scholar] [CrossRef]
- Lyras, P.; Hubert, A.; Lyras, K.G. A conservative level set method for liquid-gas flows with application in liquid jet atomisation. Exp. Comput. Multiph. Flow 2023, 5, 67–83. [Google Scholar] [CrossRef]
- Mkhize, N.; Bhaskaran, H. Electrohydrodynamic Jet Printing: Introductory Concepts and Considerations. Small Sci. 2022, 2, 2100073. [Google Scholar] [CrossRef]
- Zheng, J.; Long, Y.-Z.; Sun, B.; Zhang, Z.-H.; Shao, F.; Zhang, H.-D.; Zhang, Z.-M.; Huang, J.-Y. Polymer nanofibers prepared by low-voltage near-field electrospinning. Chin. Phys. B 2012, 21, 48102. [Google Scholar] [CrossRef]
- Lo, W.C.; Chen, C.C.; Fuh, Y.K. 3D Stacked Near-Field Electrospun Nanoporous PVDF-TrFE Nanofibers as Self-Powered Smart Sensing in Gait Big Data Analytics. Adv. Mater. Technol. 2021, 6, 2000779. [Google Scholar] [CrossRef]
- George, D.; Garcia, A.; Pham, Q.; Perez, M.R.; Deng, J.; Nguyen, M.T.; Zhou, T.; Martínez-Chapa, S.O.; Won, Y.; Liu, C.; et al. Fabrication of patterned graphitized carbon wires using low voltage near-field electrospinning, pyrolysis, electrodeposition, and chemical vapor deposition. Microsyst. Nanoeng. 2020, 6, 7. [Google Scholar] [CrossRef]
- Luo, J.; Zhang, L.; Wu, T.; Song, H.; Tang, C. Flexible piezoelectric pressure sensor with high sensitivity for electronic skin using near-field electrohydrodynamic direct-writing method. Extrem. Mech. Lett. 2021, 48, 101279. [Google Scholar] [CrossRef]
- Bi, S.; Wang, R.; Han, X.; Wang, Y.; Tan, D.; Shi, B.; Jiang, C.; He, Z.; Asare-Yeboah, K. Recent Progress in Electrohydrodynamic Jet Printing for Printed Electronics: From 0D to 3D Materials. Coatings 2023, 13, 1150. [Google Scholar] [CrossRef]
- Zeng, G.; Sun, Q.; Horta, S.; Wang, S.; Lu, X.; Zhang, C.Y.; Li, J.; Li, J.; Ci, L.; Tian, Y.; et al. A Layered Bi2Te3@PPy Cathode for Aqueous Zinc-Ion Batteries: Mechanism and Application in Printed Flexible Batteries. Adv. Mater. 2024, 36, 2305128. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Zeng, G.; Sun, Q.; Feng, Y.; Wang, X.; Ma, X.; Li, J.; Zhang, H.; Wen, J.; Feng, J.; et al. Flexible Electronic Systems via Electrohydrodynamic Jet Printing: A MnSe@rGO Cathode for Aqueous Zinc-Ion Batteries. ACS Nano 2023, 17, 13256–13268. [Google Scholar] [CrossRef] [PubMed]
- Qiu, Z.; Zhu, H.; Wang, Y.; Kasimu, A.; Li, D.; He, J. Functionalized alginate-based bioinks for microscale electrohydrodynamic bioprinting of living tissue constructs with improved cellular spreading and alignment. Bio-Des. Manuf. 2023, 6, 136–149. [Google Scholar] [CrossRef]
- Hassan, U.; Sharipov, M.; Ryu, W. Electrohydrodynamic (EHD) printing of nanomaterial composite inks and their applications. Micro Nano Syst. Lett. 2024, 12, 2. [Google Scholar] [CrossRef]
- Liashenko, I.; Rosell-Llompart, J.; Cabot, A. Ultrafast 3D printing with submicrometer features using electrostatic jet deflection. Nat. Commun. 2020, 11, 753. [Google Scholar] [CrossRef]
- Liashenko, I.; Ramon, A.; Cabot, A.; Rosell-Llompart, J. Ultrafast electrohydrodynamic 3D printing with in situ jet speed monitoring. Mater. Des. 2021, 206, 109791. [Google Scholar] [CrossRef]
- Liashenko, I.; Ramon, A.; Rosell-Llompart, J.; Cabot, A. Patterning with Aligned Electrospun Nanofibers by Electrostatic Deflection of Fast Jets. Adv. Eng. Mater. 2022, 24, 2101804. [Google Scholar] [CrossRef]
- Chen, J.; Wu, T.; Zhang, L.; Song, H.; Tang, C.; Yan, X. Flexible conductive patterns using electrohydrodynamic jet printing method based on high-voltage electrostatic focusing lens. Int. J. Adv. Manuf. Technol. 2023, 127, 4321–4329. [Google Scholar] [CrossRef]
- Li, X.; Liang, J.; Xiao, J.; Su, S.; Zhu, L.; Sun, L.; Gao, L.; Wang, H.; Yin, P.; Chen, L.; et al. Substrate-Independent Electrohydrodynamic Jet Printing with Dual-Ring Electrostatic Focusing Structure. Adv. Mater. Technol. 2023, 8, 2201842. [Google Scholar] [CrossRef]
- Wasim, M.; Sabir, A.; Shafiq, M.; Jamil, T. Chapter 11—Electrospinning: A Fiber Fabrication Technique for Water Purification. In Nanoscale Materials in Water Purification; Elsevier: Amsterdam, The Netherlands, 2019; pp. 289–308. [Google Scholar]
- Ray, S.S.; Chen, S.S.; Nguyen, N.C.; Nguyen, H.T. Chapter 9—Electrospinning: A Versatile Fabrication Technique for Nanofibrous Membranes for Use in Desalination. In Nanoscale Materials in Water Purification; Elsevier: Amsterdam, The Netherlands, 2019; pp. 247–273. [Google Scholar]
- Murthe, S.S.; Saheed, M.S.M.; Perumal, V.; Saheed, M.S.M.; Mohamed, N.M. Electrospun Nanofibers for Biosensing Applications. In Nanobiosensors for Biomolecular Targeting; Elsevier: Amsterdam, The Netherlands, 2019; pp. 253–267. [Google Scholar]
- Theron, S.A.; Zussman, E.; Yarin, A.L. Experimental investigation of the governing parameters in the electrospinning of polymer solutions. Polymer 2004, 45, 2017–2030. [Google Scholar] [CrossRef]
- Shin, D.; Kim, J.; Chang, J. Experimental study on jet impact speed in near-field electrospinning for precise patterning of nanofiber. J. Manuf. Process. 2018, 36, 231–237. [Google Scholar] [CrossRef]
- Lauricella, M.; Succi, S.; Zussman, E.; Pisignano, D.; Yarin, A.L. Models of polymer solutions in electrified jets and solution blowing. Rev. Mod. Phys. 2020, 92, 035004. [Google Scholar] [CrossRef]
- Ghorani, B.; Goswami, P.; Russell, S.J. Parametric Study of Electrospun Cellulose Acetate in Relation to Fibre Diameter. Res. J. Text. Appar. 2015, 19, 24–40. [Google Scholar] [CrossRef]
- Tan, S.-H.; Inai, R.; Kotaki, M.; Ramakrishna, S. Systematic parameter study for ultra-fine fiber fabrication via electrospinning process. Polymer 2005, 46, 6128–6134. [Google Scholar] [CrossRef]
- Abhishek, K. Singh, Anupam Choubey, Rajiv, K. Srivastava, and Supreet Singh Bahga. Phys. Rev. E 2023, 107, 045103. [Google Scholar]
- Huang, H.; Zhang, G.; Li, W.; Yu, Z.; Peng, Z.; Wang, F.; Zhu, X.; Lan, H. The theoretical model and verification of electric-field-driven jet 3D printing for large-height and conformal micro/nano-scale parts. Virtual Phys. Prototyp. 2023, 18, 1. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, Z.; Yang, S.; Li, B.; Xu, H.; Yu, K.; Wang, J. Experimental study on electrohydrodynamic atomization (EHDA) in stable cone-jet with middle viscous and low conductive liquid. Exp. Therm. Fluid Sci. 2021, 121, 110260. [Google Scholar] [CrossRef]
- Bisht, G.S.; Canton, G.; Mirsepassi, A.; Kulinsky, L.; Oh, S.; Dunn-Rankin, D. and Madou, M.J. Controlled Continuous Patterning of Polymeric Nanofibers on Three-Dimensional Substrates Using Low-Voltage Near-Field Electrospinning. Nano Lett. 2011, 11, 1831–1837. [Google Scholar] [CrossRef]
- Douglas, J.F. Polymeric Liquids and Networks: Structure and Properties. Phys. Today 2005, 58, 64–65. [Google Scholar] [CrossRef]
- Cruz-Mazo, F.; Wiedorn, M.O.; Herrada, M.A.; Bajt, S.; Chapman, H.N.; Ga, A.M. Aerodynamically-Assisted Electrified Microscopic Jets. 2018, pp. 1–6. Available online: https://bib-pubdb1.desy.de/record/425435/files/Electrojet-manuscript.pdf (accessed on 26 January 2024).
- Nazemi, M.M.; Khodabandeh, A.; Hadjizadeh, A. Near-Field Electrospinning: Crucial Parameters, Challenges, and Applications. ACS Appl. Bio Mater. 2022, 5, 394–412. [Google Scholar] [CrossRef] [PubMed]
- Yalcinkaya, F.; Yalcinkaya, B.; Jirsak, O. Influence of salts on electrospinning of aqueous and nonaqueous polymer solutions. J Nanomater. 2015, 2015, 134251. [Google Scholar] [CrossRef]
- Shenoy, S.L.; Bates, W.D.; Frisch, H.L.; Wnek, G.E. Role of chain entanglements on fiber formation during electrospinning of polymer solutions: Good solvent, non-specific polymer-polymer interaction limit. Polymer 2005, 46, 3372–3384. [Google Scholar] [CrossRef]
- Ebagninin, K.W.; Benchabane, A.; Bekkour, K. Rheological characterization of poly(ethylene oxide) solutions of different molecular weights. J. Colloid Interface Sci. 2009, 336, 360–367. [Google Scholar] [CrossRef] [PubMed]
- Bradley, R.S.; Fuchs, N.A. Evaporation and Droplet Growth in Gaseous Media; Elsevier: Amsterdam, The Netherlands, 1959. [Google Scholar]
- Shin, D.; Choi, S.; Kim, J.; Regmi, A.; Chang, J. Direct-Printing of Functional Nanofibers on 3D Surfaces Using Self-Aligning Nanojet in Near-Field Electrospinning. Adv. Mater. Technol. 2020, 5, 1–8. [Google Scholar] [CrossRef]
- Choi, S.; Shin, D.; Chang, J. Nanoscale Fiber Deposition via Surface Charge Migration at Air-to-Polymer Liquid Interface in Near-Field Electrospinning. ACS Appl. Polym. Mater. 2020, 2, 2761–2768. [Google Scholar] [CrossRef]
- Bober, D.B.; Chen, C.H. Pulsating electrohydrodynamic cone-jets: From choked jet to oscillating cone. J. Fluid Mech. 2011, 689, 552–563. [Google Scholar] [CrossRef]
- Rosell-Llompart, J.; Grifoll, J.; Loscertales, I.G. Electrosprays in the cone-jet mode: From Taylor cone formation to spray development. J. Aerosol. Sci. 2018, 125, 2–31. [Google Scholar] [CrossRef]
- Lee, A.; Jin, H.; Dang, H.W.; Choi, K.H.; Ahn, K.H. Optimization of experimental parameters to determine the jetting regimes in electrohydrodynamic printing. Langmuir 2013, 29, 13630–13639. [Google Scholar] [CrossRef]
Coditions | Ink 1 | [nL min−1] | [V/Hz] | T/RH [°C/%] | [V] |
---|---|---|---|---|---|
A | 5.5 wt% 0.3MDa-PEO H2O:EtOH | 70 | 2000/300 | 18/40 | 750 |
3.9 wt% 0.6MDa-PEO H2O:EtOH | 2000/250 | ||||
3 wt% 1MDa-PEO H2O:EtOH | 2000/150 | ||||
1.4 wt% 5MDa-PEO H2O:EtOH | 2000/50 | ||||
B | 3 wt% 1MDa-PEO H2O:EtOH | 20, 40 | 2000/200 | 18/50 | 1000 |
C | 3 wt% 1MDa-PEO H2O:EtOH | 20 | 2000/200, 300, 400 | 18/50 | 950, 1050, 1150 |
D | 3 wt% 1MDa-PEO H2O:EtOH | 30, 50, 70 | 2000/200 | 19/50 | 850, 950, 1050 |
E | 3 wt% 1MDa-PEO H2O:EtOH | 30, 50, 70 | 2000/150 | 18/50 | 850 |
3 wt% 1MDa-PEO H2O:EG | 700 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ramon, A.; Liashenko, I.; Rosell-Llompart, J.; Cabot, A. On the Stability of Electrohydrodynamic Jet Printing Using Poly(ethylene oxide) Solvent-Based Inks. Nanomaterials 2024, 14, 273. https://doi.org/10.3390/nano14030273
Ramon A, Liashenko I, Rosell-Llompart J, Cabot A. On the Stability of Electrohydrodynamic Jet Printing Using Poly(ethylene oxide) Solvent-Based Inks. Nanomaterials. 2024; 14(3):273. https://doi.org/10.3390/nano14030273
Chicago/Turabian StyleRamon, Alberto, Ievgenii Liashenko, Joan Rosell-Llompart, and Andreu Cabot. 2024. "On the Stability of Electrohydrodynamic Jet Printing Using Poly(ethylene oxide) Solvent-Based Inks" Nanomaterials 14, no. 3: 273. https://doi.org/10.3390/nano14030273
APA StyleRamon, A., Liashenko, I., Rosell-Llompart, J., & Cabot, A. (2024). On the Stability of Electrohydrodynamic Jet Printing Using Poly(ethylene oxide) Solvent-Based Inks. Nanomaterials, 14(3), 273. https://doi.org/10.3390/nano14030273