Interfacial Resistive Switching of Niobium–Titanium Anodic Memristors with Self-Rectifying Capabilities
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fabrication of Nb-Ti Anodic Memristors
2.2. Electrical Characterisation
2.3. Imaging and Analysis Techniques
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Strukov, D.B.; Snider, G.S.; Stewart, D.R.; Williams, R.S. The missing memristor found. Nature 2008, 453, 80–83. [Google Scholar] [CrossRef]
- Wang, R.; Yang, J.-Q.; Mao, J.-Y.; Wang, Z.-P.; Wu, S.; Zhou, M.; Chen, T.; Zhou, Y.; Han, S.-T. Recent Advances of Volatile Memristors: Devices, Mechanisms, and Applications. Adv. Intell. Syst. 2020, 2, 2000055. [Google Scholar] [CrossRef]
- Kim, D.; Jeon, B.; Lee, Y.; Kim, D.; Cho, Y.; Kim, S. Prospects and applications of volatile memristors. Appl. Phys. Lett. 2022, 121, 010501. [Google Scholar] [CrossRef]
- Zrinski, I.; Minenkov, A.; Cancellieri, C.; Mardare, C.C.; Groiss, H.; Hassel, A.W.; Mardare, A.I. Coexistence of memory and threshold resistive switching identified by combinatorial screening in niobium-tantalum system. Appl. Surf. Sci. 2023, 613, 155917. [Google Scholar] [CrossRef]
- Zrinski, I.; Zavašnik, J.; Duchoslav, J.; Hassel, A.W.; Mardare, A.I. Threshold Switching in Forming-Free Anodic Memristors Grown on Hf-Nb Combinatorial Thin-Film Alloys. Nanomaterials 2022, 12, 3944. [Google Scholar] [CrossRef]
- Zhang, W.; Gao, B.; Tang, J.; Li, X.; Wu, W.; Qian, H.; Wu, H. Analog-Type Resistive Switching Devices for Neuromorphic Computing. Phys. Rapid Res. Lett. 2019, 13, 1900204. [Google Scholar] [CrossRef]
- Li, D.; Liu, W.; Zong, J.; Wei, J.; Liu, S.; Tan, G.; Yuan, Q.; Liu, D.; Xia, A.; Yang, H. Ferroelectric diode-like resistive switching behavior in Bi0.95Er0.05FeO3/CuFe2O4 heterostructures for non-volatile memories. Appl. Mater. Today 2024, 36, 102074. [Google Scholar] [CrossRef]
- Patil, A.R.; Dongale, T.D.; Namade, L.D.; Mohite, S.V.; Kim, Y.; Sutar, S.S.; Kamat, R.K.; Rajpure, K.Y. Sprayed FeWO4 thin film-based memristive device with negative differential resistance effect for non-volatile memory and synaptic learning applications. J. Colloid Interface Sci. 2023, 642, 540–553. [Google Scholar] [CrossRef] [PubMed]
- Pathania, S.; Hmar, J.J.L.; Kumar, V.; Chinnamuthu, P. Advances in flexible non-volatile resistive switching memory based on organic poly (3, 4-ethylenedioxythio phene): Poly (styrenesulfonate) film. Thin Solid Film. 2022, 763, 139605. [Google Scholar] [CrossRef]
- Lee, W.; Iqbal, S.; Kim, J.; Lee, S.; Lee, J.; Kumar, M.; Seo, H. Vanadium oxide thin film deposited on Si by atomic layer deposi-tion for non-volatile resistive switching memory devices. Appl. Surf. Sci. 2023, 639, 158240. [Google Scholar] [CrossRef]
- Kumar, A.; Singh, N.; Kaur, D. Resistive switching characteristics of MnO2-based thin film for transparent non-volatile Re-RAM. J. Alloys Compd. 2023, 969, 172499. [Google Scholar] [CrossRef]
- Čajko, K.O.; Sekulić, D.L.; Lukić-Petrović, S.R. Dielectric and bipolar resistive switching properties of Ag doped As–S–Se chalcogenide for non-volatile memory applications. Mater. Chem. Phys. 2023, 296, 127301. [Google Scholar] [CrossRef]
- Miller, K.; Nalwa, K.S.; Bergerud, A.; Neihart, N.M.; Chaudhary, S. Memristive Behavior in Thin Anodic Titania. IEEE Electron Device Lett. 2010, 31, 737–739. [Google Scholar] [CrossRef]
- Zrinski, I.; Knapic, D.; Hassel, A.W.; Mardare, A.I. Anodic HfO2 crossbar arrays for hydroxide-based memristive sensing in liquids. J. Electrochem. Sci. Eng. 2023, 13, 805–815. [Google Scholar] [CrossRef]
- Hadis, N.S.M.; Manaf, A.A.; Ngalim, S.H.; Herman, S.H. Fabrication and characterisation of fluidic based memris-tor sensor for liquid with hydroxyl group. Sens. Bio-Sens. Res. 2017, 14, 21–29. [Google Scholar] [CrossRef]
- Li, T.; Xu, Y.; Lei, M.; Zhao, Y.; Sun, B.; Elshekh, H.; Zheng, L.; Zhang, X.; Hou, W. The pH-controlled memristive effect in a sus-tainable bioelectronic device prepared using lotus root. Mater. Today Sustain. 2020, 7, 100029. [Google Scholar] [CrossRef]
- Li, C.; Hu, M.; Li, Y.; Jiang, H.; Ge, N.; Montgomery, E.; Zhang, J.; Song, W.; Dávila, N.; Graves, C.E.; et al. Analogue signal and image processing with large memristor crossbars. Nat. Electron. 2018, 1, 52–59. [Google Scholar] [CrossRef]
- Ji, X.; Dong, Z.; Zhou, G.; Lai, C.S.; Yan, Y.; Qi, D. Memristive System Based Image Processing Technology: A Review and Per-spective. Electronics 2021, 10, 3176. [Google Scholar] [CrossRef]
- Jo, S.H.; Chang, T.; Ebong, I.; Bhadviya, B.B.; Mazumder, P.; Lu, W. Nanoscale memristor device as synapse in neuromorphic systems. Nano Lett. 2010, 10, 1297–1301. [Google Scholar] [CrossRef] [PubMed]
- Moon, K.; Fumarola, A.; Sidler, S.; Jang, J.; Narayanan, P.; Shelby, R.M.; Burr, G.W.; Hwang, H. Bidirectional Non-Filamentary RRAM as an Analog Neuromorphic Synapse, Part I: Al/Mo/Pr0.7Ca0.3MnO3 Material Improvements and Device Meas-urements. IEEE J. Electron Devices Soc. 2018, 6, 146–155. [Google Scholar] [CrossRef]
- Gutsche, A.; Siegel, S.; Zhang, J.; Hambsch, S.; Dittmann, R. Exploring Area-Dependent Pr0.7Ca0.3MnO3-Based Memristive Devices as Synapses in Spiking and Artificial Neural Networks. Front. Neurosci. 2021, 15, 661261. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Zhou, W.; Li, C.; Huang, J. Forgetting memristors and memristor bridge synapses with long- and short-term mem-ories. Neurocomputing 2021, 456, 126–135. [Google Scholar] [CrossRef]
- Xia, Q.; Yang, J.J. Memristive crossbar arrays for brain-inspired computing. Nat. Mater. 2019, 18, 309–323. [Google Scholar] [CrossRef] [PubMed]
- Pyo, J.; Kim, S. Non-volatile and volatile switching behaviors determined by first reset in Ag/TaO/TiN device for neuro-morphic system. J. Alloys Compd. 2022, 896, 163075. [Google Scholar] [CrossRef]
- Shi, L.; Zheng, G.; Tian, B.; Dkhil, B.; Duan, C.-G. Research progress on solutions to the sneak path issue in memristor crossbar arrays. Nanoscale Adv. 2020, 2, 1811–1827. [Google Scholar] [CrossRef] [PubMed]
- Yan, B.; Mahmoud, A.M.; Yang, J.J.; Wu, Q.; Chen, Y.; Li, H.H. A neuromorphic ASIC design using one-selector-one-memristor crossbar. In Proceedings of the 2016 IEEE International Symposium on Circuits and Systems (ISCAS), Montreal, QC, Canada, 22–25 May 2016; pp. 1390–1393. [Google Scholar]
- Huang, C.-H.; Chou, T.-S.; Huang, J.-S.; Lin, S.-M.; Chueh, Y.-L. Self-Selecting Resistive Switching Scheme Using TiO2 Nanorod Arrays. Sci. Rep. 2017, 7, 2066. [Google Scholar] [CrossRef]
- Yang, R.; Terabe, K.; Yao, Y.; Tsuruoka, T.; Hasegawa, T.; Gimzewski, J.K.; Aono, M. Synaptic plasticity and memory functions achieved in a WO3−x-based nanoionics device by using the principle of atomic switch operation. Nanotechnology 2013, 24, 384003. [Google Scholar] [CrossRef]
- Li, Y.; Yuan, P.; Fu, L.; Li, R.; Gao, X.; Tao, C. Coexistence of diode-like volatile and multilevel nonvolatile resistive switching in a ZrO2/TiO2 stack structure. Nanotechnology 2015, 26, 391001. [Google Scholar] [CrossRef]
- Cavallini, M.; Hemmatian, Z.; Riminucci, A.; Prezioso, M.; Morandi, V.; Murgia, M. Regenerable resistive switching in silicon oxide based nanojunctions. Adv. Mater. 2012, 24, 1197–1201. [Google Scholar] [CrossRef]
- Aglieri, V.; Lullo, G.; Mosca, M.; Macaluso, R.; Zaffora, A.; Di Franco, F.; Santamaria, M.; Cicero, U.L.; Razzari, L. Forming-Free and Self-Rectifying Resistive Switching Effect in Anodic Titanium Dioxide-Based Memristors. In Proceedings of the 2018 IEEE 4th International Forum on Research and Technology for Society and Industry (RTSI), Palermo, Italy, 10–13 September 2018; pp. 1–4. [Google Scholar] [CrossRef]
- Aglieri, V.; Zaffora, A.; Lullo, G.; Santamaria, M.; Di Franco, F.; Cicero, U.L.; Mosca, M.; Macaluso, R. Resistive switching in microscale anodic titanium dioxide-based memristors. Superlattices Microstruct. 2018, 113, 135–142. [Google Scholar] [CrossRef]
- Kumar, S.; Strachan, J.P.; Williams, R.S. Chaotic dynamics in nanoscale NbO2 Mott memristors for analogue computing. Nature 2017, 548, 318–321. [Google Scholar] [CrossRef] [PubMed]
- Novodvorsky, O.; Parshina, L.; Khramova, O.; Gusev, D.; Polyakov, A. Memristive effect in niobium oxide thin films obtained by the pulsed laser deposition. Thin Solid Film. 2023, 780, 139945. [Google Scholar] [CrossRef]
- Novodvorsky, O.; Parshina, L.; Khramova, O.; Gusev, D.; Polyakov, A.; Cherebilo, E. Laser synthesis of volatile memristors based on niobium oxide thin films. Surf. Interfaces 2022, 30, 101891. [Google Scholar] [CrossRef]
- Woldemedhin, M.T.; Raabe, D.; Hassel, A.W. Characterization of thin anodic oxides of Ti–Nb alloys by electrochemical im-pedance spectroscopy. Electrochim. Acta 2012, 82, 324–332. [Google Scholar] [CrossRef]
- Sodium phosphate. Cold Spring Harb Protoc. 2006, 2006, pdb.rec8303. [CrossRef]
- Mardare, A.I.; Savan, A.; Ludwig, A.; Wieck, A.D.; Hassel, A.W. High-throughput synthesis and characterization of anodic ox-ides on Nb–Ti alloys. Electrochim. Acta 2009, 54, 5973–5980. [Google Scholar] [CrossRef]
- Kunwar, S.; Somodi, C.B.; Lalk, R.A.; Rutherford, B.X.; Corey, Z.; Roy, P.; Zhang, D.; Hellenbrand, M.; Xiao, M.; MacManus-Driscoll, J.L.; et al. Protons: Critical Species for Resistive Switching in Interface-Type Memristors. Adv. Electron. Mater. 2023, 9, 2200816. [Google Scholar] [CrossRef]
- Li, Z.; Tang, W.; Zhang, B.; Yang, R.; Miao, X. Emerging memristive neurons for neuromorphic computing and sensing. Sci. Technol. Adv. Mater. 2023, 24, 2188878. [Google Scholar] [CrossRef]
- Hellenbrand, M.; MacManus-Driscoll, J. Multi-level resistive switching in hafnium-oxide-based devices for neuromorphic computing. Nano Converg. 2023, 10, 44. [Google Scholar] [CrossRef]
- Kim, M.; Rehman, M.A.; Lee, D.; Wang, Y.; Lim, D.-H.; Khan, M.F.; Choi, H.; Shao, Q.Y.; Suh, J.; Lee, H.-S.; et al. Filamentary and Interface-Type Memristors Based on Tantalum Oxide for Energy-Efficient Neuromorphic Hardware. ACS Appl. Mater. Interfaces 2022, 14, 44561–44571. [Google Scholar] [CrossRef] [PubMed]
- Tang, W.-W.; Tang, X.-G.; Liu, Q.-X.; Jiang, Y.-P.; Li, W.-H.; Guo, X.-B.; Tang, Z.-F. Analog-type resistive switching behavior of Au/HfO2/ZnO memristor fabricated on flexible Mica substrate. Phys. E Low-Dimens. Syst. Nanostruct. 2020, 120, 114047. [Google Scholar] [CrossRef]
- Zrinski, I.; Mardare, C.C.; Jinga, L.-I.; Kollender, J.P.; Socol, G.; Minenkov, A.; Hassel, A.W.; Mardare, A.I. Electrolyte-Dependent Modification of Resistive Switching in Anodic Hafnia. Nanomaterials 2021, 11, 666. [Google Scholar] [CrossRef]
- Aziz, J.; Kim, H.; Rehman, S.; Kadam, K.D.; Patil, H.; Aftab, S.; Khan, M.F.; Kim, D.-K. Discrete memristive levels and logic gate applications of Nb2O5 devices. J. Alloys Compd. 2021, 879, 160385. [Google Scholar] [CrossRef]
- Kim, T.-H.; Kim, S.; Hong, K.; Park, J.; Hwang, Y.; Park, B.-G.; Kim, H. Multilevel switching memristor by compliance current adjustment for off-chip training of neuromorphic system. Chaos Solitons Fractals 2021, 153, 111587. [Google Scholar] [CrossRef]
- Knapic, D.; Anatasova, E.; Zrinski, I.; Hassel, A.W.; Mardare, A.I. Anodic Niobium-Titanium oxide crossbar memristor arrays for pH sensing in liquids. Phys. Status Solidi A 2024. Accepted. [Google Scholar] [CrossRef]
- Lone, S.A.; Mardare, C.C.; Kollender, J.P.; Mardare, A.I.; Hassel, A.W. Corrosion Screening of Niobium-Titanium Thin Film Combinatorial Libraries for Implant Applications. SSRN J. 2022. [Google Scholar] [CrossRef]
- Chiu, F.-C. A Review on Conduction Mechanisms in Dielectric Films. Adv. Mater. Sci. Eng. 2014, 2014, 578168. [Google Scholar] [CrossRef]
- Lim, E.W.; Ismail, R. Conduction Mechanism of Valence Change Resistive Switching Memory: A Survey. Electronics 2015, 4, 586–613. [Google Scholar] [CrossRef]
- Yuan, F.-Y.; Deng, N.; Shih, C.-C.; Tseng, Y.-T.; Chang, T.-C.; Chang, K.-C.; Wang, M.-H.; Chen, W.-C.; Zheng, H.-X.; Wu, H.; et al. Conduction Mechanism and Improved Endurance in HfO2-Based RRAM with Nitridation Treatment. Nanoscale Res. Lett. 2017, 12, 574. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Das, M.; Mukherjee, S. Oxide Based Memristors: Fabrication, Mechanism, and Application. In Reference Module in Materials Science and Materials Engineering; Elsevier: Amsterdam, The Netherlands, 2018. [Google Scholar] [CrossRef]
- Jung, K.; Kim, Y.; Im, H.; Kim, H.; Park, B. Leakage Transport in the High-resistance State of a Resistive-switching NbOx Thin Film Prepared by Pulsed Laser Deposition. J. Korean Phys. Soc. 2011, 59, 2778–2781. [Google Scholar] [CrossRef]
- Huang, J.-J.; Kuo, C.-W.; Chang, W.-C.; Hou, T.-H. Transition of stable rectification to resistive-switching in Ti/TiO2/Pt oxide diode. Appl. Phys. Lett. 2010, 96, 262901. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Knapic, D.; Minenkov, A.; Atanasova, E.; Zrinski, I.; Hassel, A.W.; Mardare, A.I. Interfacial Resistive Switching of Niobium–Titanium Anodic Memristors with Self-Rectifying Capabilities. Nanomaterials 2024, 14, 381. https://doi.org/10.3390/nano14040381
Knapic D, Minenkov A, Atanasova E, Zrinski I, Hassel AW, Mardare AI. Interfacial Resistive Switching of Niobium–Titanium Anodic Memristors with Self-Rectifying Capabilities. Nanomaterials. 2024; 14(4):381. https://doi.org/10.3390/nano14040381
Chicago/Turabian StyleKnapic, Dominik, Alexey Minenkov, Elena Atanasova, Ivana Zrinski, Achim Walter Hassel, and Andrei Ionut Mardare. 2024. "Interfacial Resistive Switching of Niobium–Titanium Anodic Memristors with Self-Rectifying Capabilities" Nanomaterials 14, no. 4: 381. https://doi.org/10.3390/nano14040381
APA StyleKnapic, D., Minenkov, A., Atanasova, E., Zrinski, I., Hassel, A. W., & Mardare, A. I. (2024). Interfacial Resistive Switching of Niobium–Titanium Anodic Memristors with Self-Rectifying Capabilities. Nanomaterials, 14(4), 381. https://doi.org/10.3390/nano14040381