Progress and Application of Halide Perovskite Materials for Solar Cells and Light Emitting Devices
Abstract
:1. Introduction
1.1. Halide Perovskite Materials
1.2. Optical Properties of Halide Perovskites
1.3. Electrical Properties for Halide Perovskite Materials
1.4. Synthesis of Halide Perovskite Materials
1.4.1. Solution Method
1.4.2. Hot Injection Crystallization
1.4.3. Anti-Solvent Crystallization
1.4.4. Vapor Deposition
2. Halide Perovskite for Solar Cells
2.1. Performance of Photovoltaic Devices
2.2. Rising of Halide Perovskite Solar Cells
2.2.1. Dye Sensitized Solar Cell (DSSC) to Halide Perovskite Solar Cell
2.2.2. Progress in Halide Perovskite Solar Cell
2.3. Challenges in Halide Perovskite Solar Cells
2.3.1. Stability of Halide Perovskite and Spiro-OMeTAD
2.3.2. Light Harvesting vs. Charge Transport
2.3.3. Even Lower Cost for HTM and Counter Electrode
3. Halide Perovskite for Light Emitting
3.1. Basics of Light Emitting
3.2. Multi-Layer Halide Perovskite Light Emitting Device
Years | Perovskite | Type | EQE | PLQY | EL | Lmax | CE | Device Structure | Ref. |
---|---|---|---|---|---|---|---|---|---|
Inorganic BLUE | |||||||||
2015.10 | CsPb(BrxCl1-x)3 | QDs | 0.07 | 455 | 742 | ITO/PEDOT:PSS/PVK/CsPb(Br1−xClx)3/TPBi/LiF/Al | [47] | ||
2018.03 | CsPbBrxCl3−x | 3D | 0.5 | 469 | ITO/Pedot/TFB/PFI/CsPbBrxCl3−x/TPBi/LiF/Al | [224] | |||
2018.05 | CsPbBr3 | 2D | 0.1 | 25 | ITO/PEDOT:PSS/Poly-TPD/CsPbBr3/TPBi/LiF/Al | [225] | |||
2019.05 | CsPb(Br/Cl)3 | 3D | 1.4 | 463 | ITO/PEDOT:PSS/PolyTPD/CBP/CsPb(Br/Cl)3/B3PYMPM/LiF/Al | [226] | |||
2021.04 | CsPbBr3-xClx | 3D | 1.18 | 490 | 1468 | ITO/PEDOT:PSS/CsPbBr3-xClx/TPBi/LiF/Al | [227] | ||
2021.11 | CsPbBr2Cl | 3D | 3.71 | 66.8 | 475 | 51 | ITO/Glass/ CsPbBr2Cl/TPBi/LiF/Al | [228] | |
2022.10 | CsPb(Br0.65Cl0.35)3 | 3D | 4.6 | 468 | 1680 | ITO/PEDOT:PSS/CsPb(Br0.65Cl0.35)3/TPBi/LiF/Al | [229] | ||
2023.09 | CsPbBr3 | 3D | 12 | 463 | 2100 | ITO/PEDOT:PSS/PVK/ CsPbBrCl3/CNT2T/LiF/Al | [230] | ||
GREEN | |||||||||
2016.04 | CsPbBr3-CsPb2Br5 | QDs | 2.21 | 527 | 3853 | 8.98 | ITO/PEDOT:PSS/ CsPbBr3CsPb2Br5/TPBi/Al | [231] | |
2016.11 | CsPbBr3 | QDs | 6.27 | 515 | 15,000 | ITO/PEDOT:PSS/poly-TPD/ CsPbBr3/TPBi/LiF/Al | [232] | ||
2017.05 | CsPbBr3 | QDs | 8.73 | 42 | 512 | 1660 | ITO/PEDOT:PSS/poly-TPD/ CsPbBr3/TPBi/LiF/Al | [233] | |
2017.06 | CsPbBr3 | 3D | 1.37 | 522 | 13,752 | 5.39 | FTO/Buf-HILs/CsPBBr3/TPBi/LiF/Al | [234] | |
2017.06 | CsPbBr3 | QDs | 1.194 | 515 | 12,090 | 3.1 | ITO/PEDOT:PSS/poly-TPD/ CsPbBr3/TPBi/LiF/Al | [235] | |
2017.07 | CsPbBr3 | 3D | 527 | 10,700 | 2.9 | ITO/PEDOT:PSS/CsPbBr3/TPBi/LiF/Al | [236] | ||
2017.10 | Cs2PbBr5 | 2D | 1.1 | 520 | 7317 | ITO/PEDOT:PSS/Cs2PbBr5/TPBi/LiF/Al | [237] | ||
2018.01 | CsPbBr3 | QDs | 3.79 | 6093.2 | 7.96 | ITO/NiO/CsPbBr3/ZnO/Al | [238] | ||
2018.02 | CsPbBr3 | QDs | 4.626 | 10,206 | 8.736 | In/ZnO/MgZnO/CsPbBr3/NiO/Au | [239] | ||
2018.05 | CsPbBr3 | 3D | 2.99 | ~13,000 | 10.5 | ITO/LiF/CsPbBr3/LiF/Bphen/LiF/Al | [240] | ||
2019.02 | CsPbBr3 | 2D | 11.1 | 512 | 40.4 | ITO/PEDOT:PSS/PVK/Betaine/ CsPbBr3/TPBi/LiF/Al | [216] | ||
2019.04 | CsPbBr3 | 3D | 28.2 | 88.7 | ITO/ZnO/PEDOT:PSS/CsPbBr3/TPBi/LiF/Al | [36] | |||
2021.07 | CsPbBr3 | 3D | 531 | n-ZnO/Al2O3/CsPbBr3/p-GaN | [241] | ||||
2022.03 | CsPbBr3 | 3D | 2.7 | 21,815 | ITO/ZnO/Al2O3/PEIE/perovskite/polyTPD/MoO3/Au | [242] | |||
2023.07 | CsPbBr3 | 2D | 4.87 | 5 | 512 | 7143 | ITO/PEDOT:PSS/CsPbBr3/TPBi/LiF/Al | [243] | |
RED | |||||||||
2017.01 | CsPbI3 | 2D | 10.4 | 750 | 0.22 | ITO/PVK/BAI:MAPbBr3/TPBi/LiF/Al | [244] | ||
2018.02 | α-CsPbI3 | 3D | 5 | 695 | ITO/ZnO:PEIE/α-CsPbI3/Poly-TPD/WO3/Al | [245] | |||
2018.10 | α-CsPbI3 | 3D | 8.65 | 682 | 210 | ITO/PEDOT:PSS/PVK/α-CsPbI 3/TPBi/LiF/Al | [246] | ||
2021.10 | CsPbI3 | 3D | 13 | 1858 | ITO/ZnO/PNCs/TCTA/MnO2/Ag | [247] | |||
2022-12 | CsPbI3 | QDs | 18 | 800 | ITO/PEDOT:PSS+PFI/Poly-TPD/PEA-I/QDs/PO-T2T/LiF/Al | [248] | |||
Organic | |||||||||
BLUE | |||||||||
2016.05 | MAPb(BrCl)3 | QDs | 1.38 | 445 | 2673 | 4.01 | ITO/PEOT:PSS/PVK/MAPb(BrCl)3/TPBi/LiF/Al | [249] | |
2016.06 | (PEA)2PbBr4 | 2D | 0.04 | 410 | ITO/PEDOT:PSS/ (PEA)2PbBr4/TPBi/Ca/Al | [250] | |||
2018.08 | PEA2 A1.5Pb2.5 Br8.5 | 2D | 88 | 477 | 2480 | ITO/PEDOT:PSS/ PEA2A1.5Pb2.5Br8.5/TPBi/LiF/Al | [251] | ||
2021.09 | PFNBr | 3D | 11.2 | 82 | 485 | 3377 | ITO/PVK/PFNBr/PO-T2T/Lig/Al | [252] | |
2023.06 | GA0.1Rb0.1Cs0.8PbBr2Cl | 3D | 1.5 | 469 | ITO/PEDOT:PSS/GA0.1Rb0.1Cs0.8PbBr2Cl/TPBi/LiF/Al | [253] | |||
2023.07 | PEA | 2D | 10.6 | 494 | ITO/PEDOT:PSS+K2SO4 /PVP/PEA/TPBi/LiF/Al | [254] | |||
GREEN | |||||||||
2014.08 | MAPbBr3 | 3D | 517 | 154 | 0.3 | ITO/PEDOT:PSS/MAPbBr3/F8/Ca/Ag | [255] | ||
2015.01 | MAPbBr3 | 3D | 0.0065 | 515 | 21 | ITO/PEDOT:PSS/TPD/MAPbBr3/Ag | [256] | ||
2015.02 | MAPbBr3 | 3D | 3.5 | 532 | ~20,000 | ITO/ZnO/PEI/TFB/MoOx/Au | [257] | ||
2015.02 | MAPbBr3/PIP | 3D | 1.2 | 532 | 200 | ITO/PEDOT:PSS/MAPbBr3-PIP/F8/Ca/Ag | [258] | ||
2015.03 | MAPbBr3 | 3D | 0.1 | 536 | 1000 | (ITO)/PEDOT:PSS/MAPbBr3 /TmPyPB/LiF/Al | [259] | ||
2015.07 | MAPbBr3/PEO | 3D | 532 | 4064 | 0.74 | ITO/PEO-MAPbBr3/Au | [260] | ||
2015.10 | MAPbBr3 | 3D | 540 | ~10,000 | 42.9 | SOCP/MAPbBr3/TPBI/LiF/Al | [261] | ||
2015.12 | MAPbBr3 | QDs | 1.1 | 92 | 525 | 4.5 | ITO/PEDOT:PSS/MAPbBr3/TPBi/CsF/Al | [262] | |
2015.12 | MAPbBr3/PEO | 3D | 1.1 | 545 | 21,014 | 4.91 | ITO,CNT/PEO,MAPbBr3/AgNWs | [263] | |
2016.04 | MAPbBr3 | 3D | 0.43 | 536 | ~5000 | ITO/ZnO/MAPbBr3/TFB/MoOx/Au | [264] | ||
2016.08 | CH3NH2-MAPbBr3 | 3D | 550 | 65,300 | 15.9 | ITO/NiOx/MAPbBr3/TPBi/LiF/Al | [265] | ||
2017.04 | MAPbBr3:PVK | QDs | 2.28 | 512 | 7263 | 9.45 | ITO/PEDOT:PSS/MAPbBr3:PVK/TPBi/Cs2CO3/Al | [266] | |
2017.05 | PEA2(MA)4Pb5Br16 | 2D | 7.4 | 60 | 8400 | ITO/PEODOT:PSS /PEA2(MA)4Pb5Br16/TPBi/LiF/Al | [267] | ||
2017.08 | FAPbBr3 | QDs | 2.05 | 530 | 278 | 9.16 | ITO/PEDOT:PSS/FAPbBr3/TPPi/LiF/Al | [268] | |
2018.02 | PEA2(FAPbBr3)n-1PbBr4 | 2D | 14.36 | 73.8 | 62.4 | ITO/PEDOT:PSS/PEA2(FAPbBr3)n-1PbBr4 /TPBi/LiF/Al | [214] | ||
2018.03 | (OA)2(FA)n-1 PbnBr3n+1 | 2D | 13.4 | 530 | 34,480 | 57.6 | ITO/PEDOT:PSS/(OA)2(FA)n-1PbnBr3n+1 /TPBi/PO-T2T/Ca/Al | [269] | |
2018.03 | MAPbBr3 | 3D | 12.1 | 55,400 | 55.2 | ITO / PEDOT:PSS/MAPbBr3/TPBi/LiF/Al | [270] | ||
2018.04 | MAPbBr3 | QDs | 12.9 | 524 | 22,830 | ITO/PEDOT:PSS/MAPbBr3 /TPBi/B3PYMPM/Cs2CO3/Al | [271] | ||
2018.05 | FAPbBr3 | 3D | 5.53 | 9472 | 20.3 | ITO/LiF/FAPbBr3/LiF/Bphen/LiF/Al | [240] | ||
2018.05 | MAPbBr3 | 3D | 2.36 | 36,854 | 8.67 | ITO/LiF/MAPbBr3/LiF/Bphen/LiF/Al | [240] | ||
2018.05 | MAPbBr3 | 3D | 5.66 | 18,100 | 25.97 | ITO/CPEs/MAPbBr3/TPBi/LiF/Ag | [211] | ||
2018.08 | FAPbBr3 | 3D | 4.66 | 10,900 | 21.3 | ITO/PEDOT/FAPbBr3/ZnO/Ag | [213] | ||
2018.09 | PEABr | 2D-3D | 15.5 | 78 | ITO/Poly-TPD/PEABr/TPBi/LiF/Al | [272] | |||
2018.11 | FAPbBr3 | 3D | 11.3 | 535 | 79,700 | ITO/Poly-TPD/FAPbBr3/TPBi/Al | [273] | ||
2018.11 | MAPbBr3 | 3D | 3.9 | 17,600 | ITO/PEDOT/Di-NPB/MAPbBr3 /BmPyPhB/LiF/Al | [219] | |||
2019.01 | MAPbBr3 | 3D | 0.17 | 1260 | 0.79 | PDZ/MAPbBr3/SPW-111/PFN/AgNW | [274] | ||
2019.01 | MAPbBr3 | 3D | 9.2 | VHB/PI/AgNWs/PEDOT:PSS/PVK /MAPbBr3/TPBi/CsF/Al | [275] | ||||
2019.02 | MAPbBr3 | 3D | 17.5 | AAM/ITO/PEDOT:PSS/MAPbBr3 /F8/Ca/Ag | [212] | ||||
2019.04 | (PEA)2(MA)m-1 PbBr3m+1 | 2D | 30.3 | 20.18 | FTO/Buf-HILs/(PEA)2(MA)m-1PbBr3m+1 /TPBi/LiF/Al | [276] | |||
2019.04 | PMA2FA2Pb3Br10 | 2D | 10.2 | 14,800 | 43.6 | ITO/FPS-TMA/PMA2FA2Pb3Br10/TPBi /LiF/Al | [215] | ||
2019.07 | BA-MAPb (Br/I)3 | 2D/3D | 7.42 | ITO/Poly-TPD/BA-MAPb(Br/I)3 /Bphen/LiQ/Al | [277] | ||||
2020.06 | FAPbBr3/CsPbBr3 NCs | 3D | 8.1 | 93 | 504 | 1758 | ITO/Poly-TPD/ PeNCs/TPBI/LiQ/Al | [278] | |
2021.11 | (DDAxHDA1−x)Csn−1PbnBr3n+1 | Q-2D | 12.85 | 41.5 | 512 | 2726 | ITO/PEDOT:PSS /(DDAxHDA1-x)Csn1PbnBr3n+1/TPBi/LiF/Al | [279] | |
2022.10 | CsPbBr3-PEO | 3D | 12.8 | 10,737 | TO/PEDOT:PSS/PVK-CBP/CsPbBr3-PEO /PMMA/AgNWs | [280] | |||
2023.01 | BMIMBF4-CsPbBr3 | 3D | 13.75 | 523 | 328,000 | ITO/PEDOT:PSS/IL-CsPbBr3 /PMMA/TPBi/LiF/Al | [281] | ||
RED | |||||||||
2014.08 | MAPbBr2I | 3D | 630 | 16.2 | 0.03 | ITO/PEDOT:PSS/CH3NH3PbBr3/F8/Ca/Ag | [255] | ||
2018.02 | FAPbI3 | 3D | 12.7 | ITO/PEIE-ZnO/perovskite (30 nm)/TFB/MoO3 /Au | [223] | ||||
2018.10 | FAPbI3 | 3D | 20.7 | 70 | ITO/ZnO-PEIE/Organic layer/FAPbI3 /TFBMoOx/Au | [222] | |||
2018.11 | MAPbI3 | 3D | 13.5 | ITO/MAPbI3/LiF/Al | [282] | ||||
2018.11 | MAPbI3 | 3D | 14.3 | 755 | ITO/Poly-TPD/MAPbI3/TPBi/Al | [273] | |||
2018.11 | FAPbI3 | 3D | 10.1 | 771 | ITO/Poly-TPD/FAPbI3/TPBi/Al | [273] | |||
2018.11 | TFB-PFO | 2D/3D | 20.1 | 800 | ITO/MZO/PEIE/PPBH/TFB-PFO/MoOx/Au | [283] | |||
2019.01 | MAPbI3 | QDs | 15 | 750 | ITO/Poly-TPD/MAPbI3/TPBi/LiF/Al | [284] | |||
2019.03 | FAPbI3 | 3D | 21.6 | ITO/ZnO:PEIE/FAPbI3/TFB/MoOx/Au | [285] | ||||
2019.07 | EDBE-FA3Pb4I13 | 2D | 12 | 803 | ITO/ZnMgO/EDBE/EDBEFA3Pb4I13/TFB/MoO3/Au | [9] | |||
2021.03 | MAPb(I1−xBrx)3 | 3D | 20.3 | 620 | TO/PEDOT:PSS/Poly-TPD/MAPb(I1−xBrx)3/TPBi/LiF/Al | [286] | |||
2022.02 | CF3PEAI-CsPbI3 | QDs | 12.5 | 685 | 4550 | ITO/ZnO/PEI/CF3PEAI- CsPbI3/TCTA/MnO2 | [287] | ||
2022.06 | EDABr2 | 2D | 17.03 | 671 | 10,745 | ITO/ZnO/PEIE/EDABr2/TPBi/LiF/Au | [288] | ||
2023.08 | PPT | Q-2D | 26.2 | 730 | ITO/Poly-TPD/PVP/PPT/TPBi/LiF/Al | [289] | |||
2023.09 | PEA2CsPb2I7 | Q-2D | 20.73 | 656 | 6483 | ITO/PEDOT:PSS/PTAA/PVK/PEA2CsPb2I7/MoO3/Ag | [290] |
3.3. Single-Layer Halide Perovskite Light Emitting
3.4. Challenges and Future
4. Conclusions
- Halide perovskite solar cells: due to the suitable energy gap of the perovskite material, high absorption coefficient, low electron–hole pair binding energy, balanced carrier mobility, long photon carrier lifetime, etc. These advantages make it as the most potential in solar cell materials. However, halide perovskite solar cells still have some problems in stability, which are susceptible to temperature, moisture, oxygen, and other conditions, and the stability of the hole layer of solar cells is also a direction that we need to explore in depth.
- Light emitting devices: materials in semiconductor light emitting devices (including organic LEDs) typically need to be processed at high temperatures in a vacuum chamber to ensure that the resulting semiconductor is pure. However, perovskites can be prepared by the simple wet chemistry method. And light emitting devices based on halide perovskite materials have the advantage that the band gap is adjustable. However, the most critical issue for light emitting is the stability problem, as well as the toxicity of halide perovskite. It is also an important research direction to produce high-efficiency Pb free halide perovskite light emitting devices.
Funding
Conflicts of Interest
References
- Chen, J.; Zhou, S.; Jin, S.; Li, H.; Zhai, T. Crystal organometal halide perovskites with promising optoelectronic applications. J. Mater. Chem. C 2016, 4, 11–27. [Google Scholar] [CrossRef]
- Zhang, W.; Eperon, G.E.; Snaith, H.J. Metal halide perovskites for energy applications. Nat. Energy 2016, 1, 16048. [Google Scholar] [CrossRef]
- Le, Q.V.; Shin, J.W.; Jung, J.-H.; Park, J.; Ozturk, A.; Kim, S.Y. Control of the Crystal Growth Shape in CH3NH3PbBr3 Perovskite Materials. J. Nanosci. Nanotechnol. 2017, 17, 8169–8174. [Google Scholar] [CrossRef]
- Konstantakou, M.; Stergiopoulos, T. A critical review on tin halide perovskite solar cells. J. Mater. Chem. A 2017, 5, 11518–11549. [Google Scholar] [CrossRef]
- Yin, W.-J.; Yang, J.-H.; Kang, J.; Yan, Y.; Wei, S.-H. Halide perovskite materials for solar cells: A theoretical review. J. Mater. Chem. A 2015, 3, 8926–8942. [Google Scholar] [CrossRef]
- Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells. J. Am. Chem. Soc. 2009, 131, 6050–6051. [Google Scholar] [CrossRef] [PubMed]
- Liang, Z.; Zhang, Y.; Xu, H.; Chen, W.; Liu, B.; Zhang, J.; Zhang, H.; Wang, Z.; Kang, D.H.; Zeng, J.; et al. Homogenizing out-of-plane cation composition in perovskite solar cells. Nature 2023, 624, 557–563. [Google Scholar] [CrossRef] [PubMed]
- Jung, E.H.; Jeon, N.J.; Park, E.Y.; Moon, C.S.; Shin, T.J.; Yang, T.-Y.; Noh, J.H.; Seo, J. Efficient, stable and scalable perovskite solar cells using poly(3-hexylthiophene). Nature 2019, 567, 511–515. [Google Scholar] [CrossRef]
- Tang, L.; Qiu, J.; Wei, Q.; Gu, H.; Du, B.; Du, H.; Hui, W.; Xia, Y.; Chen, Y.; Huang, W. Enhanced Performance of Perovskite Light-Emitting Diodes via Diamine Interface Modification. ACS Appl. Mater. Interfaces 2019, 11, 29132–29138. [Google Scholar] [CrossRef]
- Kumawat, N.K.; Liu, X.-K.; Kabra, D.; Gao, F. Blue perovskite light-emitting diodes: Progress, challenges and future directions. Nanoscale 2019, 11, 2109–2120. [Google Scholar] [CrossRef]
- He, M.; Cheng, Y.; Yuan, R.; Zhou, L.; Jiang, J.; Xu, T.; Chen, W.; Liu, Z.; Xiang, W.; Liang, X. Mn-Doped cesium lead halide perovskite nanocrystals with dual-color emission for WLED. Dye. Pigment. 2018, 152, 146–154. [Google Scholar] [CrossRef]
- Sutherland, B.R.; Johnston, A.K.; Ip, A.H.; Xu, J.; Adinolfi, V.; Kanjanaboos, P.; Sargent, E.H. Sensitive, Fast, and Stable Perovskite Photodetectors Exploiting Interface Engineering. ACS Photonics 2015, 2, 1117–1123. [Google Scholar] [CrossRef]
- Lee, Y.; Kwon, J.; Hwang, E.; Ra, C.H.; Yoo, W.J.; Ahn, J.H.; Park, J.H.; Cho, J.H. High-performance perovskite-graphene hybrid photodetector. Adv. Mater. 2015, 27, 41–46. [Google Scholar] [CrossRef]
- Dou, L.; Yang, Y.M.; You, J.; Hong, Z.; Chang, W.H.; Li, G.; Yang, Y. Solution-processed hybrid perovskite photodetectors with high detectivity. Nat. Commun. 2014, 5, 5404. [Google Scholar] [CrossRef] [PubMed]
- Yakunin, S.; Sytnyk, M.; Kriegner, D.; Shrestha, S.; Richter, M.; Matt, G.J.; Azimi, H.; Brabec, C.J.; Stangl, J.; Kovalenko, M.V.; et al. Detection of X-ray photons by solution-processed organic-inorganic perovskites. Nat. Photonics 2015, 9, 444–449. [Google Scholar] [CrossRef] [PubMed]
- Wei, H.; Fang, Y.; Mulligan, P.; Chuirazzi, W.; Fang, H.-H.; Wang, C.; Ecker, B.R.; Gao, Y.; Loi, M.A.; Cao, L.; et al. Sensitive X-ray detectors made of methylammonium lead tribromide perovskite single crystals. Nat. Photonics 2016, 10, 333–339. [Google Scholar] [CrossRef]
- Su, L.; Zhao, Z.X.; Li, H.Y.; Yuan, J.; Wang, Z.L.; Cao, G.Z.; Zhu, G. High-Performance Organolead Halide Perovskite-Based Self-Powered Triboelectric Photodetector. ACS Nano 2015, 9, 11310–11316. [Google Scholar] [CrossRef] [PubMed]
- Stoumpos, C.C.; Malliakas, C.D.; Peters, J.A.; Liu, Z.; Sebastian, M.; Im, J.; Chasapis, T.C.; Wibowo, A.C.; Chung, D.Y.; Freeman, A.J.; et al. Crystal Growth of the Perovskite Semiconductor CsPbBr3: A New Material for High-Energy Radiation Detection. Cryst. Growth Des. 2013, 13, 2722–2727. [Google Scholar] [CrossRef]
- Ramasamy, P.; Lim, D.H.; Kim, B.; Lee, S.H.; Lee, M.S.; Lee, J.S. All-inorganic cesium lead halide perovskite nanocrystals for photodetector applications. Chem. Commun. 2016, 52, 2067–2070. [Google Scholar] [CrossRef]
- Lin, Q.; Armin, A.; Lyons, D.M.; Burn, P.L.; Meredith, P. Low noise, IR-blind organohalide perovskite photodiodes for visible light detection and imaging. Adv. Mater. 2015, 27, 2060–2064. [Google Scholar] [CrossRef]
- Hu, X.; Zhang, X.; Liang, L.; Bao, J.; Li, S.; Yang, W.; Xie, Y. High-Performance Flexible Broadband Photodetector Based on Organolead Halide Perovskite. Adv. Funct. Mater. 2014, 24, 7373–7380. [Google Scholar] [CrossRef]
- Gu, L.; Tavakoli, M.M.; Zhang, D.; Zhang, Q.; Waleed, A.; Xiao, Y.; Tsui, K.H.; Lin, Y.; Liao, L.; Wang, J.; et al. 3D Arrays of 1024-Pixel Image Sensors based on Lead Halide Perovskite Nanowires. Adv. Mater. 2016, 28, 9713–9721. [Google Scholar] [CrossRef] [PubMed]
- Deng, W.; Zhang, X.; Huang, L.; Xu, X.; Wang, L.; Wang, J.; Shang, Q.; Lee, S.T.; Jie, J. Aligned Single-Crystalline Perovskite Microwire Arrays for High-Performance Flexible Image Sensors with Long-Term Stability. Adv. Mater. 2016, 28, 2201–2208. [Google Scholar] [CrossRef] [PubMed]
- Senanayak, S.P.; Yang, B.; Thomas, T.H.; Giesbrecht, N.; Huang, W.; Gann, E.; Nair, B.; Goedel, K.; Guha, S.; Moya, X.; et al. Understanding charge transport in lead iodide perovskite thin-film field-effect transistors. Sci. Adv. 2017, 3, e1601935. [Google Scholar] [CrossRef] [PubMed]
- Chin, X.Y.; Cortecchia, D.; Yin, J.; Bruno, A.; Soci, C. Lead iodide perovskite light-emitting field-effect transistor. Nat. Commun. 2015, 6, 7383. [Google Scholar] [CrossRef] [PubMed]
- Matsushima, T.; Mathevet, F.; Heinrich, B.; Terakawa, S.; Fujihara, T.; Qin, C.; Sandanayaka, A.S.D.; Ribierre, J.-C.; Adachi, C. N-channel field-effect transistors with an organic-inorganic layered perovskite semiconductor. Appl. Phys. Lett. 2016, 109, 253301. [Google Scholar] [CrossRef]
- Zhuang, Y.; Yuan, W.; Qian, L.; Chen, S.; Shi, G. High-performance gas sensors based on a thiocyanate ion-doped organometal halide perovskite. Phys. Chem. Chem. Phys. 2017, 19, 12876–12881. [Google Scholar] [CrossRef]
- Choi, J.; Le, Q.V.; Hong, K.; Moon, C.W.; Han, J.S.; Kwon, K.C.; Cha, P.-R.; Kwon, Y.; Kim, S.Y.; Jang, H.W. Enhanced Endurance Organolead Halide Perovskite Resistive Switching Memories Operable under an Extremely Low Bending Radius. ACS Appl. Mater. Interfaces 2017, 9, 30764–30771. [Google Scholar] [CrossRef]
- Liu, Y.; Li, F.; Chen, Z.; Guo, T.; Wu, C.; Kim, T.W. Resistive switching memory based on organic/inorganic hybrid perovskite materials. Vacuum 2016, 130, 109–112. [Google Scholar] [CrossRef]
- Hwang, B.; Gu, C.; Lee, D.; Lee, J.-S. Effect of halide-mixing on the switching behaviors of organic-inorganic hybrid perovskite memory. Sci. Rep. 2017, 7, 43794. [Google Scholar] [CrossRef]
- Yoo, E.J.; Lyu, M.; Yun, J.-H.; Kang, C.J.; Choi, Y.J.; Wang, L. Resistive Switching Behavior in Organic–Inorganic Hybrid CH3NH3PbI3−xClx Perovskite for Resistive Random Access Memory Devices. Adv. Mater. 2015, 27, 6170–6175. [Google Scholar] [CrossRef] [PubMed]
- Han, J.S.; Le, Q.V.; Choi, J.; Hong, K.; Moon, C.W.; Kim, T.L.; Kim, H.; Kim, S.Y.; Jang, H.W. Air-Stable Cesium Lead Iodide Perovskite for Ultra-Low Operating Voltage Resistive Switching. Adv. Funct. Mater. 2018, 28, 1705783. [Google Scholar] [CrossRef]
- Deschler, F.; Price, M.; Pathak, S.; Klintberg, L.E.; Jarausch, D.-D.; Higler, R.; Hüttner, S.; Leijtens, T.; Stranks, S.D.; Snaith, H.J.; et al. High Photoluminescence Efficiency and Optically Pumped Lasing in Solution-Processed Mixed Halide Perovskite Semiconductors. J. Phys. Chem. Lett. 2014, 5, 1421–1426. [Google Scholar] [CrossRef]
- Li, G.; Rivarola, F.W.; Davis, N.J.; Bai, S.; Jellicoe, T.C.; de la Pena, F.; Hou, S.; Ducati, C.; Gao, F.; Friend, R.H.; et al. Highly Efficient Perovskite Nanocrystal Light-Emitting Diodes Enabled by a Universal Crosslinking Method. Adv. Mater. 2016, 28, 3528–3534. [Google Scholar] [CrossRef] [PubMed]
- Lin, K.; Xing, J.; Quan, L.N.; de Arquer, F.P.G.; Gong, X.; Lu, J.; Xie, L.; Zhao, W.; Zhang, D.; Yan, C.; et al. Perovskite light-emitting diodes with external quantum efficiency exceeding 20 per cent. Nature 2018, 562, 245–248. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.; Cheng, L.-P.; Li, Y.-Q.; Li, W.; Chen, J.-D.; Lee, S.-T.; Tang, J.-X. High-Efficiency Perovskite Light-Emitting Diodes with Synergetic Outcoupling Enhancement. Adv. Mater. 2019, 31, 1901517. [Google Scholar] [CrossRef] [PubMed]
- Green, M.A.; Ho-Baillie, A.; Snaith, H.J. The emergence of perovskite solar cells. Nat. Photonics 2014, 8, 506–514. [Google Scholar] [CrossRef]
- Daub, M.; Hillebrecht, H. Synthesis, Single-Crystal Structure and Characterization of (CH3NH3)2Pb(SCN)2I2. Angew. Chem. 2015, 54, 11016–11017. [Google Scholar] [CrossRef]
- Jiang, Q.; Rebollar, D.; Gong, J.; Piacentino, E.L.; Zheng, C.; Xu, T. Pseudohalide-Induced Moisture Tolerance in Perovskite CH3NH3Pb(SCN)2I Thin Films. Angew. Chem. 2015, 54, 7617. [Google Scholar] [CrossRef]
- Kazim, S.; Nazeeruddin, M.K.; Gratzel, M.; Ahmad, S. Perovskite as light harvester: A game changer in photovoltaics. Angew. Chem. 2014, 53, 2812–2824. [Google Scholar] [CrossRef]
- Stranks, S.D.; Eperon, G.E.; Grancini, G.; Menelaou, C.; Alcocer, M.J.; Leijtens, T.; Herz, L.M.; Petrozza, A.; Snaith, H.J. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 2013, 342, 341–344. [Google Scholar] [CrossRef] [PubMed]
- Yin, W.J.; Shi, T.; Yan, Y. Unique properties of halide perovskites as possible origins of the superior solar cell performance. Adv. Mater. 2014, 26, 4653–4658. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Z.; Lin, J. Layered organic–inorganic hybrid perovskites: Structure, optical properties, film preparation, patterning and templating engineering. CrystEngComm 2010, 12, 2646–2662. [Google Scholar] [CrossRef]
- Tanaka, K.; Takahashi, T.; Ban, T.; Kondo, T.; Uchida, K.; Miura, N. Comparative study on the excitons in lead-halide-based perovskite-type crystals CH3NH3PbBr3 CH3NH3PbI3. Solid State Commun. 2003, 127, 619–623. [Google Scholar] [CrossRef]
- Hirasawa, M.; Ishihara, T.; Goto, T. Exciton Features in 0-, 2-, and 3-Dimensional Networks of [PbI6]4− Octahedra. J. Phys. Soc. Jpn. 1994, 63, 3870–3879. [Google Scholar] [CrossRef]
- Hong, X.; Ishihara, T.; Nurmikko, A.V. Dielectric confinement effect on excitons in PbI4− based layered semiconductors. Phys. Rev. B 1992, 45, 6961–6964. [Google Scholar] [CrossRef] [PubMed]
- Song, J.; Li, J.; Li, X.; Xu, L.; Dong, Y.; Zeng, H. Quantum Dot Light-Emitting Diodes Based on Inorganic Perovskite Cesium Lead Halides (CsPbX3). Adv. Mater. 2015, 27, 7162–7167. [Google Scholar] [CrossRef]
- Zhang, Q.; Su, R.; Du, W.; Liu, X.; Zhao, L.; Ha, S.T.; Xiong, Q. Advances in Small Perovskite-Based Lasers. Small Methods 2017, 1, 1700163. [Google Scholar] [CrossRef]
- Zhang, L.; Zeng, Q.; Wang, K. Pressure-Induced Structural and Optical Properties of Inorganic Halide Perovskite CsPbBr3. J. Phys. Chem. Lett. 2017, 8, 3752–3758. [Google Scholar] [CrossRef]
- Narayan, R.L.; Sarma, M.V.S.; Suryanarayana, S.V. Ionic conductivity of CsPbCl3 and CsPbBr3. J. Mater. Sci. Lett. 1987, 6, 93–94. [Google Scholar] [CrossRef]
- Koji, Y.; Yasuhisa, K.; Keita, U.; Shusaku, G.; Tsutomu, O.; Yoshihiro, F. Phase Transition and Electric Conductivity of ASnCl3 (A = Cs and CH3NH3). Bull. Chem. Soc. Jpn. 1998, 71, 127–134. [Google Scholar] [CrossRef]
- Mitzi, D.B.; Feild, C.A.; Schlesinger, Z.; Laibowitz, R.B. Transport, Optical, and Magnetic Properties of the Conducting Halide Perovskite CH3NH3SnI3. J. Solid State Chem. 1995, 114, 159–163. [Google Scholar] [CrossRef]
- Mitzi, D.B.; Liang, K. Synthesis, Resistivity, and Thermal Properties of the Cubic Perovskite NH2CH=NH2SnI3 and Related Systems. J. Solid State Chem. 1997, 134, 376–381. [Google Scholar] [CrossRef]
- Takahashi, Y.; Hasegawa, H.; Takahashi, Y.; Inabe, T. Hall mobility in tin iodide perovskite CH3NH3SnI3: Evidence for a doped semiconductor. J. Solid State Chem. 2013, 205, 39–43. [Google Scholar] [CrossRef]
- Matsushima, T.; Fujita, K.; Tsutsui, T. Preparation of Conductive Organic–Inorganic Cubic Perovskite Thin Films by Dual-Source Vacuum Vapor Deposition. Jpn. J. Appl. Phys. 2006, 45, 523–525. [Google Scholar] [CrossRef]
- Scaife, D.E.; Weller, P.F.; Fisher, W.G. Crystal preparation and properties of cesium tin(II) trihalides. J. Solid State Chem. 1974, 9, 308–314. [Google Scholar] [CrossRef]
- Stoumpos, C.C.; Malliakas, C.D.; Kanatzidis, M.G. Semiconducting Tin and Lead Iodide Perovskites with Organic Cations: Phase Transitions, High Mobilities, and Near-Infrared Photoluminescent Properties. Inorg. Chem. 2013, 52, 9019–9038. [Google Scholar] [CrossRef]
- Chung, I.; Song, J.-H.; Im, J.; Androulakis, J.; Malliakas, C.D.; Li, H.; Freeman, A.J.; Kenney, J.T.; Kanatzidis, M.G. CsSnI3: Semiconductor or Metal? High Electrical Conductivity and Strong Near-Infrared Photoluminescence from a Single Material. High Hole Mobility and Phase-Transitions. J. Am. Chem. Soc. 2012, 134, 8579–8587. [Google Scholar] [CrossRef]
- Dong, Q.; Fang, Y.; Shao, Y.; Mulligan, P.; Qiu, J.; Cao, L.; Huang, J. Electron-hole diffusion lengths > 175 μm in solution-grown CH3NH3PbI3 single crystals. Science 2015, 347, 967–970. [Google Scholar] [CrossRef]
- Shi, D.; Adinolfi, V.; Comin, R.; Yuan, M.; Alarousu, E.; Buin, A.; Chen, Y.; Hoogland, S.; Rothenberger, A.; Katsiev, K.; et al. Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals. Science 2015, 347, 519–522. [Google Scholar] [CrossRef]
- Valverde-Chávez, D.A.; Ponseca, C.S.; Stoumpos, C.C.; Yartsev, A.; Kanatzidis, M.G.; Sundström, V.; Cooke, D.G. Intrinsic femtosecond charge generation dynamics in single crystal CH3NH3PbI3. Energy Environ. Sci. 2015, 8, 3700–3707. [Google Scholar] [CrossRef]
- Liang, P.W.; Liao, C.Y.; Chueh, C.C.; Zuo, F.; Williams, S.T.; Xin, X.K.; Lin, J.; Jen, A.K. Additive enhanced crystallization of solution-processed perovskite for highly efficient planar-heterojunction solar cells. Adv. Mater. 2014, 26, 3748–3754. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Saliba, M.; Moore, D.T.; Pathak, S.K.; Hörantner, M.T.; Stergiopoulos, T.; Stranks, S.D.; Eperon, G.E.; Alexander-Webber, J.A.; Abate, A.; et al. Ultrasmooth organic–inorganic perovskite thin-film formation and crystallization for efficient planar heterojunction solar cells. Nat. Commun. 2015, 6, 6142. [Google Scholar] [CrossRef]
- Kim, Y.Y.; Park, E.Y.; Yang, T.-Y.; Noh, J.H.; Shin, T.J.; Jeon, N.J.; Seo, J. Fast two-step deposition of perovskite via mediator extraction treatment for large-area, high-performance perovskite solar cells. J. Mater. Chem. A 2018, 6, 12447–12454. [Google Scholar] [CrossRef]
- Protesescu, L.; Yakunin, S.; Bodnarchuk, M.I.; Krieg, F.; Caputo, R.; Hendon, C.H.; Yang, R.X.; Walsh, A.; Kovalenko, M.V. Nanocrystals of Cesium Lead Halide Perovskites (CsPbX3, X = Cl, Br, and I): Novel Optoelectronic Materials Showing Bright Emission with Wide Color Gamut. Nano Lett. 2015, 15, 3692–3696. [Google Scholar] [CrossRef] [PubMed]
- Shamsi, J.; Dang, Z.; Bianchini, P.; Canale, C.; Di Stasio, F.; Brescia, R.; Prato, M.; Manna, L. Colloidal Synthesis of Quantum Confined Single Crystal CsPbBr3 Nanosheets with Lateral Size Control up to the Micrometer Range. J. Am. Chem. Soc. 2016, 138, 7240–7243. [Google Scholar] [CrossRef] [PubMed]
- Parobek, D.; Dong, Y.; Qiao, T.; Son, D.H. Direct Hot-Injection Synthesis of Mn-Doped CsPbBr3 Nanocrystals. Chem. Mater. 2018, 30, 2939–2944. [Google Scholar] [CrossRef]
- Zhong, Q.; Cao, M.; Hu, H.; Yang, D.; Chen, M.; Li, P.; Wu, L.; Zhang, Q. One-Pot Synthesis of Highly Stable CsPbBr3@SiO2 Core–Shell Nanoparticles. ACS Nano 2018, 12, 8579–8587. [Google Scholar] [CrossRef]
- De Bastiani, M.; Dursun, I.; Zhang, Y.; Alshankiti, B.A.; Miao, X.-H.; Yin, J.; Yengel, E.; Alarousu, E.; Turedi, B.; Almutlaq, J.M.; et al. Inside Perovskites: Quantum Luminescence from Bulk Cs4PbBr6 Single Crystals. Chem. Mater. 2017, 29, 7108–7113. [Google Scholar] [CrossRef]
- Zhang, M.; Wang, Z.; Zhou, B.; Jia, X.; Ma, Q.; Yuan, N.; Zheng, X.; Ding, J.; Zhang, W.-H. Green Anti-Solvent Processed Planar Perovskite Solar Cells with Efficiency Beyond 19%. Sol. RRL 2018, 2, 1700213. [Google Scholar] [CrossRef]
- Liu, M.; Johnston, M.B.; Snaith, H.J. Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 2013, 501, 395–398. [Google Scholar] [CrossRef]
- Leyden, M.R.; Ono, L.K.; Raga, S.R.; Kato, Y.; Wang, S.; Qi, Y. High performance perovskite solar cells by hybrid chemical vapor deposition. J. Mater. Chem. A 2014, 2, 18742–18745. [Google Scholar] [CrossRef]
- Tavakoli, M.M.; Gu, L.; Gao, Y.; Reckmeier, C.; He, J.; Rogach, A.L.; Yao, Y.; Fan, Z. Fabrication of efficient planar perovskite solar cells using a one-step chemical vapor deposition method. Sci. Rep. 2015, 5, 14083. [Google Scholar] [CrossRef] [PubMed]
- Tong, G.; Li, H.; Li, D.; Zhu, Z.; Xu, E.; Li, G.; Yu, L.; Xu, J.; Jiang, Y. Dual-Phase CsPbBr3–CsPb2Br5 Perovskite Thin Films via Vapor Deposition for High-Performance Rigid and Flexible Photodetectors. Small 2018, 14, 1702523. [Google Scholar] [CrossRef]
- Lin, D.; Zhang, T.; Wang, J.; Long, M.; Xie, F.; Chen, J.; Wu, B.; Shi, T.; Yan, K.; Xie, W.; et al. Stable and scalable 3D-2D planar heterojunction perovskite solar cells via vapor deposition. Nano Energy 2019, 59, 619–625. [Google Scholar] [CrossRef]
- Zhang, F.; Zhong, H.; Chen, C.; Wu, X.-g.; Hu, X.; Huang, H.; Han, J.; Zou, B.; Dong, Y. Brightly Luminescent and Color-Tunable Colloidal CH3NH3PbX3 (X = Br, I, Cl) Quantum Dots: Potential Alternatives for Display Technology. ACS Nano 2015, 9, 4533–4542. [Google Scholar] [CrossRef] [PubMed]
- Sun, S.; Yuan, D.; Xu, Y.; Wang, A.; Deng, Z. Ligand-Mediated Synthesis of Shape-Controlled Cesium Lead Halide Perovskite Nanocrystals via Reprecipitation Process at Room Temperature. ACS Nano 2016, 10, 3648–3657. [Google Scholar] [CrossRef] [PubMed]
- Lewis, N.S.; Nocera, D.G. Powering the planet: Chemical challenges in Sol. Energy utilization. Proc. Natl. Acad. Sci. USA 2006, 103, 15729–15735. [Google Scholar] [CrossRef] [PubMed]
- Green, M.A.; Emery, K.; Hishikawa, Y.; Warta, W.; Dunlop, E.D. Solar cell efficiency tables (version 42). Prog. Photovolt. 2013, 21, 827–837. [Google Scholar] [CrossRef]
- Fthenakis, V. Sustainability of photovoltaics: The case for thin-film solar cells. Renew. Sustain. Energy Rev. 2009, 13, 2746–2750. [Google Scholar] [CrossRef]
- Ahmad, S.; Guillen, E.; Kavan, L.; Gratzel, M.; Nazeeruddin, M.K. Metal free sensitizer and catalyst for dye sensitized solar cells. Energy Environ. Sci. 2013, 6, 3439–3466. [Google Scholar] [CrossRef]
- Yella, A.; Lee, H.W.; Tsao, H.N.; Yi, C.; Chandiran, A.K.; Nazeeruddin, M.K.; Diau, E.W.-G.; Yeh, C.-Y.; Zakeeruddin, Z.M.; Grätzel, M. Electrolyte Exceed 12 Percent Efficiency Porphyrin-Sensitized Solar Cells with Cobalt (II/III)-Based Redox. Science 2011, 334, 629–633. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Q.; Yeh, Y.-P.; Lu, N.; Kuo, H.-W.; Lesslie, M.; Xu, T. The influence of fluoroalkyl chains in redox electrolytes for energy conversion. J. Renew. Sustain. Energy 2016, 8, 013701. [Google Scholar] [CrossRef]
- O’regan, B.; Grätzel, M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 1991, 353, 737–740. [Google Scholar] [CrossRef]
- Hagfeldt, A.; Graetzel, M. Light-Induced Redox Reactions in Nanocrystalline Systems. Chem. Rev. 1995, 95, 49–68. [Google Scholar] [CrossRef]
- Yang, W.S.; Noh, J.H.; Jeon, N.J.; Kim, Y.C.; Ryu, S.; Seo, J.; Seok, S.I. High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science 2015, 348, 1234–1237. [Google Scholar] [CrossRef] [PubMed]
- You, J.; Meng, L.; Song, T.B.; Guo, T.F.; Yang, Y.M.; Chang, W.H.; Hong, Z.; Chen, H.; Zhou, H.; Chen, Q.; et al. Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers. Nat. Nanotechnol. 2016, 11, 75–81. [Google Scholar] [CrossRef]
- Mei, A.; Li, X.; Liu, L.; Ku, Z.; Liu, T.; Rong, Y.; Xu, M.; Hu, M.; Chen, J.; Yang, Y.; et al. A hole-conductor-free, fully printable mesoscopic perovskite solar cell with high stability. Science 2014, 345, 295–298. [Google Scholar] [CrossRef]
- Jiang, Q.; Sheng, X.; Li, Y.; Feng, X.; Xu, T. Rutile TiO2 nanowire-based perovskite solar cells. Chem. Commun. 2014, 50, 14720–14723. [Google Scholar] [CrossRef]
- Jiang, Q.; Sheng, X.; Shi, B.; Feng, X.; Xu, T. Nickel-Cathoded Perovskite Solar Cells. J. Phys. Chem. C 2014, 118, 25878–25883. [Google Scholar] [CrossRef]
- Burschka, J.; Pellet, N.; Moon, S.J.; Humphry-Baker, R.; Gao, P.; Nazeeruddin, M.K.; Gratzel, M. Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 2013, 499, 316–320. [Google Scholar] [CrossRef]
- Jeon, N.J.; Noh, J.H.; Yang, W.S.; Kim, Y.C.; Ryu, S.; Seo, J.; Seok, S.I. Compositional engineering of perovskite materials for high-performance solar cells. Nature 2015, 517, 476–480. [Google Scholar] [CrossRef]
- Saliba, M.; Matsui, T.; Seo, J.Y.; Domanski, K.; Correa-Baena, J.P.; Nazeeruddin, M.K.; Zakeeruddin, S.M.; Tress, W.; Abate, A.; Hagfeldt, A.; et al. Cesium-containing triple cation perovskite solar cells: Improved stability, reproducibility and high efficiency. Energy Environ. Sci. 2016, 9, 1989–1997. [Google Scholar] [CrossRef]
- Yi, C.; Luo, J.; Meloni, S.; Boziki, A.; Ashari-Astani, N.; Grätzel, C.; Zakeeruddin, S.M.; Röthlisberger, U.; Grätzel, M. Entropic stabilization of mixed A-cation ABX3 metal halide perovskites for high performance perovskite solar cells. Energy Environ. Sci. 2016, 9, 656–662. [Google Scholar] [CrossRef]
- Lee, M.M.; Teuscher, J.; Miyasaka, T.; Murakami, T.N.; Snaith, H.J. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 2012, 338, 643–647. [Google Scholar] [CrossRef]
- Zhou, H.P.; Chen, Q.; Li, G.; Luo, S.; Song, T.B.; Duan, H.S.; Hong, Z.R.; You, J.B.; Liu, Y.S.; Yang, Y. Interface engineering of highly efficient perovskite solar cells. Science 2014, 345, 542–546. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.S.; Lee, J.W.; Yantara, N.; Boix, P.P.; Kulkarni, S.A.; Mhaisalkar, S.; Gratzel, M.; Park, N.G. High efficiency solid-state sensitized solar cell-based on submicrometer rutile TiO2 nanorod and CH3NH3PbI3 perovskite sensitizer. Nano Lett. 2013, 13, 2412–2417. [Google Scholar] [CrossRef] [PubMed]
- Yella, A.; Heiniger, L.P.; Gao, P.; Nazeeruddin, M.K.; Gratzel, M. Nanocrystalline rutile electron extraction layer enables low-temperature solution processed perovskite photovoltaics with 13.7% efficiency. Nano Lett. 2014, 14, 2591–2596. [Google Scholar] [CrossRef] [PubMed]
- Ramos, F.J.; Lopez-Santos, M.C.; Guillen, E.; Nazeeruddin, M.K.; Gratzel, M.; Gonzalez-Elipe, A.R.; Ahmad, S. Perovskite solar cells based on nanocolumnar plasma-deposited ZnO thin films. ChemPhysChem 2014, 15, 1148–1153. [Google Scholar] [CrossRef]
- Son, D.-Y.; Im, J.-H.; Kim, H.-S.; Park, N.-G. 11% Efficient Perovskite Solar Cell Based on ZnO Nanorods: An Effective Charge Collection System. J. Phys. Chem. C 2014, 118, 16567–16573. [Google Scholar] [CrossRef]
- Tan, K.W.; Moore, D.T.; Saliba, M.; Sai, H.; Estroff, L.A.; Hanrath, T.; Snaith, H.J.; Wiesner, U. Thermally induced structural evolution and performance of mesoporous block copolymer-directed alumina perovskite solar cells. ACS Nano 2014, 8, 4730–4739. [Google Scholar] [CrossRef] [PubMed]
- Thambidurai, M.; Dewi, H.A.; Harikesh, P.C.; Foo, S.; Muhammed Salim, K.M.; Mathews, N.; Dang, C. Highly Efficient Perovskite Solar Cells with Ba(OH)2 Interface Modification of Mesoporous TiO2 Electron Transport Layer. ACS Appl. Energy Mater. 2018, 1, 5847–5852. [Google Scholar] [CrossRef]
- Singh, T.; Öz, S.; Sasinska, A.; Frohnhoven, R.; Mathur, S.; Miyasaka, T. Sulfate-Assisted Interfacial Engineering for High Yield and Efficiency of Triple Cation Perovskite Solar Cells with Alkali-Doped TiO2 Electron-Transporting Layers. Adv. Funct. Mater. 2018, 28, 1706287. [Google Scholar] [CrossRef]
- Yang, L.; Wang, X.; Mai, X.; Wang, T.; Wang, C.; Li, X.; Murugadoss, V.; Shao, Q.; Angaiah, S.; Guo, Z. Constructing efficient mixed-ion perovskite solar cells based on TiO2 nanorod array. J. Colloid Interface Sci. 2019, 534, 459–468. [Google Scholar] [CrossRef]
- Kogo, A.; Sanehira, Y.; Numata, Y.; Ikegami, M.; Miyasaka, T. Amorphous Metal Oxide Blocking Layers for Highly Efficient Low-Temperature Brookite TiO2-Based Perovskite Solar Cells. ACS Appl. Mater. Interfaces 2018, 10, 2224–2229. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Liu, Z.; Sun, B.; Tan, X.; Ye, H.; Tu, Y.; Shi, T.; Tang, Z.; Liao, G. 17.46% efficient and highly stable carbon-based planar perovskite solar cells employing Ni-doped rutile TiO2 as electron transport layer. Nano Energy 2018, 50, 201–211. [Google Scholar] [CrossRef]
- Wang, Y.; Wan, J.; Ding, J.; Hu, J.-S.; Wang, D. A Rutile TiO2 Electron Transport Layer for the Enhancement of Charge Collection for Efficient Perovskite Solar Cells. Angew. Chem. 2019, 58, 9414–9418. [Google Scholar] [CrossRef]
- Padilla, C.; Aryal, S.; Sumant, A.; Jiang, Q.; Kaul, A.B. Comparative Analysis of White-Light Absorption Efficiency in Multi-Dimensional Perovskites. In Proceedings of the 2023 IEEE MetroCon, Hurst, TX, USA, 2 November 2023. [Google Scholar] [CrossRef]
- Tsai, H.; Nie, W.; Blancon, J.-C.; Stoumpos, C.C.; Asadpour, R.; Harutyunyan, B.; Neukirch, A.J.; Verduzco, R.; Crochet, J.J.; Tretiak, S.; et al. High-efficiency two-dimensional Ruddlesden–Popper perovskite solar cells. Nature 2016, 536, 312–316. [Google Scholar] [CrossRef]
- Blancon, J.-C.; Tsai, H.; Nie, W.; Stoumpos, C.C.; Pedesseau, L.; Katan, C.; Kepenekian, M.; Soe, C.M.M.; Appavoo, K.; Sfeir, M.Y.; et al. Extremely efficient internal exciton dissociation through edge states in layered 2D perovskites. Science 2017, 355, 1288–1292. [Google Scholar] [CrossRef]
- Kranthiraja, K.; Aryal, S.; Temsal, M.; Sharma, M.; Kaul, A.B. Optical Property and Stability Study of CH3(CH2)3NH3)2(CH3NH3)3Pb4I13 Ruddlesden Popper 2D Perovskites for Photoabsorbers and Solar Cells and Comparison with 3D MAPbI3. Solar 2022, 2, 385–400. [Google Scholar] [CrossRef]
- Jeon, N.J.; Lee, H.G.; Kim, Y.C.; Seo, J.; Noh, J.H.; Lee, J.; Seok, S.I. o-Methoxy substituents in spiro-OMeTAD for efficient inorganic-organic hybrid perovskite solar cells. J. Am. Chem. Soc. 2014, 136, 7837–7840. [Google Scholar] [CrossRef]
- Nguyen, W.H.; Bailie, C.D.; Unger, E.L.; McGehee, M.D. Enhancing the hole-conductivity of spiro-OMeTAD without oxygen or lithium salts by using spiro(TFSI)2 in perovskite and dye-sensitized solar cells. J. Am. Chem. Soc. 2014, 136, 10996–11001. [Google Scholar] [CrossRef] [PubMed]
- Xu, B.; Sheibani, E.; Liu, P.; Zhang, J.; Tian, H.; Vlachopoulos, N.; Boschloo, G.; Kloo, L.; Hagfeldt, A.; Sun, L. Carbazole-Based Hole-Transport Materials for Efficient Solid-State Dye-Sensitized Solar Cells and Perovskite Solar Cells. Adv. Mater. 2014, 26, 6629–6634. [Google Scholar] [CrossRef] [PubMed]
- Qin, P.; Paek, S.; Dar, M.I.; Pellet, N.; Ko, J.; Gratzel, M.; Nazeeruddin, M.K. Perovskite solar cells with 12.8% efficiency by using conjugated quinolizino acridine based hole transporting material. J. Am. Chem. Soc. 2014, 136, 8516–8519. [Google Scholar] [CrossRef]
- Jeon, N.J.; Lee, J.; Noh, J.H.; Nazeeruddin, M.K.; Gratzel, M.; Seok, S.I. Efficient inorganic-organic hybrid perovskite solar cells based on pyrene arylamine derivatives as hole-transporting materials. J. Am. Chem. Soc. 2013, 135, 19087–19090. [Google Scholar] [CrossRef] [PubMed]
- Jeon, N.J.; Na, H.; Jung, E.H.; Yang, T.-Y.; Lee, Y.G.; Kim, G.; Shin, H.-W.; Il Seok, S.; Lee, J.; Seo, J. A fluorene-terminated hole-transporting material for highly efficient and stable perovskite solar cells. Nat. Energy 2018, 3, 682–689. [Google Scholar] [CrossRef]
- Christians, J.A.; Fung, R.C.; Kamat, P.V. An inorganic hole conductor for organo-lead halide perovskite solar cells. Improved hole conductivity with copper iodide. J. Am. Chem. Soc. 2014, 136, 758–764. [Google Scholar] [CrossRef]
- Pang, S.; Hu, H.; Zhang, J.; Lv, S.; Yu, Y.; Wei, F.; Qin, T.; Xu, H.; Liu, Z.; Cui, G. NH2CH═NH2PbI3: An Alternative Organolead Iodide Perovskite Sensitizer for Mesoscopic Solar Cells. Chem. Mater. 2014, 26, 1485–1491. [Google Scholar] [CrossRef]
- Arora, N.; Dar, M.I.; Hinderhofer, A.; Pellet, N.; Schreiber, F.; Zakeeruddin, S.M.; Grätzel, M. Perovskite solar cells with CuSCN hole extraction layers yield stabilized efficiencies greater than 20%. Science 2017, 358, 768–771. [Google Scholar] [CrossRef]
- Zhou, H.W.; Shi, Y.T.; Dong, Q.S.; Zhang, H.; Xing, Y.J.; Wang, K.; Du, Y.; Ma, T.L. Hole-Conductor-Free, Metal-Electrode-Free TiO2/CH3NH3PbI3 Heterojunction Solar Cells Based on a Low-Temperature Carbon Electrode. J. Phys. Chem. Lett. 2014, 5, 3241–3246. [Google Scholar] [CrossRef]
- Shi, J.; Dong, J.; Lv, S.; Xu, Y.; Zhu, L.; Xiao, J.; Xu, X.; Wu, H.; Li, D.; Luo, Y.; et al. Hole-conductor-free perovskite organic lead iodide heterojunction thin-film solar cells: High efficiency and junction property. Appl. Phys. Lett. 2014, 104, 063901. [Google Scholar] [CrossRef]
- Kim, H.S.; Lee, C.R.; Im, J.H.; Lee, K.B.; Moehl, T.; Marchioro, A.; Moon, S.J.; Humphry-Baker, R.; Yum, J.H.; Moser, J.E.; et al. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci. Rep. 2012, 2, 591. [Google Scholar] [CrossRef]
- Hao, F.; Stoumpos, C.C.; Cao, D.H.; Chang, R.P.H.; Kanatzidis, M.G. Lead-free solid-state organic–inorganic halide perovskite solar cells. Nat. Photonics 2014, 8, 489–494. [Google Scholar] [CrossRef]
- Noel, N.K.; Stranks, S.D.; Abate, A.; Wehrenfennig, C.; Guarnera, S.; Haghighirad, A.A.; Sadhanala, A.; Eperon, G.E.; Pathak, S.K.; Johnston, M.B.; et al. Lead-free organic-inorganic tin halide perovskites for photovoltaic applications. Energy Environ. Sci. 2014, 7, 3061–3068. [Google Scholar] [CrossRef]
- Hao, F.; Stoumpos, C.C.; Chang, R.P.; Kanatzidis, M.G. Anomalous band gap behavior in mixed Sn and Pb perovskites enables broadening of absorption spectrum in solar cells. J. Am. Chem. Soc. 2014, 136, 8094–8099. [Google Scholar] [CrossRef] [PubMed]
- Tidhar, Y.; Edri, E.; Weissman, H.; Zohar, D.; Hodes, G.; Cahen, D.; Rybtchinski, B.; Kirmayer, S. Crystallization of Methyl Ammonium Lead Halide Perovskites: Implications for Photovoltaic Applications. J. Am. Chem. Soc. 2014, 136, 13249–13256. [Google Scholar] [CrossRef]
- Im, J.H.; Jang, I.H.; Pellet, N.; Gratzel, M.; Park, N.G. Growth of CH3N3HPbI3 cuboids with controlled size for high-efficiency perovskite solar cells. Nat. Nanotechnol. 2014, 9, 927–932. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Zhou, H.P.; Song, T.B.; Luo, S.; Hong, Z.R.; Duan, H.S.; Dou, L.T.; Liu, Y.S.; Yang, Y. Controllable Self-Induced Passivation of Hybrid Lead Iodide Perovskites toward High Performance Solar Cells. Nano Lett. 2014, 14, 4158–4163. [Google Scholar] [CrossRef] [PubMed]
- Saliba, M.; Tan, K.W.; Sai, H.; Moore, D.T.; Scott, T.; Zhang, W.; Estroff, L.A.; Wiesner, U.; Snaith, H.J. Influence of Thermal Processing Protocol upon the Crystallization and Photovoltaic Performance of Organic–Inorganic Lead Trihalide Perovskites. J. Phys. Chem. C 2014, 118, 17171–17177. [Google Scholar] [CrossRef]
- Kim, H.B.; Choi, H.; Jeong, J.; Kim, S.; Walker, B.; Song, S.; Kim, J.Y. Mixed solvents for the optimization of morphology in solution-processed, inverted-type perovskite/fullerene hybrid solar cells. Nanoscale 2014, 6, 6679–6683. [Google Scholar] [CrossRef]
- Chen, Z.; Li, H.; Tang, Y.; Huang, X.; Ho, D.; Lee, C.S. Shape-controlled synthesis of organolead halide perovskite nanocrystals and their tunable optical absorption. Mater. Res. Express 2014, 1, 015034. [Google Scholar] [CrossRef]
- Eperon, G.E.; Burlakov, V.M.; Docampo, P.; Goriely, A.; Snaith, H.J. Morphological Control for High Performance, Solution-Processed Planar Heterojunction Perovskite Solar Cells. Adv. Funct. Mater. 2014, 24, 151–157. [Google Scholar] [CrossRef]
- Xiao, Z.; Dong, Q.; Bi, C.; Shao, Y.; Yuan, Y.; Huang, J. Solvent Annealing of Perovskite-Induced Crystal Growth for Photovoltaic-Device Effi ciency Enhancement. Adv. Mater. 2014, 26, 6503–6509. [Google Scholar] [CrossRef] [PubMed]
- Jeon, N.J.; Noh, J.H.; Kim, Y.C.; Yang, W.S.; Ryu, S.; Seok, S.I. Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells. Nat. Mater. 2014, 13, 897–903. [Google Scholar] [CrossRef]
- Hao, F.; Stoumpos, C.C.; Liu, Z.; Chang, R.P.; Kanatzidis, M.G. Controllable perovskite crystallization at a gas-solid interface for hole conductor-free solar cells with steady power conversion efficiency over 10%. J. Am. Chem. Soc. 2014, 136, 16411–16419. [Google Scholar] [CrossRef] [PubMed]
- Seo, J.-Y.; Uchida, R.; Kim, H.-S.; Saygili, Y.; Luo, J.; Moore, C.; Kerrod, J.; Wagstaff, A.; Eklund, M.; McIntyre, R.; et al. Boosting the Efficiency of Perovskite Solar Cells with CsBr-Modified Mesoporous TiO2 Beads as Electron-Selective Contact. Adv. Funct. Mater. 2018, 28, 1705763. [Google Scholar] [CrossRef]
- You, S.; Wang, H.; Bi, S.; Zhou, J.; Qin, L.; Qiu, X.; Zhao, Z.; Xu, Y.; Zhang, Y.; Shi, X.; et al. A Biopolymer Heparin Sodium Interlayer Anchoring TiO2 and MAPbI3 Enhances Trap Passivation and Device Stability in Perovskite Solar Cells. Adv. Mater. 2018, 30, 1706924. [Google Scholar] [CrossRef]
- Huckaba, A.J.; Lee, Y.; Xia, R.; Paek, S.; Bassetto, V.C.; Oveisi, E.; Lesch, A.; Kinge, S.; Dyson, P.J.; Girault, H.; et al. Inkjet-Printed Mesoporous TiO2 and Perovskite Layers for High Efficiency Perovskite Solar Cells. Energy Technol. 2019, 7, 317–324. [Google Scholar] [CrossRef]
- Byranvand, M.M.; Kim, T.; Song, S.; Kang, G.; Ryu, S.U.; Park, T. p-Type CuI Islands on TiO2 Electron Transport Layer for a Highly Efficient Planar-Perovskite Solar Cell with Negligible Hysteresis. Adv. Energy Mater. 2018, 8, 1702235. [Google Scholar] [CrossRef]
- Tavakoli, M.M.; Yadav, P.; Tavakoli, R.; Kong, J. Surface Engineering of TiO2 ETL for Highly Efficient and Hysteresis-Less Planar Perovskite Solar Cell (21.4%) with Enhanced Open-Circuit Voltage and Stability. Adv. Energy Mater. 2018, 8, 1800794. [Google Scholar] [CrossRef]
- Xiao, Y.; Wang, C.; Kondamareddy, K.K.; Liu, P.; Qi, F.; Zhang, H.; Guo, S.; Zhao, X.-Z. Enhancing the performance of hole-conductor free carbon-based perovskite solar cells through rutile-phase passivation of anatase TiO2 scaffold. J. Power Sources 2019, 422, 138–144. [Google Scholar] [CrossRef]
- Macdonald, T.J.; Batmunkh, M.; Lin, C.-T.; Kim, J.; Tune, D.D.; Ambroz, F.; Li, X.; Xu, S.; Sol, C.; Papakonstantinou, I.; et al. Origin of Performance Enhancement in TiO2-Carbon Nanotube Composite Perovskite Solar Cells. Small Methods 2019, 3, 1900164. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, X.; Li, P.; Duan, Y.; Hu, X.; Li, F.; Song, Y. Dopamine-crosslinked TiO2/perovskite layer for efficient and photostable perovskite solar cells under full spectral continuous illumination. Nano Energy 2019, 56, 733–740. [Google Scholar] [CrossRef]
- Wu, T.; Zhen, C.; Zhu, H.; Wu, J.; Jia, C.; Wang, L.; Liu, G.; Park, N.-G.; Cheng, H.-M. Gradient Sn-Doped Heteroepitaxial Film of Faceted Rutile TiO2 as an Electron Selective Layer for Efficient Perovskite Solar Cells. ACS Appl. Mater. Interfaces 2019, 11, 19638–19646. [Google Scholar] [CrossRef] [PubMed]
- Edri, E.; Kirmayer, S.; Cahen, D.; Hodes, G. High Open-Circuit Voltage Solar Cells Based on Organic-Inorganic Lead Bromide Perovskite. J. Phys. Chem. Lett. 2013, 4, 897–902. [Google Scholar] [CrossRef] [PubMed]
- Bi, D.Q.; Moon, S.J.; Haggman, L.; Boschloo, G.; Yang, L.; Johansson, E.M.J.; Nazeeruddin, M.K.; Gratzel, M.; Hagfeldt, A. Using a two-step deposition technique to prepare perovskite (CH3NH3PbI3) for thin film solar cells based on ZrO2 and TiO2 mesostructures. RSC Adv. 2013, 3, 18762–18766. [Google Scholar] [CrossRef]
- Wang, J.T.; Ball, J.M.; Barea, E.M.; Abate, A.; Alexander-Webber, J.A.; Huang, J.; Saliba, M.; Mora-Sero, I.; Bisquert, J.; Snaith, H.J.; et al. Low-temperature processed electron collection layers of graphene/TiO2 nanocomposites in thin film perovskite solar cells. Nano Lett. 2014, 14, 724–730. [Google Scholar] [CrossRef] [PubMed]
- You, J.; Hong, Z.; Yang, Y.M.; Chen, Q.; Cai, M.; Song, T.B.; Chen, C.C.; Lu, S.; Liu, Y.; Zhou, H.; et al. Low-temperature solution-processed perovskite solar cells with high efficiency and flexibility. ACS Nano 2014, 8, 1674–1680. [Google Scholar] [CrossRef]
- Zhu, Z.; Ma, J.; Wang, Z.; Mu, C.; Fan, Z.; Du, L.; Bai, Y.; Fan, L.; Yan, H.; Phillips, D.L.; et al. Efficiency enhancement of perovskite solar cells through fast electron extraction: The role of graphene quantum dots. J. Am. Chem. Soc. 2014, 136, 3760–3763. [Google Scholar] [CrossRef]
- Zuo, L.; Gu, Z.; Ye, T.; Fu, W.; Wu, G.; Li, H.; Chen, H. Enhanced photovoltaic performance of CH3NH3PbI3 perovskite solar cells through interfacial engineering using self-assembling monolayer. J. Am. Chem. Soc. 2015, 137, 2674–2679. [Google Scholar] [CrossRef]
- Xu, X.; Liu, Z.; Zuo, Z.; Zhang, M.; Zhao, Z.; Shen, Y.; Zhou, H.; Chen, Q.; Yang, Y.; Wang, M. Hole selective NiO contact for efficient perovskite solar cells with carbon electrode. Nano Lett. 2015, 15, 2402–2408. [Google Scholar] [CrossRef]
- Ye, S.; Sun, W.; Li, Y.; Yan, W.; Peng, H.; Bian, Z.; Liu, Z.; Huang, C. CuSCN-Based Inverted Planar Perovskite Solar Cell with an Average PCE of 15.6. Nano Lett. 2015, 15, 3723–3728. [Google Scholar] [CrossRef]
- Yang, W.S.; Park, B.W.; Jung, E.H.; Jeon, N.J.; Kim, Y.C.; Lee, D.U.; Shin, S.S.; Seo, J.; Kim, E.K.; Noh, J.H.; et al. Iodide management in formamidinium-lead-halide-based perovskite layers for efficient solar cells. Science 2017, 356, 1376–1379. [Google Scholar] [CrossRef]
- Sanehira, E.M.; Marshall, A.R.; Christians, J.A.; Harvey, S.P.; Ciesielski, P.N.; Wheeler, L.M.; Schulz, P.; Lin, L.Y.; Beard, M.C.; Luther, J.M. Enhanced mobility CsPbI3 quantum dot arrays for record-efficiency, high-voltage photovoltaic cells. Sci. Adv. 2017, 3, eaao4204. [Google Scholar] [CrossRef] [PubMed]
- Hou, Y.; Du, X.; Scheiner, S.; McMeekin, D.P.; Wang, Z.; Li, N.; Killian, M.S.; Chen, H.; Richter, M.; Levchuk, I. A Generic Interface to Reduce The Efficiency-Stability-Cost Gap of Perovskite Solar Cells. Science 2017, 358, 1192. [Google Scholar] [CrossRef] [PubMed]
- Feng, J.; Zhu, X.; Yang, Z.; Zhang, X.; Niu, J.; Wang, Z.; Zuo, S.; Priya, S.; Liu, S.; Yang, D. Record Efficiency Stable Flexible Perovskite Solar Cell Using Effective Additive Assistant Strategy. Adv. Mater. 2018, 30, 1801418. [Google Scholar] [CrossRef] [PubMed]
- Turren-Cruz, S.-H.; Hagfeldt, A.; Saliba, M. Methylammonium-free, high-performance, and stable perovskite solar cells on a planar architecture. Science 2018, 362, 449–453. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Xu, Z.; Zuo, S.; Feng, J.; Wang, Z.; Zhang, X.; Zhao, K.; Zhang, J.; Liu, H.; Priya, S.; et al. Vapor-fumigation for record efficiency two-dimensional perovskite solar cells with superior stability. Energy Environ. Sci. 2018, 11, 3349–3357. [Google Scholar] [CrossRef]
- Han, Q.; Hsieh, Y.-T.; Meng, L.; Wu, J.-L.; Sun, P.; Yao, E.-P.; Chang, S.-Y.; Bae, S.-H.; Kato, T.; Bermudez, V.; et al. High-performance perovskite/Cu(In,Ga)Se2 monolithic tandem solar cells. Science 2018, 361, 904–908. [Google Scholar] [CrossRef] [PubMed]
- Yin, G.; Zhao, H.; Jiang, H.; Yuan, S.; Niu, T.; Zhao, K.; Liu, Z.; Liu, S. Precursor Engineering for All-Inorganic CsPbI2Br Perovskite Solar Cells with 14.78% Efficiency. Adv. Funct. Mater. 2018, 28, 1803269. [Google Scholar] [CrossRef]
- Wang, L.; Zhou, H.; Hu, J.; Huang, B.; Sun, M.; Dong, B.; Zheng, G.; Huang, Y.; Chen, Y.; Li, L.; et al. A Eu3+-Eu2+ ion redox shuttle imparts operational durability to Pb-I perovskite solar cells. Science 2019, 363, 265–270. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Q.; Zhao, Y.; Zhang, X.; Yang, X.; Chen, Y.; Chu, Z.; Ye, Q.; Li, X.; Yin, Z.; You, J. Surface passivation of perovskite film for efficient solar cells. Nat. Photonics 2019, 13, 460–466. [Google Scholar] [CrossRef]
- Gharibzadeh, S.; Abdollahi Nejand, B.; Jakoby, M.; Abzieher, T.; Hauschild, D.; Moghadamzadeh, S.; Schwenzer, J.A.; Brenner, P.; Schmager, R.; Haghighirad, A.A.; et al. Record Open-Circuit Voltage Wide-Bandgap Perovskite Solar Cells Utilizing 2D/3D Perovskite Heterostructure. Adv. Energy Mater. 2019, 9, 1803699. [Google Scholar] [CrossRef]
- Yoo, J.J.; Wieghold, S.; Sponseller, M.C.; Chua, M.R.; Bertram, S.N.; Hartono, N.T.P.; Tresback, J.S.; Hansen, E.C.; Correa-Baena, J.-P.; Bulović, V.; et al. An interface stabilized perovskite solar cell with high stabilized efficiency and low voltage loss. Energy Environ. Sci. 2019, 12, 2192–2199. [Google Scholar] [CrossRef]
- Bai, S.; Da, P.; Li, C.; Wang, Z.; Yuan, Z.; Fu, F.; Kawecki, M.; Liu, X.; Sakai, N.; Wang, J.T.-W.; et al. Planar perovskite solar cells with long-term stability using ionic liquid additives. Nature 2019, 571, 245–250. [Google Scholar] [CrossRef]
- Xiao, K.; Lin, R.; Han, Q.; Hou, Y.; Qin, Z.; Nguyen, H.T.; Wen, J.; Wei, M.; Yeddu, V.; Saidaminov, M.I.; et al. All-perovskite tandem solar cells with 24.2% certified efficiency and area over 1 cm2 using surface-anchoring zwitterionic antioxidant. Nat. Energy 2020, 5, 870–880. [Google Scholar] [CrossRef]
- Laska, M.; Krzemińska, Z.; Kluczyk-Korch, K.; Schaadt, D.; Popko, E.; Jacak, W.A.; Jacak, J.E. Metallization of solar cells, exciton channel of plasmon photovoltaic effect in perovskite cells. Nano Energy 2020, 75, 104751. [Google Scholar] [CrossRef]
- Yoon, S.M.; Min, H.; Kim, J.B.; Kim, G.; Lee, K.S.; Seok, S.I. Surface Engineering of Ambient-Air-Processed Cesium Lead Triiodide Layers for Efficient Solar Cells. Joule 2021, 5, 183–196. [Google Scholar] [CrossRef]
- Karthick, S.; Bouclé, J.; Velumani, S. Effect of bismuth iodide (BiI3) interfacial layer with different HTL’s in FAPI based perovskite solar cell—SCAPS—1D study. Sol. Energy 2021, 218, 157–168. [Google Scholar] [CrossRef]
- Mashhadi Seyyed Abadi, N.; Banihashemi, M.; Kashani Nia, A. Effects of HTL/ETL properties on the performance of (FAPbI3)0.85(MAPbBr3)0.15 perovskite solar cells. J. Phys. D Appl. Phys. 2021, 54, 334001. [Google Scholar] [CrossRef]
- Min, H.; Lee, D.Y.; Kim, J.; Kim, G.; Lee, K.S.; Kim, J.; Paik, M.J.; Kim, Y.K.; Kim, K.S.; Kim, M.G.; et al. Perovskite solar cells with atomically coherent interlayers on SnO2 electrodes. Nature 2021, 598, 444–450. [Google Scholar] [CrossRef]
- Zhou, X.; Zhang, L.; Yu, J.; Wang, D.; Liu, C.; Chen, S.; Li, Y.; Li, Y.; Zhang, M.; Peng, Y.; et al. Integrated Ideal-Bandgap Perovskite/Bulk-Heterojunction Solar Cells with Efficiencies > 24%. Adv. Mater. 2022, 34, 2205809. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Xiao, H.; Jin, K.; Xiao, Z.; Du, X.; Yan, K.; Hao, F.; Bao, Q.; Yi, C.; Liu, F.; et al. 4-Terminal Inorganic Perovskite/Organic Tandem Solar Cells Offer 22% Efficiency. Nano-Micro Lett. 2022, 15, 23. [Google Scholar] [CrossRef]
- Deng, Y.; Dong, Q.; Bi, C.; Yuan, Y.; Huang, J. Air-Stable, Efficient Mixed-Cation Perovskite Solar Cells with Cu Electrode by Scalable Fabrication of Active Layer. Adv. Energy Mater. 2016, 6, 1600372. [Google Scholar] [CrossRef]
- Li, N.; Zhu, Z.; Chueh, C.-C.; Liu, H.; Peng, B.; Petrone, A.; Li, X.; Wang, L.; Jen, A.K.-Y. Mixed Cation FAxPEA1–xPbI3 with Enhanced Phase and Ambient Stability toward High-Performance Perovskite Solar Cells. Adv. Energy Mater. 2017, 7, 1601307. [Google Scholar] [CrossRef]
- Nam, J.K.; Chai, S.U.; Cha, W.; Choi, Y.J.; Kim, W.; Jung, M.S.; Kwon, J.; Kim, D.; Park, J.H. Potassium Incorporation for Enhanced Performance and Stability of Fully Inorganic Cesium Lead Halide Perovskite Solar Cells. Nano Lett. 2017, 17, 2028–2033. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Shi, W.; Luo, J.; Pellet, N.; Yi, C.; Li, X.; Zhao, X.; Dennis, T.J.S.; Li, X.; Wang, S.; et al. Isomer-Pure Bis-PCBM-Assisted Crystal Engineering of Perovskite Solar Cells Showing Excellent Efficiency and Stability. Adv. Mater. 2017, 29, 1606806. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Xie, F.; Chen, H.; Yang, X.; Su, H.; Cai, M.; Zhou, Z.; Noda, T.; Han, L. Thermally Stable MAPbI3 Perovskite Solar Cells with Efficiency of 19.19% and Area over 1 cm2 achieved by Additive Engineering. Adv. Mater. 2017, 29, 1701073. [Google Scholar] [CrossRef]
- Grancini, G.; Roldán-Carmona, C.; Zimmermann, I.; Mosconi, E.; Lee, X.; Martineau, D.; Narbey, S.; Oswald, F.; De Angelis, F.; Graetzel, M.; et al. One-Year stable perovskite solar cells by 2D/3D interface engineering. Nat. Commun. 2017, 8, 15684. [Google Scholar] [CrossRef]
- Wang, Z.; Lin, Q.; Chmiel, F.P.; Sakai, N.; Herz, L.M.; Snaith, H.J. Efficient ambient-air-stable solar cells with 2D–3D heterostructured butylammonium-caesium-formamidinium lead halide perovskites. Nat. Energy 2017, 2, 17135. [Google Scholar] [CrossRef]
- Christians, J.A.; Schulz, P.; Tinkham, J.S.; Schloemer, T.H.; Harvey, S.P.; Tremolet de Villers, B.J.; Sellinger, A.; Berry, J.J.; Luther, J.M. Tailored interfaces of unencapsulated perovskite solar cells for >1000 hour operational stability. Nat. Energy 2018, 3, 68–74. [Google Scholar] [CrossRef]
- Bai, Y.; Lin, Y.; Ren, L.; Shi, X.; Strounina, E.; Deng, Y.; Wang, Q.; Fang, Y.; Zheng, X.; Lin, Y.; et al. Oligomeric Silica-Wrapped Perovskites Enable Synchronous Defect Passivation and Grain Stabilization for Efficient and Stable Perovskite Photovoltaics. ACS Energy Lett. 2019, 4, 1231–1240. [Google Scholar] [CrossRef]
- Yang, S.; Chen, S.; Mosconi, E.; Fang, Y.; Xiao, X.; Wang, C.; Zhou, Y.; Yu, Z.; Zhao, J.; Gao, Y.; et al. Stabilizing halide perovskite surfaces for solar cell operation with wide-bandgap lead oxysalts. Science 2019, 365, 473–478. [Google Scholar] [CrossRef] [PubMed]
- Ran, J.; Wang, H.; Deng, W.; Xie, H.; Gao, Y.; Yuan, Y.; Yang, Y.; Ning, Z.; Yang, B. Ionic Liquid-Tuned Crystallization for Stable and Efficient Perovskite Solar Cells. Sol. RRL 2022, 6, 2200176. [Google Scholar] [CrossRef]
- Luan, F.; Li, H.; Gong, S.; Chen, X.; Shou, C.; Wu, Z.; Xie, H.; Yang, S. Precursor engineering for efficient and stable perovskite solar cells. Nanotechnology 2023, 34, 055402. [Google Scholar] [CrossRef] [PubMed]
- Cao, K.; Zhu, J.; Wu, Y.; Ge, M.; Zhu, Y.; Qian, J.; Wang, Y.; Hu, K.; Lu, J.; Shen, W.; et al. Suppressing Excess Lead Iodide Aggregation and Reducing N-Type Doping at Perovskite/HTL Interface for Efficient Perovskite Solar Cells. Small 2023, 19, 2301822. [Google Scholar] [CrossRef] [PubMed]
- Bai, Y.; Dong, Q.; Shao, Y.; Deng, Y.; Wang, Q.; Shen, L.; Wang, D.; Wei, W.; Huang, J. Enhancing stability and efficiency of perovskite solar cells with crosslinkable silane-functionalized and doped fullerene. Nat. Commun. 2016, 7, 12806. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, H.; Chen, W.; Jen, A.K.-Y. CuGaO2: A Promising Inorganic Hole-Transporting Material for Highly Efficient and Stable Perovskite Solar Cells. Adv. Mater. 2017, 29, 1604984. [Google Scholar] [CrossRef] [PubMed]
- Jiang, L.-L.; Wang, Z.-K.; Li, M.; Li, C.-H.; Fang, P.-F.; Liao, L.-S. Flower-like MoS2 nanocrystals: A powerful sorbent of Li+ in the Spiro-OMeTAD layer for highly efficient and stable perovskite solar cells. J. Mater. Chem. A 2019, 7, 3655–3663. [Google Scholar] [CrossRef]
- Yu, Z.; Wang, J.; Chen, B.; Uddin, M.A.; Ni, Z.; Yang, G.; Huang, J. Solution-Processed Ternary Tin (II) Alloy as Hole-Transport Layer of Sn–Pb Perovskite Solar Cells for Enhanced Efficiency and Stability. Adv. Mater. 2022, 34, 2205769. [Google Scholar] [CrossRef]
- Bai, Y.; Zhou, Z.; Xue, Q.; Liu, C.; Li, N.; Tang, H.; Zhang, J.; Xia, X.; Zhang, J.; Lu, X.; et al. Dopant-Free Bithiophene-Imide-Based Polymeric Hole-Transporting Materials for Efficient and Stable Perovskite Solar Cells. Adv. Mater. 2022, 34, 2110587. [Google Scholar] [CrossRef]
- Chiang, C.-H.; Chen, Y.-L.; Wu, C.-G. Sol-Gel Prepared Spinel HTLs for Assembling 20% Efficiency Perovskite Solar Cell in Air without Using Anti-Solvent and Toxic Solvent. Small Methods 2023, 7, 2300399. [Google Scholar] [CrossRef] [PubMed]
- Tan, H.; Jain, A.; Voznyy, O.; Lan, X.; García de Arquer, F.P.; Fan, J.Z.; Quintero-Bermudez, R.; Yuan, M.; Zhang, B.; Zhao, Y.; et al. Efficient and stable solution-processed planar perovskite solar cells via contact passivation. Science 2017, 355, 722–726. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; McMeekin, D.P.; Sakai, N.; van Reenen, S.; Wojciechowski, K.; Patel, J.B.; Johnston, M.B.; Snaith, H.J. Efficient and Air-Stable Mixed-Cation Lead Mixed-Halide Perovskite Solar Cells with n-Doped Organic Electron Extraction Layers. Adv. Mater. 2017, 29, 1604186. [Google Scholar] [CrossRef] [PubMed]
- Wu, B.-S.; An, M.-W.; Chen, J.-M.; Xing, Z.; Chen, Z.-C.; Deng, L.-L.; Tian, H.-R.; Yun, D.-Q.; Xie, S.-Y.; Zheng, L.-S. Radiation-processed perovskite solar cells with fullerene-enhanced performance and stability. Cell Rep. Phys. Sci. 2021, 2, 100646. [Google Scholar] [CrossRef]
- Zeng, W.; He, X.; Bian, H.; Guo, P.; Wang, M.; Xu, C.; Xu, G.; Zhong, Y.; Lu, D.; Sofer, Z.; et al. Multi-functional Strategy: Ammonium Citrate-Modified SnO2 ETL for Efficient and Stable Perovskite Solar Cells. ACS Appl. Mater. Interfaces 2022, 14, 43975–43986. [Google Scholar] [CrossRef] [PubMed]
- Meng, Y.; Liu, C.; Cao, R.; Zhang, J.; Xie, L.; Yang, M.; Xie, L.; Wang, Y.; Yin, X.; Liu, C.; et al. Pre-Buried ETL with Bottom-Up Strategy Toward Flexible Perovskite Solar Cells with Efficiency Over 23%. Adv. Funct. Mater. 2023, 33, 2214788. [Google Scholar] [CrossRef]
- Guo, Y.; Liu, T.; Wang, N.; Luo, Q.; Lin, H.; Li, J.; Jiang, Q.; Wu, L.; Guo, Z. Ni-doped α-Fe2O3 as electron transporting material for planar heterojunction perovskite solar cells with improved efficiency, reduced hysteresis and ultraviolet stability. Nano Energy 2017, 38, 193–200. [Google Scholar] [CrossRef]
- Leijtens, T.; Eperon, G.E.; Pathak, S.; Abate, A.; Lee, M.M.; Snaith, H.J. Overcoming ultraviolet light instability of sensitized TiO2 with meso-superstructured organometal tri-halide perovskite solar cells. Nat. Commun. 2013, 4, 2885. [Google Scholar] [CrossRef]
- Niu, G.D.; Li, W.Z.; Meng, F.Q.; Wang, L.D.; Dong, H.P.; Qiu, Y. Study on the stability of CH3NH3PbI3 films and the effect of post-modification by aluminum oxide in all-solid-state hybrid solar cells. J. Mater. Chem. A 2014, 2, 705–710. [Google Scholar] [CrossRef]
- Abate, A.; Saliba, M.; Hollman, D.J.; Stranks, S.D.; Wojciechowski, K.; Avolio, R.; Grancini, G.; Petrozza, A.; Snaith, H.J. Supramolecular halogen bond passivation of organic-inorganic halide perovskite solar cells. Nano Lett. 2014, 14, 3247–3254. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Siempelkamp, B.D.; Liu, D.; Kelly, T.L. Investigation of CH3NH3PbI3 degradation rates and mechanisms in controlled humidity environments using in situ techniques. ACS Nano 2015, 9, 1955–1963. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.W.; Seol, D.J.; Cho, A.N.; Park, N.G. High-efficiency perovskite solar cells based on the black polymorph of HC(NH2)2 PbI3. Adv. Mater. 2014, 26, 4991–4998. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.H.; Williams, S.T.; Cho, N.; Chueh, C.-C.; Jen, A.K.Y. Enhanced Environmental Stability of Planar Heterojunction Perovskite Solar Cells Based on Blade-Coating. Adv. Energy Mater. 2014, 5, 1401229. [Google Scholar] [CrossRef]
- Chandiran, A.K.; Yella, A.; Mayer, M.T.; Gao, P.; Nazeeruddin, M.K.; Gratzel, M. Sub-nanometer conformal TiO2 blocking layer for high efficiency solid-state perovskite absorber solar cells. Adv. Mater. 2014, 26, 4309–4312. [Google Scholar] [CrossRef] [PubMed]
- Conings, B.; Baeten, L.; De Dobbelaere, C.; D’Haen, J.; Manca, J.; Boyen, H.G. Perovskite-based hybrid solar cells exceeding 10% efficiency with high reproducibility using a thin film sandwich approach. Adv. Mater. 2014, 26, 2041–2046. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Q.; Chen, M.; Li, J.; Wang, M.; Zeng, X.; Besara, T.; Lu, J.; Xin, Y.; Shan, X.; Pan, B.; et al. Electrochemical Doping of Halide Perovskites with Ion Intercalation. ACS Nano 2017, 11, 1073–1079. [Google Scholar] [CrossRef] [PubMed]
- Jiang, J.; Wang, D.; Wu, M.; Peng, P.; Li, F.-F.; Liu, F.; Jing, R.; Ma, X.; Chao, Y.; Xiao, Z.; et al. Ultrasonication-assisted trace amount solvent synthesis of Cs4PbBr6 crystal with ultra-bright green light emission. APL Mater. 2020, 8, 071115. [Google Scholar] [CrossRef]
- Li, J.; Shan, X.; Bade, S.G.R.; Geske, T.; Jiang, Q.; Yang, X.; Yu, Z. Single-Layer Halide Perovskite Light-Emitting Diodes with Sub-Band Gap Turn-On Voltage and High Brightness. J. Phys. Chem. Lett. 2016, 7, 4059–4066. [Google Scholar] [CrossRef]
- Lee, B.R.; Yu, J.C.; Park, J.H.; Lee, S.; Mai, C.-K.; Zhao, B.; Wong, M.S.; Jung, E.D.; Nam, Y.S.; Park, S.Y.; et al. Conjugated Polyelectrolytes as Efficient Hole Transport Layers in Perovskite Light-Emitting Diodes. ACS Nano 2018, 12, 5826–5833. [Google Scholar] [CrossRef]
- Zhang, Q.; Tavakoli, M.M.; Gu, L.; Zhang, D.; Tang, L.; Gao, Y.; Guo, J.; Lin, Y.; Leung, S.-F.; Poddar, S.; et al. Efficient metal halide perovskite light-emitting diodes with significantly improved light extraction on nanophotonic substrates. Nat. Commun. 2019, 10, 727. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Song, C.; He, Z.; Mai, C.; Xie, G.; Mu, L.; Cun, Y.; Li, J.; Wang, J.; Peng, J.; et al. All-Solution-Processed Pure Formamidinium-Based Perovskite Light-Emitting Diodes. Adv. Mater. 2018, 30, 1804137. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Zhang, X.; Deng, J.; Chu, Z.; Jiang, Q.; Meng, J.; Wang, P.; Zhang, L.; Yin, Z.; You, J. Efficient green light-emitting diodes based on quasi-two-dimensional composition and phase engineered perovskite with surface passivation. Nat. Commun. 2018, 9, 570. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Jang, C.H.; Nguyen, T.L.; Kim, S.H.; Lee, K.M.; Chang, K.; Choi, S.S.; Kwak, S.K.; Woo, H.Y.; Song, M.H. Conjugated Polyelectrolytes as Multifunctional Passivating and Hole-Transporting Layers for Efficient Perovskite Light-Emitting Diodes. Adv. Mater. 2019, 31, 1900067. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.-W.; Yuan, S.; Sun, S.-Q.; Luo, W.; Zhang, Y.-J.; Liao, L.-S.; Fung, M.-K. Interfacial engineering for highly efficient quasi-two dimensional organic–inorganic hybrid perovskite light-emitting diodes. J. Mater. Chem. C 2019, 7, 4344–4349. [Google Scholar] [CrossRef]
- Gonzalez-Rodriguez, R.; Hathaway, E.; Lin, Y.; Coffer, J.L.; Cui, J. Encapsulated MAPbBr3 in nickel oxide nanotubes and their electroluminescence. Nanoscale 2022, 14, 6417–6424. [Google Scholar] [CrossRef] [PubMed]
- Kamau, S.; Rodriguez, R.G.; Jiang, Y.; Mondragon, A.H.; Varghese, S.; Hurley, N.; Kaul, A.; Cui, J.; Lin, Y. Enhanced Photoluminescence and Prolonged Carrier Lifetime through Laser Radiation Hardening and Self-Healing in Aged MAPbBr3 Perovskites Encapsulated in NiO Nanotubes. Micromachines 2023, 14, 1706. [Google Scholar] [CrossRef]
- Prakasam, V.; Di Giacomo, F.; Abbel, R.; Tordera, D.; Sessolo, M.; Gelinck, G.; Bolink, H.J. Efficient Perovskite Light-Emitting Diodes: Effect of Composition, Morphology, and Transport Layers. ACS Appl. Mater. Interfaces 2018, 10, 41586–41591. [Google Scholar] [CrossRef]
- Cho, H.; Kim, J.S.; Wolf, C.; Kim, Y.-H.; Yun, H.J.; Jeong, S.-H.; Sadhanala, A.; Venugopalan, V.; Choi, J.W.; Lee, C.-L.; et al. High-Efficiency Polycrystalline Perovskite Light-Emitting Diodes Based on Mixed Cations. ACS Nano 2018, 12, 2883–2892. [Google Scholar] [CrossRef]
- Wu, C.; Wu, T.; Yang, Y.; McLeod, J.A.; Wang, Y.; Zou, Y.; Zhai, T.; Li, J.; Ban, M.; Song, T.; et al. Alternative Type Two-Dimensional–Three-Dimensional Lead Halide Perovskite with Inorganic Sodium Ions as a Spacer for High-Performance Light-Emitting Diodes. ACS Nano 2019, 13, 1645–1654. [Google Scholar] [CrossRef]
- Cao, Y.; Wang, N.; Tian, H.; Guo, J.; Wei, Y.; Chen, H.; Miao, Y.; Zou, W.; Pan, K.; He, Y.; et al. Perovskite light-emitting diodes based on spontaneously formed submicrometre-scale structures. Nature 2018, 562, 249–253. [Google Scholar] [CrossRef] [PubMed]
- Zou, W.; Li, R.; Zhang, S.; Liu, Y.; Wang, N.; Cao, Y.; Miao, Y.; Xu, M.; Guo, Q.; Di, D.; et al. Minimising efficiency roll-off in high-brightness perovskite light-emitting diodes. Nat. Commun. 2018, 9, 608. [Google Scholar] [CrossRef] [PubMed]
- Gangishetty, M.K.; Hou, S.; Quan, Q.; Congreve, D.N. Reducing Architecture Limitations for Efficient Blue Perovskite Light-Emitting Diodes. Adv. Mater. 2018, 30, 1706226. [Google Scholar] [CrossRef] [PubMed]
- Yang, D.; Zou, Y.; Li, P.; Liu, Q.; Wu, L.; Hu, H.; Xu, Y.; Sun, B.; Zhang, Q.; Lee, S.-T. Large-scale synthesis of ultrathin cesium lead bromide perovskite nanoplates with precisely tunable dimensions and their application in blue light-emitting diodes. Nano Energy 2018, 47, 235–242. [Google Scholar] [CrossRef]
- Ochsenbein, S.T.; Krieg, F.; Shynkarenko, Y.; Rainò, G.; Kovalenko, M.V. Engineering Color-Stable Blue Light-Emitting Diodes with Lead Halide Perovskite Nanocrystals. ACS Appl. Mater. Interfaces 2019, 11, 21655–21660. [Google Scholar] [CrossRef] [PubMed]
- Yoon, Y.J.; Shin, Y.S.; Jang, H.; Son, J.G.; Kim, J.W.; Park, C.B.; Yuk, D.; Seo, J.; Kim, G.-H.; Kim, J.Y. Highly Stable Bulk Perovskite for Blue LEDs with Anion-Exchange Method. Nano Lett. 2021, 21, 3473–3479. [Google Scholar] [CrossRef] [PubMed]
- Jeong, W.H.; Yu, Z.; Gregori, L.; Yang, J.; Ha, S.R.; Jang, J.W.; Song, H.; Park, J.H.; Jung, E.D.; Song, M.H.; et al. In situ cadmium surface passivation of perovskite nanocrystals for blue LEDs. J. Mater. Chem. A 2021, 9, 26750–26757. [Google Scholar] [CrossRef]
- Tong, Y.; Bi, X.; Xu, S.; Min, H.; Cheng, L.; Kuang, Z.; Yuan, L.; Zhou, F.; Chu, Y.; Xu, L.; et al. In Situ Halide Exchange of Cesium Lead Halide Perovskites for Blue Light-Emitting Diodes. Adv. Mater. 2023, 35, 2207111. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.-K.; Jia, F.; Li, X.; Teale, S.; Xia, P.; Liu, Y.; Chan, P.T.-s.; Wan, H.; Hassan, Y.; Imran, M.; et al. Self-assembled monolayer–based blue perovskite LEDs. Sci. Adv. 2023, 9, eadh2140. [Google Scholar] [CrossRef]
- Zhang, X.; Xu, B.; Zhang, J.; Gao, Y.; Zheng, Y.; Wang, K.; Sun, X. All-Inorganic Perovskite Nanocrystals for High-Efficiency Light Emitting Diodes: Dual-Phase CsPbBr3-CsPb2Br5 Composites. Adv. Funct. Mater. 2016, 26, 4595. [Google Scholar] [CrossRef]
- Li, J.; Xu, L.; Wang, T.; Song, J.; Chen, J.; Xue, J.; Dong, Y.; Cai, B.; Shan, Q.; Han, B.; et al. 50-Fold EQE Improvement up to 6.27% of Solution-Processed All-Inorganic Perovskite CsPbBr3 QLEDs via Surface Ligand Density Control. Adv. Mater. 2017, 29, 1603885. [Google Scholar] [CrossRef] [PubMed]
- Chiba, T.; Hoshi, K.; Pu, Y.-J.; Takeda, Y.; Hayashi, Y.; Ohisa, S.; Kawata, S.; Kido, J. High-Efficiency Perovskite Quantum-Dot Light-Emitting Devices by Effective Washing Process and Interfacial Energy Level Alignment. ACS Appl. Mater. Interfaces 2017, 9, 18054–18060. [Google Scholar] [CrossRef] [PubMed]
- Cho, H.; Wolf, C.; Kim, J.S.; Yun, H.J.; Bae, J.S.; Kim, H.; Heo, J.-M.; Ahn, S.; Lee, T.-W. High-Efficiency Solution-Processed Inorganic Metal Halide Perovskite Light-Emitting Diodes. Adv. Mater. 2017, 29, 1700579. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.; Chen, W.; Wang, W.; Xu, B.; Wu, D.; Hao, J.; Cao, W.; Fang, F.; Li, Y.; Zeng, Y.; et al. Halide-Rich Synthesized Cesium Lead Bromide Perovskite Nanocrystals for Light-Emitting Diodes with Improved Performance. Chem. Mater. 2017, 29, 5168–5173. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, W.; Xu, B.; Liu, S.; Dai, H.; Bian, D.; Chen, S.; Wang, K.; Sun, X.W. Thin film perovskite light-emitting diode based on CsPbBr3 powders and interfacial engineering. Nano Energy 2017, 37, 40–45. [Google Scholar] [CrossRef]
- Qin, C.; Matsushima, T.; Sandanayaka, A.S.D.; Tsuchiya, Y.; Adachi, C. Centrifugal-Coated Quasi-Two-Dimensional Perovskite CsPb2Br5 Films for Efficient and Stable Light-Emitting Diodes. J. Phys. Chem. Lett. 2017, 8, 5415–5421. [Google Scholar] [CrossRef] [PubMed]
- Shi, Z.; Li, S.; Li, Y.; Ji, H.; Li, X.; Wu, D.; Xu, T.; Chen, Y.; Tian, Y.; Zhang, Y.; et al. Strategy of Solution-Processed All-Inorganic Heterostructure for Humidity/Temperature-Stable Perovskite Quantum Dot Light-Emitting Diodes. ACS Nano 2018, 12, 1462–1472. [Google Scholar] [CrossRef] [PubMed]
- Shi, Z.; Li, Y.; Li, S.; Li, X.; Wu, D.; Xu, T.; Tian, Y.; Chen, Y.; Zhang, Y.; Zhang, B.; et al. Localized Surface Plasmon Enhanced All-Inorganic Perovskite Quantum Dot Light-Emitting Diodes Based on Coaxial Core/Shell Heterojunction Architecture. Adv. Funct. Mater. 2018, 28, 1707031. [Google Scholar] [CrossRef]
- Shi, Y.; Wu, W.; Dong, H.; Li, G.; Xi, K.; Divitini, G.; Ran, C.; Yuan, F.; Zhang, M.; Jiao, B.; et al. A Strategy for Architecture Design of Crystalline Perovskite Light-Emitting Diodes with High Performance. Adv. Mater. 2018, 30, 1800251. [Google Scholar] [CrossRef]
- Zheng, H.; Zhou, Z.; Wang, T.; Gui, P.; Wu, H.; Liu, C. Ultra-bright pure green perovskite light-emitting diodes. Appl. Phys. Lett. 2021, 118, 262102. [Google Scholar] [CrossRef]
- Gunnarsson, W.B.; Xu, Z.; Noel, N.K.; Rand, B.P. Improved Charge Balance in Green Perovskite Light-Emitting Diodes with Atomic-Layer-Deposited Al2O3. ACS Appl. Mater. Interfaces 2022, 14, 34247–34252. [Google Scholar] [CrossRef]
- Li, W.; Li, T.; Tong, Y.; Qi, H.; Zhang, Y.; Guo, Y.; Wang, H.; Wang, H.; Wang, K.; Wang, H. Fabrication of Highly Luminescent Quasi Two-Dimensional CsPbBr3 Perovskite Films in High Humidity Air for Light-Emitting Diodes. ACS Appl. Mater. Interfaces 2023, 15, 36602–36610. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Z.; Kerner, R.A.; Zhao, L.; Tran, N.L.; Lee, K.M.; Koh, T.-W.; Scholes, G.D.; Rand, B.P. Efficient perovskite light-emitting diodes featuring nanometre-sized crystallites. Nat. Photonics 2017, 11, 108–115. [Google Scholar] [CrossRef]
- Jeong, B.; Han, H.; Choi, Y.J.; Cho, S.H.; Kim, E.H.; Lee, S.W.; Kim, J.S.; Park, C.; Kim, D.; Park, C. All-Inorganic CsPbI3 Perovskite Phase-Stabilized by Poly(ethylene oxide) for Red-Light-Emitting Diodes. Adv. Funct. Mater. 2018, 28, 1706401. [Google Scholar] [CrossRef]
- Han, B.; Cai, B.; Shan, Q.; Song, J.; Li, J.; Zhang, F.; Chen, J.; Fang, T.; Ji, Q.; Xu, X.; et al. Stable, Efficient Red Perovskite Light-Emitting Diodes by (α, δ)-CsPbI3 Phase Engineering. Adv. Funct. Mater. 2018, 28, 1804285. [Google Scholar] [CrossRef]
- Tang, C.; Shen, X.; Wu, X.; Zhong, Y.; Hu, J.; Lu, M.; Wu, Z.; Zhang, Y.; Yu, W.W.; Bai, X. Optimizing the Performance of Perovskite Nanocrystal LEDs Utilizing Cobalt Doping on a ZnO Electron Transport Layer. J. Phys. Chem. Lett. 2021, 12, 10112–10119. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Ko, P.K.; Li, C.H.A.; Zou, B.; Geng, P.; Guo, L.; Halpert, J.E. Amino Acid-Passivated Pure Red CsPbI3 Quantum Dot LEDs. ACS Energy Lett. 2023, 8, 410–416. [Google Scholar] [CrossRef]
- Deng, W.; Xu, X.; Zhang, X.; Zhang, Y.; Jin, X.; Wang, L.; Lee, S.-T.; Jie, J. Organometal Halide Perovskite Quantum Dot Light-Emitting Diodes. Adv. Funct. Mater. 2016, 26, 4797–4802. [Google Scholar] [CrossRef]
- Liang, D.; Peng, Y.; Fu, Y.; Shearer, M.J.; Zhang, J.; Zhai, J.; Zhang, Y.; Hamers, R.J.; Andrew, T.L.; Jin, S. Color-Pure Violet-Light-Emitting Diodes Based on Layered Lead Halide Perovskite Nanoplates. ACS Nano 2016, 10, 6897–6904. [Google Scholar] [CrossRef]
- Xing, J.; Zhao, Y.; Askerka, M.; Quan, L.N.; Gong, X.; Zhao, W.; Zhao, J.; Tan, H.; Long, G.; Gao, L.; et al. Color-stable highly luminescent sky-blue perovskite light-emitting diodes. Nat. Commun. 2018, 9, 3541. [Google Scholar] [CrossRef]
- Yuan, S.; Cui, L.-S.; Dai, L.; Liu, Y.; Liu, Q.-W.; Sun, Y.-Q.; Auras, F.; Anaya, M.; Zheng, X.; Ruggeri, E.; et al. Efficient and Spectrally Stable Blue Perovskite Light-Emitting Diodes Employing a Cationic π-Conjugated Polymer. Adv. Mater. 2021, 33, 2103640. [Google Scholar] [CrossRef]
- Li, C.-H.A.; Ko, P.K.; Chan, C.C.S.; Sergeev, A.; Chen, D.; Tewari, N.; Wong, K.S.; Halpert, J.E. Mixed Ruddlesden–Popper and Dion–Jacobson Phase Perovskites for Stable and Efficient Blue Perovskite LEDs. Adv. Funct. Mater. 2023, 33, 2303301. [Google Scholar] [CrossRef]
- Seo, J.; Wang, K.; Coffey, A.H.; He, G.; Yang, H.; Lee, Y.H.; Ma, K.; Sun, J.; Park, J.Y.; Zhao, H.; et al. Reduced Energetic Disorders in Dion–Jacobson Perovskites for Efficient and Spectral Stable Blue LEDs. Adv. Opt. Mater. 2023, 11, 2301164. [Google Scholar] [CrossRef]
- Tan, Z.K.; Moghaddam, R.S.; Lai, M.L.; Docampo, P.; Higler, R.; Deschler, F.; Price, M.; Sadhanala, A.; Pazos, L.M.; Credgington, D.; et al. Bright light-emitting diodes based on organometal halide perovskite. Nat. Nanotechnol. 2014, 9, 687–692. [Google Scholar] [CrossRef] [PubMed]
- Kumawat, N.K.; Dey, A.; Narasimhan, K.L.; Kabra, D. Near Infrared to Visible Electroluminescent Diodes Based on Organometallic Halide Perovskites: Structural and Optical Investigation. ACS Photonics 2015, 2, 349–354. [Google Scholar] [CrossRef]
- Wang, J.; Wang, N.; Jin, Y.; Si, J.; Tan, Z.-K.; Du, H.; Cheng, L.; Dai, X.; Bai, S.; He, H.; et al. Interfacial Control toward Efficient and Low-Voltage Perovskite Light-Emitting Diodes. Adv. Mater. 2015, 27, 2311–2316. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Tan, Z.-K.; Di, D.; Lai, M.L.; Jiang, L.; Lim, J.H.-W.; Friend, R.H.; Greenham, N.C. Efficient Light-Emitting Diodes Based on Nanocrystalline Perovskite in a Dielectric Polymer Matrix. Nano Lett. 2015, 15, 2640–2644. [Google Scholar] [CrossRef]
- Qin, X.; Dong, H.; Hu, W.J.S.C.M. Green light-emitting diode from bromine based organic-inorganic halide perovskite. Sci. China Mater. 2015, 58, 186–191. [Google Scholar] [CrossRef]
- Li, J.; Bade, S.G.R.; Shan, X.; Yu, Z. Single-Layer Light-Emitting Diodes Using Organometal Halide Perovskite/Poly(ethylene oxide) Composite Thin Films. Adv. Mater. 2015, 27, 5196–5202. [Google Scholar] [CrossRef]
- Cho, H.; Jeong, S.; Park, M.; Kim, Y.; Wolf, C.; Lee, C.; Heo, J.H.; Sadhanala, A.; Myoung, N.; Yoo, S. Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes. Science 2015, 350, 1222–1225. [Google Scholar] [CrossRef]
- Huang, H.; Zhao, F.; Liu, L.; Zhang, F.; Wu, X.-g.; Shi, L.; Zou, B.; Pei, Q.; Zhong, H. Emulsion Synthesis of Size-Tunable CH3NH3PbBr3 Quantum Dots: An Alternative Route toward Efficient Light-Emitting Diodes. ACS Appl. Mater. Interfaces 2015, 7, 28128–28133. [Google Scholar] [CrossRef]
- Bade, S.G.R.; Li, J.; Shan, X.; Ling, Y.; Tian, Y.; Dilbeck, T.; Besara, T.; Geske, T.; Gao, H.; Ma, B.; et al. Fully Printed Halide Perovskite Light-Emitting Diodes with Silver Nanowire Electrodes. ACS Nano 2016, 10, 1795–1801. [Google Scholar] [CrossRef] [PubMed]
- Wang, N.; Cheng, L.; Si, J.; Liang, X.; Jin, Y.; Wang, J.; Huang, W. Morphology control of perovskite light-emitting diodes by using amino acid self-assembled monolayers. Appl. Phys. Lett. 2016, 108, 141102. [Google Scholar] [CrossRef]
- Chih, Y.-K.; Wang, J.-C.; Yang, R.-T.; Liu, C.-C.; Chang, Y.-C.; Fu, Y.-S.; Lai, W.-C.; Chen, P.; Wen, T.-C.; Huang, Y.-C.; et al. NiOx Electrode Interlayer and CH3NH2/CH3NH3PbBr3 Interface Treatment to Markedly Advance Hybrid Perovskite-Based Light-Emitting Diodes. Adv. Mater. 2016, 28, 8687–8694. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.; Xiong, Z.; Wu, X.; Shao, M.; Ma, X.; Xiong, Z.-h.; Gao, C. Highly Efficient Perovskite Light-Emitting Diodes Incorporating Full Film Coverage and Bipolar Charge Injection. J. Phys. Chem. Lett. 2017, 8, 1810–1818. [Google Scholar] [CrossRef] [PubMed]
- Quan, L.N.; Zhao, Y.; García de Arquer, F.P.; Sabatini, R.; Walters, G.; Voznyy, O.; Comin, R.; Li, Y.; Fan, J.Z.; Tan, H.; et al. Tailoring the Energy Landscape in Quasi-2D Halide Perovskites Enables Efficient Green-Light Emission. Nano Lett. 2017, 17, 3701–3709. [Google Scholar] [CrossRef]
- Kim, Y.-H.; Lee, G.-H.; Kim, Y.-T.; Wolf, C.; Yun, H.J.; Kwon, W.; Park, C.G.; Lee, T.W. High efficiency perovskite light-emitting diodes of ligand-engineered colloidal formamidinium lead bromide nanoparticles. Nano Energy 2017, 38, 51–58. [Google Scholar] [CrossRef]
- Chin, X.Y.; Perumal, A.; Bruno, A.; Yantara, N.; Veldhuis, S.A.; Martínez-Sarti, L.; Chandran, B.; Chirvony, V.; Lo, A.S.-Z.; So, J.; et al. Self-assembled hierarchical nanostructured perovskites enable highly efficient LEDs via an energy cascade. Energy Environ. Sci. 2018, 11, 1770–1778. [Google Scholar] [CrossRef]
- Lee, S.; Park, J.H.; Nam, Y.S.; Lee, B.R.; Zhao, B.; Di Nuzzo, D.; Jung, E.D.; Jeon, H.; Kim, J.-Y.; Jeong, H.Y.; et al. Growth of Nanosized Single Crystals for Efficient Perovskite Light-Emitting Diodes. ACS Nano 2018, 12, 3417–3423. [Google Scholar] [CrossRef]
- Yan, F.; Xing, J.; Xing, G.; Quan, L.; Tan, S.T.; Zhao, J.; Su, R.; Zhang, L.; Chen, S.; Zhao, Y.; et al. Highly Efficient Visible Colloidal Lead-Halide Perovskite Nanocrystal Light-Emitting Diodes. Nano Lett. 2018, 18, 3157–3164. [Google Scholar] [CrossRef]
- Ban, M.; Zou, Y.; Rivett, J.P.H.; Yang, Y.; Thomas, T.H.; Tan, Y.; Song, T.; Gao, X.; Credgington, D.; Deschler, F.; et al. Solution-processed perovskite light emitting diodes with efficiency exceeding 15% through additive-controlled nanostructure tailoring. Nat. Commun. 2018, 9, 3892. [Google Scholar] [CrossRef]
- Zhao, L.; Lee, K.M.; Roh, K.; Khan, S.U.Z.; Rand, B.P. Improved Outcoupling Efficiency and Stability of Perovskite Light-Emitting Diodes using Thin Emitting Layers. Adv. Mater. 2019, 31, 1805836. [Google Scholar] [CrossRef]
- Lee, S.Y.; Kim, S.-H.; Nam, Y.S.; Yu, J.C.; Lee, S.; Kim, D.B.; Jung, E.D.; Woo, J.-H.; Ahn, S.-m.; Lee, S.; et al. Flexibility of Semitransparent Perovskite Light-Emitting Diodes Investigated by Tensile Properties of the Perovskite Layer. Nano Lett. 2019, 19, 971–976. [Google Scholar] [CrossRef]
- Li, Y.-F.; Chou, S.-Y.; Huang, P.; Xiao, C.; Liu, X.; Xie, Y.; Zhao, F.; Huang, Y.; Feng, J.; Zhong, H.; et al. Stretchable Organometal-Halide-Perovskite Quantum-Dot Light-Emitting Diodes. Adv. Mater. 2019, 31, 1807516. [Google Scholar] [CrossRef]
- Lee, H.-D.; Kim, H.; Cho, H.; Cha, W.; Hong, Y.; Kim, Y.-H.; Sadhanala, A.; Venugopalan, V.; Kim, J.S.; Choi, J.W.; et al. Efficient Ruddlesden–Popper Perovskite Light-Emitting Diodes with Randomly Oriented Nanocrystals. Adv. Funct. Mater. 2019, 29, 1901225. [Google Scholar] [CrossRef]
- Fakharuddin, A.; Qiu, W.; Croes, G.; Devižis, A.; Gegevičius, R.; Vakhnin, A.; Rolin, C.; Genoe, J.; Gehlhaar, R.; Kadashchuk, A.; et al. Reduced Efficiency Roll-Off and Improved Stability of Mixed 2D/3D Perovskite Light Emitting Diodes by Balancing Charge Injection. Adv. Funct. Mater. 2019, 29, 1904101. [Google Scholar] [CrossRef]
- Zhang, C.; Wang, S.; Li, X.; Yuan, M.; Turyanska, L.; Yang, X. Core/Shell Perovskite Nanocrystals: Synthesis of Highly Efficient and Environmentally Stable FAPbBr3/CsPbBr3 for LED Applications. Adv. Funct. Mater. 2020, 30, 1910582. [Google Scholar] [CrossRef]
- Qin, X.; Liu, F.; Leung, T.L.; Sun, W.; Chan, C.C.S.; Wong, K.S.; Kanižaj, L.; Popović, J.; Djurišić, A.B. Compositional optimization of mixed cation Dion–Jacobson perovskites for efficient green light emission. J. Mater. Chem. C 2022, 10, 108–114. [Google Scholar] [CrossRef]
- An, H.J.; Kim, M.S.; Myoung, J.-M. Strategy for the fabrication of perovskite-based green micro LED for ultra high-resolution displays by micro-molding process and surface passivation. Chem. Eng. J. 2023, 453, 139927. [Google Scholar] [CrossRef]
- Sadhukhan, P.; Kim, M.S.; Baek, S.-D.; Myoung, J.-M. Super-Bright Green Perovskite Light-Emitting Diodes Using Ionic Liquid Additives. Small Methods 2023, 7, 2201407. [Google Scholar] [CrossRef]
- Kim, H.; Zhao, L.; Price, J.S.; Grede, A.J.; Roh, K.; Brigeman, A.N.; Lopez, M.; Rand, B.P.; Giebink, N.C. Hybrid perovskite light emitting diodes under intense electrical excitation. Nat. Commun. 2018, 9, 4893. [Google Scholar] [CrossRef]
- Zhao, B.; Bai, S.; Kim, V.; Lamboll, R.; Shivanna, R.; Auras, F.; Richter, J.M.; Yang, L.; Dai, L.; Alsari, M.; et al. High-efficiency perovskite–polymer bulk heterostructure light-emitting diodes. Nat. Photonics 2018, 12, 783–789. [Google Scholar] [CrossRef]
- Xiao, Z.; Kerner, R.A.; Tran, N.; Zhao, L.; Scholes, G.D.; Rand, B.P. Engineering Perovskite Nanocrystal Surface Termination for Light-Emitting Diodes with External Quantum Efficiency Exceeding 15%. Adv. Funct. Mater. 2019, 29, 1807284. [Google Scholar] [CrossRef]
- Xu, W.; Hu, Q.; Bai, S.; Bao, C.; Miao, Y.; Yuan, Z.; Borzda, T.; Barker, A.J.; Tyukalova, E.; Hu, Z.; et al. Rational molecular passivation for high-performance perovskite light-emitting diodes. Nat. Photonics 2019, 13, 418–424. [Google Scholar] [CrossRef]
- Hassan, Y.; Park, J.H.; Crawford, M.L.; Sadhanala, A.; Lee, J.; Sadighian, J.C.; Mosconi, E.; Shivanna, R.; Radicchi, E.; Jeong, M.; et al. Ligand-engineered bandgap stability in mixed-halide perovskite LEDs. Nature 2021, 591, 72–77. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Shen, X.; Tang, C.; Li, X.; Hu, J.; Zhu, J.; Yu, W.W.; Song, H.; Bai, X. Efficient and Stable CF3PEAI-Passivated CsPbI3 QDs toward Red LEDs. ACS Appl. Mater. Interfaces 2022, 14, 8235–8242. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Apergi, S.; Chan, C.C.S.; Jia, Y.; Xie, F.; Liang, Q.; Li, G.; Wong, K.S.; Brocks, G.; Tao, S.; et al. Diammonium-Mediated Perovskite Film Formation for High-Luminescence Red Perovskite Light-Emitting Diodes. Adv. Mater. 2022, 34, 2202042. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.J.; Wang, K.; Luo, Y.; Park, J.Y.; Yang, H.; Coffey, A.H.; Ma, K.; Sun, J.; Wieghold, S.; Zhu, C.; et al. Two-Factor Phase Separations in Mixed-Halide Quasi-2D Perovskite LEDs: Dimensionality and Halide Segregations. ACS Energy Lett. 2023, 8, 3693–3701. [Google Scholar] [CrossRef]
- Rui, H.; Wu, X.; Qiu, Y.; Liu, X.; Bu, S.; Cao, H.; Yin, S. Bifunctional Bidentate Organic Additive toward High Brightness Pure Red Quasi-2D Perovskite Light-Emitting Diodes. Adv. Funct. Mater. 2023, 33, 2308147. [Google Scholar] [CrossRef]
- Mirershadi, S.; Javad, A.; Ahmadi-Kandjani, S. Efficient single-layer light-emitting diodes based on organic–inorganic lead halide perovskite and tuning luminescence properties. J. Theor. Appl. Phys. 2019, 13, 133–140. [Google Scholar] [CrossRef]
- Vassilakopoulou, A.; Papadatos, D.; Zakouras, I.; Koutselas, I. Mixtures of quasi-two and three dimensional hybrid organic-inorganic semiconducting perovskites for single layer LED. J. Alloys Compd. 2017, 692, 589–598. [Google Scholar] [CrossRef]
- Prakasam, V.; Tordera, D.; Di Giacomo, F.; Abbel, R.; Langen, A.; Gelinck, G.; Bolink, H.J. Large area perovskite light-emitting diodes by gas-assisted crystallization. J. Mater. Chem C 2019, 7, 3795–3801. [Google Scholar] [CrossRef]
- Tang, J.; Wu, S.; AlMasoud, N.; Alomar, T.S.; Wasnik, P.; Li, H.; El-Bahy, Z.; Ren, J.; Li, H.; Zhang, P.; et al. Defect passivation in perovskite films by p-methoxy phenylacetonitrile for improved device efficiency and stability. Adv. Compos. Hybrid Mater. 2023, 6, 155. [Google Scholar] [CrossRef]
- Jiang, Y.; Qin, C.; Cui, M.; He, T.; Liu, K.; Huang, Y.; Luo, M.; Zhang, L.; Xu, H.; Li, S.; et al. Spectra stable blue perovskite light-emitting diodes. Nat. Commun. 2019, 10, 1868. [Google Scholar] [CrossRef] [PubMed]
- Vashishtha, P.; Ng, M.; Shivarudraiah, S.B.; Halpert, J.E. High Efficiency Blue and Green Light-Emitting Diodes Using Ruddlesden–Popper Inorganic Mixed Halide Perovskites with Butylammonium Interlayers. Chem. Mater. 2019, 31, 83–89. [Google Scholar] [CrossRef]
- Wang, W.; Li, J.; Ni, P.; Liu, B.; Chen, Q.; Lu, Y.; Wu, H.; Cao, B.; Liu, Z. Improved Synthesis of Perovskite CsPbX3@SiO2 (X = Cl, Br, and I) Quantum Dots with Enhanced Stability and Excellent Optical Properties. ES Mater. Manuf. 2019, 4, 66–73. [Google Scholar] [CrossRef]
- Li, X.; Zhang, P.; Li, S.; Wasnik, P.; Ren, J.; Jiang, Q.; Xu, B.B.; Murugadoss, V. Mixed perovskites (2D/3D)-based solar cells: A review on crystallization and surface modification for enhanced efficiency and stability. Adv. Compos. Hybrid Mater. 2023, 6, 111. [Google Scholar] [CrossRef]
- Bhorde, A.; Waykar, R.; Rondiya, S.R.; Nair, S.; Lonkar, G.; Funde, A.; Dzade, N.Y.; Jadkar, S. Structural, Electronic, and Optical Properties of Lead-Free Halide Double Perovskite Rb2AgBiI6: A Combined Experimental and DFT Study. ES Mater. Manuf. 2020, 12, 43–52. [Google Scholar] [CrossRef]
- Tavakoli, M.M.; Prochowicz, D.; Yadav, P.; Tavakoli, R.; Saliba, M. Zinc Stannate Nanorod as an Electron Transporting Layer for Highly Efficient and Hysteresis-less Perovskite Solar Cells. Eng. Sci. 2018, 3, 48–53. [Google Scholar] [CrossRef]
- Srivastava, M.; Surana, K.; Singh, P.K.; Singh, C.R. Nickel Oxide Embedded with Polymer Electrolyte as Efficient Hole Transport Material for Perovskite Solar Cell. Eng. Sci. 2021, 17, 216–223. [Google Scholar] [CrossRef]
- Si, J.; Liu, Y.; He, Z.; Du, H.; Du, K.; Chen, D.; Li, J.; Xu, M.; Tian, H.; He, H.; et al. Efficient and High-Color-Purity Light-Emitting Diodes Based on In Situ Grown Films of CsPbX3 (X = Br, I) Nanoplates with Controlled Thicknesses. ACS Nano 2017, 11, 11100–11107. [Google Scholar] [CrossRef]
- Abdel-Latif, K.; Bateni, F.; Crouse, S.; Abolhasani, M. Flow Synthesis of Metal Halide Perovskite Quantum Dots: From Rapid Parameter Space Mapping to AI-Guided Modular Manufacturing. Matter 2020, 3, 1053–1086. [Google Scholar] [CrossRef]
- Wang, Z.; Yang, M.; Xie, X.; Yu, C.; Jiang, Q.; Huang, M.; Algadi, H.; Guo, Z.; Zhang, H. Applications of machine learning in perovskite materials. Adv. Compos. Hybrid Mater. 2022, 5, 2700–2720. [Google Scholar] [CrossRef]
Methods | Key Conditions | η, Voc, Jsc, FF | Ref. |
---|---|---|---|
Annealing, pl | 1 step, 90 °C, 450–500 nm pkt | 11.4, 0.89, 20.3, 0.64 | [133] |
Annealing, pl | 2 steps, 150 °C, 60 min | 12, 0.96, 18.05, 0.69 | [129] |
MAI conc. po | 2 steps spin, cubic | 17, 1.06, 21.6, 0.74 | [128] |
Substr. temp. po | 1 step, 80 °C, 150 °C, 45 min | 5.4, 1.24, 7.8, 0.56 | [127] |
Annealing, po, pl | 1 step, 130 °C, short, fast | 13.5, 0.94, 21.5, 0.69 | [130] |
Moisture, pl | 1 step, ann. = 90 °C, hum. = 35% | 17.1, 1.05, 20.3, 0.80 | [14] |
Solvent, pl | 1 step, 20%wt, DMF: r-BL = 97:3 (v/v) | 8.84, 0.92, 8.74, 0.76 | [131] |
Solvent, pl | 2 steps, DMSO 100 °C, 1 h, 650 nm pkt | 15.6, 0.96, 21.0, 0.76 | [134] |
Solvent, po | 2 steps, DMSO, Toluene | 16.4, 1.1, 19.58, 0.76 | [135] |
Gas/solid | 2 steps, HTM free | 10.6, 0.82, 18.3, 0.71 | [136] |
Annealing | 1 step, 150 °C, short, fast | 21.4, 1.14, 23.2, 0.797 | [137] |
Solvent | 2 steps, DMF/DMSO = 4:1, toluene | 20.1, 1.114, 23.34, 77.31 | [138] |
Solvent | 1 step, 100 °C, 90 min, toluene | 18.9, 1.06, 22.65, 76.3 | [139] |
Solvent | 1 step, DMF/DMSO = 4:1 | 18.5, 1.07, 23.6, 74.9 | [140] |
Annealing | 1 step, DMF/DMSO = 4:1, 100 °C, 1 h | 17.46, 1.073, 22.41, 0.726 | [106] |
Solvent | 1 step, DMF/DMSO = 4:1, 100 °C, 80 min chlorobenzene | 21.4, 1.169, 23.91, 76.5 | [141] |
Solvent | 2 steps, 100 °C, 5 min, isopropanol | 14.6, 0.98, 21.9, 0.685 | [142] |
Solvent | 2 steps, 65 °C, 2 min, 100 °C, 5 min | 20.4, 1.1, 23.6, 0.79 | [143] |
Annealing | 1 step, DMF/DMSO = 4:1, 130 °C, 60 min | 20.93, 1.16, 23.65, 0.763 | [144] |
Annealing | 1 step, 100 °C, 90 min | 17.2, 1.1, 20.3, 0.761 | [145] |
Annealing | 2 steps, 100 °C, 1 h | 17.53, 1.09, 20.81, 77.51 | [102] |
Annealing | 2 steps, 100 °C, 10 min | 20.9, 1.15, 23.22, 77.62 | [107] |
Annealing | 1 step, 105 °C, 10 min | 21.6, 1.18, 22.5, 0.83 | [105] |
Year | Event | Others | Ref. |
---|---|---|---|
2009.04 | 1st cell | η = 3.8% | [6] |
2012.11 | Al2O3, over 10% | η = 10.9% | [95] |
2013.02 | CNPB, PDI | Voc = 1.3 V | [146] |
2013.05 | Rutile TiO2, NW rod | η = 9.4% | [97] |
2013.07 | Eff. Over 15% | 2 steps | [91] |
ZrO2 | η = 10.8% | [147] | |
2013.09 | Vapor deposition | η = 15.4% | [71] |
2013.10 | Over 1 µm charge diffusion | Abs. Coe. = 57 k/cm | [41] |
2013.12 | HTM:CuI | stable than spiro | [118] |
Graphene | η = 15.6% | [148] | |
2014.01 | Flexible, low temperature | η = 11.5% | [149] |
NH2CH = NH2PbI3 | η = 7.5% | [119] | |
2014.02 | HTM free | η = 10.5% | [122] |
Additive | η = 11.8% | [62] | |
ZnO | η = 4.8% | [99] | |
Graphene QD | η = 10.2% | [150] | |
2014.03 | TiCl4, low temp., rutile | η = 13.7% | [98] |
2014.05 | Pb free, SnI2 | η = 5.73% | [124] |
HTM:CuSCN | η = 12.4% | [119] | |
2014.08 | Y:TiO2 | η = 19.4% | [96] |
2014.12 | TiO2 NWs, rutile | η = 11.7% | [89] |
2015.01 | 175 μm diffusion length | 1 cm single crystal | [59] |
2015.02 | ZnO + 3-aminopropanoic acid | η = 15.67% | [151] |
2015.03 | TiO2 + ZrO2 + NiO + C | η = 14.9%, no spiro | [152] |
2015.05 | FAPbI3 | η = 20.2% | [86] |
CuSCN, Inverted Planar, C60 | η = 16.6% | [153] | |
2017.06 | Iodide management | η = 22.1% | [154] |
2017.10 | CsPbI3 quantum dot | η = 13.43% | [155] |
2017.11 | HTM:CuSCN | η = 20.4% | [120] |
2017.12 | HTM:(Ta-WOx)/conjugated polymer | η = 21.2% | [156] |
2018.07 | The highest efficiency of F-PSCs | η = 22.7% | [157] |
No MA and all inorganic | η = 20.35% | [158] | |
The highest efficiency of 2D PSC | η = 16.92% | [159] | |
Laminated battery:Cu(In,Ga)Se2 | η = 22.43% | [160] | |
CsPbI2Br high efficiency | η = 14.78% | [161] | |
2019.01 | Eu3+-Eu2+ ion redox | η = 21.52% | [162] |
2019.03 | HTM: poly(3-hexylthiophene) | η = 22.7% | [8] |
2019.04 | Reach the Shockley-Queisse limit | Voc = 1.18 V | [163] |
Open circuit voltage record | Voc = 1.31 V | [164] | |
Highest efficiency of Rutile TiO2 Electron Transport Layer | η = 20.9% | [107] | |
2019.05 | The highest efficiency of all inorganic perovskite | η = 22.6% | [165] |
2019.07 | Ionic liquid additives | long-term stability | [166] |
2020.04 | Narrow-bandgap mixed lead-tin | η = 24.2% | [167] |
2020.09 | p-n junction and in chemical-type | metallization | [168] |
2021.01 | CsPbI3 | η = 20.37% | [169] |
2021.03 | Bismuth iodide interfacial layer | η = 24.07% | [170] |
2021.06 | (FAPbI3)0.85(MAPbBr3)0.15 | η = 25.8% | [171] |
2021.08 | Coupling Cl-bonded SnO2 | η = 22.6% | [172] |
2022.08 | NIR polymer DTBTI-based BHJ | η = 24.27% | [173] |
2022.12 | 4-Terminal inorganic perovskite/organic tandem | η = 22.34% | [174] |
2023.11 | 1-(phenylsulfonyl)pyrrole | η = 26.1% | [7] |
Year | Method | η/Time (h)/Efficiency Residue (%) | Ref. |
---|---|---|---|
Pero. | |||
2016.04 | Scraper coating/copper as cathode | 18.3/720/~90 | [175] |
2016.09 | Introduction of phenethyl ammonium iodide (PEAI) | 17.7/384/90 | [176] |
2017.02 | K-doped CsPbI2Br | 10/120/80 | [177] |
2017.02 | Isomers—pure double PCBM assist | 19.9/600/96 | [178] |
2017.05 | Add thiosemicarbazone | 19.19/500/80 | [179] |
2017.06 | 2D/3D multidimensional interface | 14.6/10,000/~75 | [180] |
2017.08 | 2D-3D heterojunction | 17.5/1000/80 | [181] |
2018.01 | SnO2/FAMACs/EH44/MoOx/Al architecture | 22.7/1000/94 | [182] |
2019.03 | HTAB treatment | 22.7/1370/95 | [8] |
2019.05 | Low poly-SiO2 in situ coated | 21.5/5200/80 | [183] |
2019.05 | In situ passivation of phenethyl iodide | 23.32/500/80 | [163] |
2019.06 | Linear alkyl ammonium bromide treatment | 22.6/ (Wide band gap) | [165] |
2019.08 | PbSO4, Pb3(PO4)2 in situ passivation | 22.1/1200/96.8 | [184] |
2021.08 | Coupling Cl-bonded SnO2 | 25.8/500/90 | [172] |
2022.03 | Ionic liquid butylammonium acetate | 20.1/700/79.5 | [185] |
2022.11 | Precursor engineering | 21.26/300/90 | [186] |
2023.06 | 4,4′-cyclohexylbis[N,N-bis(4-methylphenyl)aniline] | 23.15/720/90 | [187] |
HTM | |||
2016.01 | Crosslinkable silane molecules bonded to fullerenes | 19.5/720/90 | [188] |
2016.12 | Using CuGaO2 | 18.5/720/83 | [189] |
2017.11 | Use copper thiocyanate | 20/1000/95 | [120] |
2018.07 | End cap screw-OMeTAD | 22.6/500/95 | [117] |
2019.07 | Spiro-OMeTAD layer using MoS2 | 20.18/300/85 | [190] |
2022.09 | Solution Processed Ternary Tin (II) Alloy | 23.2/1500/85 | [191] |
2022.10 | Use PFBTI as the HTM deliver | 22.2/500/80 | [192] |
2023.06 | 2% Cu@ZnCo2O4 | 15.79/1800/90 | [193] |
ETL | |||
2016.12 | Doped n-type fullerene layer | 16/3400/66 | [194] |
2017.02 | Chlorinated TiO2 | 20.1/500/97.5 | [195] |
2021.11 | Infrared radiation annealing | 22/1008/92 | [196] |
2022.09 | TAC-doped SnO2 | 21.58/1000/88 | [197] |
2023.04 | pre-buried 3-aminopropionic acid hydroiodide | 23.36/720/92 | [198] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, M.; Jiang, J.; Yan, C.; Lin, Y.; Mortazavi, M.; Kaul, A.B.; Jiang, Q. Progress and Application of Halide Perovskite Materials for Solar Cells and Light Emitting Devices. Nanomaterials 2024, 14, 391. https://doi.org/10.3390/nano14050391
Cheng M, Jiang J, Yan C, Lin Y, Mortazavi M, Kaul AB, Jiang Q. Progress and Application of Halide Perovskite Materials for Solar Cells and Light Emitting Devices. Nanomaterials. 2024; 14(5):391. https://doi.org/10.3390/nano14050391
Chicago/Turabian StyleCheng, Maoding, Jingtian Jiang, Chao Yan, Yuankun Lin, Mansour Mortazavi, Anupama B. Kaul, and Qinglong Jiang. 2024. "Progress and Application of Halide Perovskite Materials for Solar Cells and Light Emitting Devices" Nanomaterials 14, no. 5: 391. https://doi.org/10.3390/nano14050391
APA StyleCheng, M., Jiang, J., Yan, C., Lin, Y., Mortazavi, M., Kaul, A. B., & Jiang, Q. (2024). Progress and Application of Halide Perovskite Materials for Solar Cells and Light Emitting Devices. Nanomaterials, 14(5), 391. https://doi.org/10.3390/nano14050391