Feature-Assisted Machine Learning for Predicting Band Gaps of Binary Semiconductors
Abstract
:1. Introduction
2. Methods
2.1. Dataset and Features
2.2. Evaluation Metrics
3. Results and Discussion
3.1. Screening of Predictive ML Methods
3.2. Physical Insights from SISSO Predictions
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ablekim, T.; Duenow, J.N.; Zheng, X.; Moutinho, H.; Moseley, J.; Perkins, C.L.; Johnston, S.W.; O’Keefe, P.; Colegrove, E.; Albin, D.S.; et al. Thin-Film Solar Cells with 19% Efficiency by Thermal Evaporation of CdSe and CdTe. ACS Energy Lett. 2020, 5, 892–896. [Google Scholar] [CrossRef]
- Barbato, M.; Artegiani, E.; Bertoncello, M.; Meneghini, M.; Trivellin, N.; Mantoan, E.; Romeo, A.; Mura, G.; Ortolani, L.; Zanoni, E.; et al. CdTe solar cells: Technology, operation and reliability. J. Phys. D Appl. Phys. 2021, 54, 333002. [Google Scholar] [CrossRef]
- Zhao, L.; Liu, C.; Wang, K. Progress of GaN-Based Optoelectronic Devices Integrated with Optical Resonances. Small 2022, 18, 2106757. [Google Scholar] [CrossRef] [PubMed]
- Zou, Y.; Jin, Q.; Wang, Y.; Jiang, K.; Wang, S.; Li, Y.; Guo, E.-J.; Cheng, Z.G. Tuning superconductivity in vanadium nitride films by adjusting strain. Phys. Rev. B 2022, 105, 224516. [Google Scholar] [CrossRef]
- Ningthoujam, R.S.; Gajbhiye, N.S. Synthesis, electron transport properties of transition metal nitrides and applications. Prog. Mater Sci. 2015, 70, 50–154. [Google Scholar] [CrossRef]
- Jin, Q.; Zhang, Q.; Bai, H.; Huon, A.; Charlton, T.; Chen, S.; Lin, S.; Hong, H.; Cui, T.; Wang, C.; et al. Emergent Magnetic States and Tunable Exchange Bias at 3d Nitride Heterointerfaces. Adv. Mater. 2023, 35, 2208221. [Google Scholar] [CrossRef]
- Zhang, S.; Zou, X. High electron mobility, controllable magnetism and anomalous light absorption in a monolayered tin mononitride semiconductor. J. Mater. Chem. C 2020, 8, 6396–6402. [Google Scholar] [CrossRef]
- Pearton, S.J.; Abernathy, C.R.; Overberg, M.E.; Thaler, G.T.; Onstine, A.H.; Gila, B.P.; Ren, F.; Lou, B.; Kim, J. New applications advisable for gallium nitride. Mater. Today 2002, 5, 24–31. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, G.; Liu, X.; Wang, S.; Wang, T.; Zhang, S.; Yu, J.; Zhao, G.; Zhang, L. Two-dimensional wide band-gap nitride semiconductor GaN and AlN materials: Properties, fabrication and applications. J. Mater. Chem. C 2021, 9, 17201–17232. [Google Scholar] [CrossRef]
- Wickramaratne, D.; Shen, J.-X.; Dreyer, C.E.; Alkauskas, A.; Van de Walle, C.G. Electrical and optical properties of iron in GaN, AlN, and InN. Phys. Rev. B 2019, 99, 205202. [Google Scholar] [CrossRef]
- Shayegan, K.J.; Zhao, B.; Kim, Y.; Fan, S.; Atwater, H.A. Nonreciprocal infrared absorption via resonant magneto-optical coupling to InAs. Sci. Adv. 2022, 8, eabm4308. [Google Scholar] [CrossRef]
- Setyawan, W.; Gaume, R.M.; Lam, S.; Feigelson, R.S.; Curtarolo, S. High-Throughput Combinatorial Database of Electronic Band Structures for Inorganic Scintillator Materials. ACS Comb. Sci. 2011, 13, 382–390. [Google Scholar] [CrossRef] [PubMed]
- Jain, A.; Ong, S.P.; Hautier, G.; Chen, W.; Richards, W.D.; Dacek, S.; Cholia, S.; Gunter, D.; Skinner, D.; Ceder, G.; et al. Commentary: The Materials Project: A materials genome approach to accelerating materials innovation. APL Mater. 2013, 1, 011002. [Google Scholar] [CrossRef]
- Jiang, H. The Band Gap Problem: The State of the Art of First-Principles Electronic Band Structure Theory. Prog. Chem. 2012, 24, 910–927. [Google Scholar]
- Mandal, S.; Haule, K.; Rabe, K.M.; Vanderbilt, D. Systematic beyond-DFT study of binary transition metal oxides. npj Comput. Mater. 2019, 5, 115. [Google Scholar] [CrossRef]
- Achar, S.K.; Bernasconi, L.; Johnson, J.K. Machine Learning Electron Density Prediction Using Weighted Smooth Overlap of Atomic Positions. Nanomaterials 2023, 13, 1853. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Y.; Ren, J.; Xue, H.; Li, J.; Tang, F.; La, P.; Lu, X. Insight into the Electronic Properties of Semiconductor Heterostructure Based on Machine Learning and First-Principles. ACS Appl. Mater. Interfaces 2023, 15, 12462–12472. [Google Scholar] [CrossRef]
- Fu, Z.; Liu, W.; Huang, C.; Mei, T. A Review of Performance Prediction Based on Machine Learning in Materials Science. Nanomaterials 2022, 12, 2957. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Wang, X.; Li, X.; Xi, L.; Ni, J.; Zhu, W.; Zhang, W.; Yang, J. New materials band gap prediction based on the high-throughput calculation and the machine learning. Sci. Sin. Technol. 2019, 49, 44–54. [Google Scholar] [CrossRef]
- Huang, Y.; Yu, C.; Chen, W.; Liu, Y.; Li, C.; Niu, C.; Wang, F.; Jia, Y. Band gap and band alignment prediction of nitride-based semiconductors using machine learning. J. Mater. Chem. C 2019, 7, 3238–3245. [Google Scholar] [CrossRef]
- Rudin, C. Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead. Nat. Mach. Intell. 2019, 1, 206–215. [Google Scholar] [CrossRef] [PubMed]
- Ouyang, R.; Curtarolo, S.; Ahmetcik, E.; Scheffler, M.; Ghiringhelli, L.M. SISSO: A compressed-sensing method for identifying the best low-dimensional descriptor in an immensity of offered candidates. Phys. Rev. Mater. 2018, 2, 083802083802. [Google Scholar] [CrossRef]
- Zhang, L.; Su, T.; Li, M.; Jia, F.; Hu, S.; Zhang, P.; Ren, W. Accurate band gap prediction based on an interpretable Δ-machine learning. Mater. Today Commun. 2022, 33, 104630. [Google Scholar] [CrossRef]
- Ma, X.; Luo, Y.; Li, M.; Jiao, W.; Yuan, H.; Liu, H.; Fang, Y. Machine learning of the Gamma-point gap and flat bands of twisted bilayer graphene at arbitrary angles. Chin. Phys. B 2023, 32, 057306. [Google Scholar] [CrossRef]
- Zhuo, Y.; Mansouri Tehrani, A.; Brgoch, J. Predicting the Band Gaps of Inorganic Solids by Machine Learning. J. Phys. Chem. Lett. 2018, 9, 1668–1673. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef]
- Takigawa, I.; Shimizu, K.-I.; Tsuda, K.; Takakusagi, S. Machine-learning prediction of the d-band center for metals and bimetals. RSC Adv. 2016, 6, 52587–52595. [Google Scholar] [CrossRef]
- Altmann, A.; Toloşi, L.; Sander, O.; Lengauer, T. Permutation importance: A corrected feature importance measure. Bioinformatics 2010, 26, 1340–1347. [Google Scholar] [CrossRef] [PubMed]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Zhu, Z.; Dong, B.; Guo, H.; Yang, T.; Zhang, Z. Fundamental band gap and alignment of two-dimensional semiconductors explored by machine learning. Chin. Phys. B 2020, 29, 046101. [Google Scholar] [CrossRef]
- Wang, T.; Tan, X.; Wei, Y.; Jin, H. Accurate bandgap predictions of solids assisted by machine learning. Mater. Today Commun. 2021, 29, 102932. [Google Scholar] [CrossRef]
- Manca, P. A relation between the binding energy and the band-gap energy in semiconductors of diamond or zinc-blende structure. J. Phys. Chem. Solids 1961, 20, 268–273. [Google Scholar] [CrossRef]
Symbol | Meaning in Binary Compound AmBn | Unit |
---|---|---|
AEN, BEN | electronegativity of A or B | eV |
AIP, BIP | first ionization potential of A or B | eV |
MA, MB | atomic mass of A or B | g/mol |
ρA, ρB | density at 25 °C of A or B | g/cm3 |
AAR, BAR | atomic radius of A or B | Å |
AIR, BIR | ionic radius of A or B | Å |
NA, NB | atomic number of A or B | − |
RA, RB | row number of A or B | − |
CA, CB | column number of A or B | − |
PA, PB | period number of A or B | − |
GA, GB | group number of A or B | − |
ML Model | Training Set | Test Set | ||
---|---|---|---|---|
RMSE (eV) | R2 | RMSE (eV) | R2 | |
LASSO | 0.717 | 0.864 | 0.727 | 0.857 |
KRR | 0.442 | 0.948 | 0.535 | 0.922 |
SVR | 0.301 | 0.976 | 0.382 | 0.961 |
DT | 0.475 | 0.940 | 0.732 | 0.854 |
RF | 0.197 | 0.990 | 0.390 | 0.958 |
GBDT | 0.288 | 0.978 | 0.361 | 0.965 |
Model | SISSO-SVR | SISSO-RF | SISSO-GBDT |
---|---|---|---|
1D | |||
2D | |||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huo, S.; Zhang, S.; Wu, Q.; Zhang, X. Feature-Assisted Machine Learning for Predicting Band Gaps of Binary Semiconductors. Nanomaterials 2024, 14, 445. https://doi.org/10.3390/nano14050445
Huo S, Zhang S, Wu Q, Zhang X. Feature-Assisted Machine Learning for Predicting Band Gaps of Binary Semiconductors. Nanomaterials. 2024; 14(5):445. https://doi.org/10.3390/nano14050445
Chicago/Turabian StyleHuo, Sitong, Shuqing Zhang, Qilin Wu, and Xinping Zhang. 2024. "Feature-Assisted Machine Learning for Predicting Band Gaps of Binary Semiconductors" Nanomaterials 14, no. 5: 445. https://doi.org/10.3390/nano14050445
APA StyleHuo, S., Zhang, S., Wu, Q., & Zhang, X. (2024). Feature-Assisted Machine Learning for Predicting Band Gaps of Binary Semiconductors. Nanomaterials, 14(5), 445. https://doi.org/10.3390/nano14050445