Two-Dimensional MXene as a Promising Adsorbent for Trihalomethanes Removal: A Density-Functional Theory Study
Abstract
:1. Introduction
2. Calculation Details
3. Results and Discussion
3.1. Building Model Molecule
3.2. Total Dipole Moment and HOMO/LUMO Bandgap Energy
3.3. Molecular Electrostatic Potential (MESP)
3.4. MXene-Cl for Trihalomethanes Adsorption
3.4.1. Trihalomethanes Model Structure
3.4.2. Trihalomethane Adsorption on Functionalized MXene-Cl Sheet
3.4.3. Functionalized MXene-Cl for Common Trihalomethane Sensing
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yuan, Z.; Nag, R.; Cummins, E. Human Health Concerns Regarding Microplastics in the Aquatic Environment—From Marine to Food Systems. Sci. Total Environ. 2022, 823, 153730. [Google Scholar] [CrossRef] [PubMed]
- Hosny, N.M.; Gomaa, I.; Elmahgary, M.G. Adsorption of Polluted Dyes from Water by Transition Metal Oxides: A Review. Appl. Surf. Sci. Adv. 2023, 15, 100395. [Google Scholar] [CrossRef]
- Li, X.F.; Mitch, W.A. Drinking Water Disinfection Byproducts (DBPs) and Human Health Effects: Multidisciplinary Challenges and Opportunities. Environ. Sci. Technol. 2018, 52, 1681–1689. [Google Scholar] [CrossRef] [PubMed]
- Lindmark, M.; Cherukumilli, K.; Crider, Y.S.; Marcenac, P.; Lozier, M.; Voth-Gaeddert, L.; Lantagne, D.S.; Mihelcic, J.R.; Zhang, Q.M.; Just, C.; et al. Passive In-Line Chlorination for Drinking Water Disinfection: A Critical Review. Environ. Sci. Technol. 2022, 56, 9164–9181. [Google Scholar] [CrossRef] [PubMed]
- Allen, J.M.; Plewa, M.J.; Wagner, E.D.; Wei, X.; Bokenkamp, K.; Hur, K.; Jia, A.; Liberatore, H.K.; Lee, C.F.T.; Shirkhani, R.; et al. Feel the Burn: Disinfection Byproduct Formation and Cytotoxicity during Chlorine Burn Events. Environ. Sci. Technol. 2022, 56, 8245–8254. [Google Scholar] [CrossRef] [PubMed]
- Gopal, K.; Tripathy, S.S.; Bersillon, J.L.; Dubey, S.P. Chlorination Byproducts, Their Toxicodynamics and Removal from Drinking Water. J. Hazard. Mater. 2007, 140, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Nieuwenhuijsen, M.J.; Martinez, D.; Grellier, J.; Bennett, J.; Best, N.; Iszatt, N.; Vrijheid, M.; Toledano, M.B. Chlorination Disinfection By-Products in Drinking Water and Congenital Anomalies: Review and Meta-Analyses. Environ. Health Perspect. 2009, 117, 1486. [Google Scholar] [CrossRef] [PubMed]
- Bernard, A.; Nickmilder, M.; Voisin, C. Outdoor Swimming Pools and the Risks of Asthma and Allergies during Adolescence. Eur. Respir. J. 2008, 32, 979–988. [Google Scholar] [CrossRef]
- Pearce, N.; Aït-Khaled, N.; Beasley, R.; Mallol, J.; Keil, U.; Mitchell, E.A.; Robertson, C.; Anderson, H.R.; Asher, M.I.; Björkstén, B.; et al. Worldwide Trends in the Prevalence of Asthma Symptoms: Phase III of the International Study of Asthma and Allergies in Childhood (ISAAC). Thorax 2007, 62, 757–765. [Google Scholar] [CrossRef]
- Voisin, C.; Sardella, A.; Marcucci, F.; Bernard, A. Infant Swimming in Chlorinated Pools and the Risks of Bronchiolitis, Asthma and Allergy. Eur. Respir. J. 2010, 36, 41–47. [Google Scholar] [CrossRef]
- Bernard, A.; Carbonnelle, S.; de Burbure, C.; Michel, O.; Nickmilder, M. Chlorinated Pool Attendance, Atopy, and the Risk of Asthma during Childhood. Environ. Health Perspect. 2006, 114, 1567–1573. [Google Scholar] [CrossRef]
- Bernard, A.; Carbonnelle, S.; Dumont, X.; Nickmilder, M. Infant Swimming Practice, Pulmonary Epithelium Integrity, and the Risk of Allergic and Respiratory Diseases Later in Childhood. Pediatrics 2007, 119, 1095–1103. [Google Scholar] [CrossRef] [PubMed]
- Couto, M.; Bernard, A.; Delgado, L.; Drobnic, F.; Kurowski, M.; Moreira, A.; Rodrigues-Alves, R.; Rukhadze, M.; Seys, S.; Wiszniewska, M.; et al. Health Effects of Exposure to Chlorination By-Products in Swimming Pools. Allergy Eur. J. Allergy Clin. Immunol. 2021, 76, 3257–3275. [Google Scholar] [CrossRef] [PubMed]
- Swinarew, A.S.; Stanula, A.J.; Gabor, J.; Raif, P.; Paluch, J.; Karpiński, J.; Kubik, K.; Okła, H.; Ostrowski, A.; Tkacz, E.; et al. The Influence of Chlorine in Indoor Swimming Pools on the Composition of Breathing Phase of Professional Swimmers. Respir. Res. 2020, 21, 88. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Chen, C.; Mustieles, V.; Wang, L.; Zhang, Y.; Wang, Y.X.; Messerlian, C. Association of Blood Trihalomethane Concentrations with Risk of All-Cause and Cause-Specific Mortality in U.S. Adults: A Prospective Cohort Study. Environ. Sci. Technol. 2021, 55, 9043–9051. [Google Scholar] [CrossRef] [PubMed]
- Morsy, M.; Gomaa, I.; Mokhtar, M.M.; ElHaes, H.; Ibrahim, M. Design and Implementation of Humidity Sensor Based on Carbon Nitride Modified with Graphene Quantum Dots. Sci. Rep. 2023, 13, 2891. [Google Scholar] [CrossRef] [PubMed]
- Javaid, M.; Haleem, A.; Rab, S.; Pratap Singh, R.; Suman, R. Sensors for Daily Life: A Review. Sens. Int. 2021, 2, 100121. [Google Scholar] [CrossRef]
- Marquis, E.; Cutini, M.; Anasori, B.; Rosenkranz, A.; Righi, M.C. Nanoscale MXene Interlayer and Substrate Adhesion for Lubrication: A Density Functional Theory Study. ACS Appl. Nano Mater. 2022, 5, 10516–10527. [Google Scholar] [CrossRef]
- Mohammadi, A.V.; Rosen, J.; Gogotsi, Y. The World of Two-Dimensional Carbides and Nitrides (MXenes). Science 2021, 372, eabf1581. [Google Scholar] [CrossRef]
- Riazi, H.; Taghizadeh, G.; Soroush, M. MXene-Based Nanocomposite Sensors. ACS Omega 2021, 6, 11103–11112. [Google Scholar] [CrossRef] [PubMed]
- Shahzad, F.; Iqbal, A.; Kim, H.; Koo, C.M. 2D Transition Metal Carbides (MXenes): Applications as an Electrically Conducting Material. Adv. Mater. 2020, 32, e202002159. [Google Scholar] [CrossRef] [PubMed]
- Grabowski, K.; Srivatsa, S.; Vashisth, A.; Mishnaevsky, L.; Uhl, T. Recent Advances in MXene-Based Sensors for Structural Health Monitoring Applications: A Review. Meas. J. Int. Meas. Confed. 2022, 189, 110575. [Google Scholar] [CrossRef]
- Wang, D.; Li, F.; Lian, R.; Xu, J.; Kan, D.; Liu, Y.; Chen, G.; Gogotsi, Y.; Wei, Y. A General Atomic Surface Modification Strategy for Improving Anchoring and Electrocatalysis Behavior of Ti3C2T2 MXene in Lithium-Sulfur Batteries. ACS Nano 2019, 13, 11078–11086. [Google Scholar] [CrossRef]
- Tang, M.; Li, J.; Wang, Y.; Han, W.; Xu, S.; Lu, M.; Zhang, W.; Li, H. Surface Terminations of MXene: Synthesis, Characterization, and Properties. Symmetry 2022, 14, 2232. [Google Scholar] [CrossRef]
- Lim, K.R.G.; Shekhirev, M.; Wyatt, B.C.; Anasori, B.; Gogotsi, Y.; Seh, Z.W. Fundamentals of MXene Synthesis. Nat. Synth. 2022, 1, 601–614. [Google Scholar] [CrossRef]
- Okoli, N.A.; Ekuase, O.A.; Eze, V.O.; Okoli, O.I. Ti-Based MXenes for Energy Storage Applications: Structure, Properties, Processing Parameters and Stability. ECS J. Solid State Sci. Technol. 2022, 11, 093008. [Google Scholar] [CrossRef]
- Markey, F. Principles of Surface Plasmon Resonance. In Real-Time Analysis of Biomolecular Interactions: Applications of BIACORE; Springer: Tokyo, Japan, 2000. [Google Scholar] [CrossRef]
- Naguib, M.; Kurtoglu, M.; Presser, V.; Lu, J.; Niu, J.; Heon, M.; Hultman, L.; Gogotsi, Y.; Barsoum, M.W. Two-Dimensional Nanocrystals Produced by Exfoliation of Ti 3AlC 2. Adv. Mater. 2011, 23, 4248–4253. [Google Scholar] [CrossRef]
- Golovynskyi, S.; Bosi, M.; Seravalli, L.; Li, B. MoS2 Two-Dimensional Quantum Dots with Weak Lateral Quantum Confinement: Intense Exciton and Trion Photoluminescence. Surf. Interfaces 2021, 23, 100909. [Google Scholar] [CrossRef]
- Gomaa, I.; Hosny, N.M.; Ibrahim, M.A. Self-Assembled Dendrites of Graphene Oxide Quantum Dots via Bottom-up Lyophilization Synthesis. J. Mol. Struct. 2024, 1296, 136818. [Google Scholar] [CrossRef]
- Dhanabalan, S.C.; Dhanabalan, B.; Ponraj, J.S.; Bao, Q.; Zhang, H. 2D–Materials-Based Quantum Dots: Gateway towards Next-Generation Optical Devices. Adv. Opt. Mater. 2017, 5, 1700257. [Google Scholar] [CrossRef]
- Zeng, Z.; Yan, Y.; Chen, J.; Zan, P.; Tian, Q.; Chen, P. Boosting the Photocatalytic Ability of Cu2O Nanowires for CO2 Conversion by MXene Quantum Dots. Adv. Funct. Mater. 2019, 29, 1806500. [Google Scholar] [CrossRef]
- Ramírez, R.; Melillo, A.; Osella, S.; Asiri, A.M.; Garcia, H.; Primo, A. Green, HF-Free Synthesis of MXene Quantum Dots and Their Photocatalytic Activity for Hydrogen Evolution. Small Methods 2023, 7, 2300063. [Google Scholar] [CrossRef]
- Gaussian 09 Citation|Gaussian.Com. Available online: https://gaussian.com/g09citation/ (accessed on 3 April 2022).
- Becke, A.D. Density-Functional Thermochemistry. III. The Role of Exact Exchange. J. Chem. Phys. 1993, 98, 5648–5652. [Google Scholar] [CrossRef]
- Lee, C.; Yang, W.; Parr, R.G. Development of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron Density. Phys. Rev. B 1988, 37, 785–789. [Google Scholar] [CrossRef]
- Vosko, S.H.; Wilk, L.; Nusair, M. Accurate Spin-Dependent Electron Liquid Correlation Energies for Local Spin Density Calculations: A Critical Analysis. Can. J. Phys. 1980, 58, 1200–1211. [Google Scholar] [CrossRef]
- Tekarli, S.M.; Drummond, M.L.; Williams, T.G.; Cundari, T.R.; Wilson, A.K. Performance of Density Functional Theory for 3d Transition Metal-Containing Complexes: Utilization of the Correlation Consistent Basis Sets. J. Phys. Chem. A 2009, 113, 8607–8614. [Google Scholar] [CrossRef]
- Peng, Y.; Cai, P.; Yang, L.; Liu, Y.; Zhu, L.; Zhang, Q.; Liu, J.; Huang, Z.; Yang, Y. Theoretical and Experimental Studies of Ti3C2MXene for Surface-Enhanced Raman Spectroscopy-Based Sensing. ACS Omega 2020, 5, 26486–26496. [Google Scholar] [CrossRef]
- Peng, Y.; Lin, C.; Long, L.; Masaki, T.; Tang, M.; Yang, L.; Liu, J.; Huang, Z.; Li, Z.; Luo, X.; et al. Charge-Transfer Resonance and Electromagnetic Enhancement Synergistically Enabling MXenes with Excellent SERS Sensitivity for SARS-CoV-2 S Protein Detection. Nano-Micro Lett. 2021, 13, 52. [Google Scholar] [CrossRef]
- Zou, H.; He, B.; Kuang, P.; Yu, J.; Fan, K. Metal-Organic Framework-Derived Nickel-Cobalt Sulfide on Ultrathin Mxene Nanosheets for Electrocatalytic Oxygen Evolution. ACS Appl. Mater. Interfaces 2018, 10, 22311–22319. [Google Scholar] [CrossRef]
- Banu, A.A.; Sinthika, S.; Premkumar, S.; Vigneshwaran, J.; Karazhanov, S.Z.; Jose, S.P. DFT Study of NH3 Adsorption on 2D Monolayer MXenes (M2C, M = Cr, Fe) via Oxygen Functionalization: Suitable Materials for Gas Sensors. FlatChem 2022, 31, 100329. [Google Scholar] [CrossRef]
- Brette, F.; Kourati, D.; Paris, M.; Loupias, L.; Célérier, S.; Cabioc’h, T.; Deschamps, M.; Boucher, F.; Mauchamp, V. Assessing the Surface Chemistry of 2D Transition Metal Carbides (MXenes): A Combined Experimental/Theoretical 13C Solid State NMR Approach. J. Am. Chem. Soc. 2023, 145, 4003–4014. [Google Scholar] [CrossRef]
- Gao, Y.; Cao, Y.; Gu, Y.; Zhuo, H.; Zhuang, G.; Deng, S.; Zhong, X.; Wei, Z.; Chen, J.; Pan, X.; et al. Functionalization Ti3C2 MXene by the Adsorption or Substitution of Single Metal Atom. Appl. Surf. Sci. 2019, 465, 911–918. [Google Scholar] [CrossRef]
- Hegazy, M.A.; Ezzat, H.A.; Yahia, I.S.; Zahran, H.Y.; Elhaes, H.; Gomaa, I.; Ibrahim, M.A. Effect of CuO and Graphene on PTFE Microfibers: Experimental and Modeling Approaches. Polymers 2022, 14, 1069. [Google Scholar] [CrossRef] [PubMed]
- Politzer, P.; Laurence, P.R.; Jayasuriya, K. Molecular Electrostatic Potentials: An Effective Tool for the Elucidation of Biochemical Phenomena. Environ. Health Perspect. 1985, 61, 191. [Google Scholar] [CrossRef]
- Qadafi, M.; Notodarmojo, S.; Zevi, Y.; Maulana, Y.E. Trihalomethane and Haloacetic Acid Formation Potential of Tropical Peat Water: Effect of Tidal and Seasonal Variations. Int. J. GEOMATE 2020, 18, 111–117. [Google Scholar] [CrossRef]
- Mattson, E.C.; Pande, K.; Unger, M.; Cui, S.; Lu, G.; Gajdardziska-Josifovska, M.; Weinert, M.; Chen, J.; Hirschmugl, C.J. Exploring Adsorption and Reactivity of NH3 on Reduced Graphene Oxide. J. Phys. Chem. C 2013, 117, 10698–10707. [Google Scholar] [CrossRef]
- Ali, S.; Lian, Z.; Li, B. Density Functional Theory Study of a Graphdiyne-Supported Single Au Atom Catalyst for Highly Efficient Acetylene Hydrochlorination. ACS Appl. Nano Mater. 2021, 4, 6152–6159. [Google Scholar] [CrossRef]
- Bayoumy, A.M.; Gomaa, I.; Elhaes, H.; Abdel-Aal, M.S.; Ibrahim, M.A.; Sleim, M.; Ibrahim, M.A.; Abdel-Aal, M.S.; Ibrahim, M.A. Application of Graphene/Nickel Oxide Composite as a Humidity Sensor. Egypt. J. Chem. 2021, 64, 85–91. [Google Scholar] [CrossRef]
- Pal, C.; Majumder, S. Ultra-Low-Level Detection of Mercury (Hg2+) Heavy Metal Carcinogens in Aqueous Medium Using Electrochemistry. Mater. Today Proc. 2020, 29, 1129–1131. [Google Scholar] [CrossRef]
- Chiu, W.T.; Chuang, Y.Y.; Chen, H.C.; Huang, H.H.; Wang, R.C. Significant Increase in Dipole Moments of Functional Groups Using Cation Bonding for Excellent SERS Sensing as a Universal Approach. Sens. Actuators B Chem. 2021, 340, 129960. [Google Scholar] [CrossRef]
- Lee, J.; Jeong, B.H.; Kamaraj, E.; Kim, D.; Kim, H.; Park, S.; Park, H.J. Light-Enhanced Molecular Polarity Enabling Multispectral Color-Cognitive Memristor for Neuromorphic Visual System. Nat. Commun. 2023, 14, 5775. [Google Scholar] [CrossRef] [PubMed]
Structures | TDM (Debye) | ΔE (eV) |
---|---|---|
Mxene | 6.399 | 0.633 |
Mxene-10O | 10.927 | 0.855 |
Mxene-10OH | 13.019 | 1.486 |
Mxene-10F | 18.386 | 1.125 |
Mxene-10Cl | 12.443 | 0.570 |
Mxene-5O-5OH | 12.024 | 0.734 |
Mxene-5O-5F | 13.213 | 0.940 |
Mxene-5O-5Cl | 10.792 | 0.740 |
Mxene-5OH-5F | 18.018 | 1.120 |
Mxene-5OH-5Cl | 7.379 | 0.835 |
Mxene-5F-5Cl | 13.569 | 0.927 |
Structure | TE (a.u) | EAds (a.u) |
---|---|---|
CHCl3 | −465.319 | - |
MXene-Cl | −1411.995 | - |
MXene-Cl-(Ti)CHCl3 | −1877.458 | −0.145 |
MXene-Cl-(C)CHCl3 | −1877.297 | 0.017 |
MXene-Cl-(Cl)CHCl3 | −1866.977 | 10.337 |
Structures | TDM (Debye) | ΔE (eV) |
---|---|---|
Mxene-Cl | 12.443 | 0.570 |
Mxene-Cl-CHF3 | 14.947 | 1.053 |
Mxene-Cl-CHClF2 | 13.680 | 0.887 |
Mxene-Cl-CHCl3 | 16.363 | 1.087 |
Mxene-Cl-CHBrCl2 | 15.998 | 0.685 |
Mxene-Cl-CHBr2Cl | 16.017 | 0.665 |
Mxene-Cl-CHBr3 | 10.819 | 1.098 |
Mxene-Cl-CHI3 | 12.060 | 0.849 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gomaa, I.; Hosny, N.M.; Elhaes, H.; Ezzat, H.A.; Elmahgary, M.G.; Ibrahim, M.A. Two-Dimensional MXene as a Promising Adsorbent for Trihalomethanes Removal: A Density-Functional Theory Study. Nanomaterials 2024, 14, 454. https://doi.org/10.3390/nano14050454
Gomaa I, Hosny NM, Elhaes H, Ezzat HA, Elmahgary MG, Ibrahim MA. Two-Dimensional MXene as a Promising Adsorbent for Trihalomethanes Removal: A Density-Functional Theory Study. Nanomaterials. 2024; 14(5):454. https://doi.org/10.3390/nano14050454
Chicago/Turabian StyleGomaa, Islam, Nasser Mohammed Hosny, Hanan Elhaes, Hend A. Ezzat, Maryam G. Elmahgary, and Medhat A. Ibrahim. 2024. "Two-Dimensional MXene as a Promising Adsorbent for Trihalomethanes Removal: A Density-Functional Theory Study" Nanomaterials 14, no. 5: 454. https://doi.org/10.3390/nano14050454
APA StyleGomaa, I., Hosny, N. M., Elhaes, H., Ezzat, H. A., Elmahgary, M. G., & Ibrahim, M. A. (2024). Two-Dimensional MXene as a Promising Adsorbent for Trihalomethanes Removal: A Density-Functional Theory Study. Nanomaterials, 14(5), 454. https://doi.org/10.3390/nano14050454