Rational Design of a Portable Chemometric-Assisted Voltammetric Sensor Based on Ion-Imprinted Polymeric Film for Co(II) Determination in Water
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Apparatus
2.3. Preparation of Sensors Based on Co(II)-IIP and NIP Films
2.4. Taguchi Experimental Design
2.5. Co(II) Ion Sensing
2.6. Characterisation of Sensors
2.7. Real Sample Analysis
3. Results and Discussions
3.1. Preliminary Tests
3.2. Optimisation of Sensor Performances
3.3. Electrochemical Preparation of Sensors
3.4. Electrochemical Behaviour of Co(II)-IIP and NIP Films
3.5. Analytical Assessment of Developed Sensors
3.6. Real Sample Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Barrio-Parra, F.; Elío, J.; De Miguel, E.; García-González, J.; Izquierdo, M.; Álvarez, R. Environmental risk assessment of cobalt and manganese from industrial sources in an estuarine system. Environ. Geochem. Health 2018, 40, 737–748. [Google Scholar] [CrossRef]
- Kabata-Pendias, A. Trace Elements in Soils and Plants; CRC Press: Boca Raton, FL, USA, 2010. [Google Scholar]
- Ali, I.; Aboul-Enein, H.Y. Instrumental Methods in Metal Ion Speciation; CRC Press: Boca Raton, FL, USA, 2006. [Google Scholar]
- Suh, M.; Thompson, C.M.; Brorby, G.P.; Mittal, L.; Proctor, D.M. Inhalation cancer risk assessment of cobalt metal. Regul. Toxicol. Pharmacol. 2016, 79, 74–82. [Google Scholar] [CrossRef]
- NSW EPA 2000. Analytical Chemistry Section. Available online: https://www.waterquality.gov.au/anz-guidelines/guideline-values/default/water-quality-toxicants/toxicants/cobalt-2000 (accessed on 30 January 2024).
- Hol, A.; Divrikli, U.; Elci, L. Determination of cobalt, nickel and iron at trace level in natural water samples by in-column chelation-reversed phase high-performance liquid chromatography. Environ. Monit. Assess. 2012, 184, 3469–3479. [Google Scholar] [CrossRef]
- Soylak, M.; Koksal, M. Deep eutectic solvent microextraction of lead (II), cobalt (II), nickel (II) and manganese (II) ions for the separation and preconcentration in some oil samples from Turkey prior to their microsampling flame atomic absorption spectrometric determination. Microchem. J. 2019, 147, 832–837. [Google Scholar] [CrossRef]
- Talio, M.C.; Alesso, M.; Acosta, M.G.; Acosta, M.; Fernández, L.P. Sequential determination of lead and cobalt in tap water and foods samples by fluorescence. Talanta 2014, 127, 244–249. [Google Scholar] [CrossRef] [PubMed]
- Knoop, A.; Planitz, P.; Wüst, B.; Thevis, M. Analysis of cobalt for human sports drug testing purposes using ICP-and LC-ICP-MS. Drug Test. Anal. 2020, 12, 1666–1672. [Google Scholar] [CrossRef] [PubMed]
- Jamali, M.R.; Soleimani, B.; Rahnama, R. A novel separation/preconcentration procedure using in situ sorbent formation microextraction for the determination of cobalt (II) in water and food samples by flame atomic absorption spectrometry. Arab. J. Chem. 2017, 10, S3150–S3155. [Google Scholar] [CrossRef]
- Baars, O.; Croot, P.L. Comparison of alternate reactants for pM level cobalt analysis in seawater by the use of catalytic voltammetry. Electroanalysis 2011, 23, 1663–1670. [Google Scholar] [CrossRef]
- Zhang, W.; Wang, R.; Luo, F.; Wang, P.; Lin, Z. Miniaturized electrochemical sensors and their point-of-care applications. Chin. Chem. Lett. 2020, 31, 589–600. [Google Scholar] [CrossRef]
- Siangproh, W.; Dungchai, W.; Rattanarat, P.; Chailapakul, O. Nanoparticle-based electrochemical detection in conventional and miniaturized systems and their bioanalytical applications: A review. Anal. Chim. Acta 2011, 690, 10–25. [Google Scholar] [CrossRef] [PubMed]
- Rahman, S.; Bozal-Palabiyik, B.; Unal, D.N.; Erkmen, C.; Siddiq, M.; Shah, A.; Uslu, B. Molecularly imprinted polymers (MIPs) combined with nanomaterials as electrochemical sensing applications for environmental pollutants. Trends Environ. Anal. Chem. 2022, 36, e00176. [Google Scholar] [CrossRef]
- Mpupa, A.; Selahle, S.K.; Mizaikoff, B.; Nomngongo, P.N. Recent advances in solid-phase extraction (SPE) based on molecularly imprinted polymers (MIPs) for analysis of hormones. Chemosensors 2021, 9, 151. [Google Scholar] [CrossRef]
- Wang, L.; Pagett, M.; Zhang, W. Molecularly imprinted polymer (MIP) based electrochemical sensors and their recent advances in health applications. Sens. Actuators Rep. 2023, 5, 100153. [Google Scholar] [CrossRef]
- Leibl, N.; Haupt, K.; Gonzato, C.; Duma, L. Molecularly imprinted polymers for chemical sensing: A tutorial review. Chemosensors 2021, 9, 123. [Google Scholar] [CrossRef]
- Herrera-Chacón, A.; Cetó, X.; Del Valle, M. Molecularly imprinted polymers-towards electrochemical sensors and electronic tongues. Anal. Bioanal. Chem. 2021, 413, 6117–6140. [Google Scholar] [CrossRef] [PubMed]
- Chapman, J.; Truong, V.K.; Elbourne, A.; Gangadoo, S.; Cheeseman, S.; Rajapaksha, P.; Latham, K.; Crawford, R.J.; Cozzolino, D. Combining chemometrics and sensors: Toward new applications in monitoring and environmental analysis. Chem. Rev. 2020, 120, 6048–6069. [Google Scholar] [CrossRef] [PubMed]
- Costa, M.; Di Masi, S.; Garcia-Cruz, A.; Piletsky, S.A.; Malitesta, C. Disposable electrochemical sensor based on ion imprinted polymeric receptor for Cd (II) ion monitoring in waters. Sens. Actuators B Chem. 2023, 383, 133559. [Google Scholar] [CrossRef]
- Di Masi, S.; Pennetta, A.; Guerreiro, A.; Canfarotta, F.; De Benedetto, G.E.; Malitesta, C. Sensor based on electrosynthesised imprinted polymeric film for rapid and trace detection of copper (II) ions. Sens. Actuators B Chem. 2020, 307, 127648. [Google Scholar] [CrossRef]
- Di Masi, S.; Garcia Cruz, A.; Canfarotta, F.; Cowen, T.; Marote, P.; Malitesta, C.; Piletsky, S.A. Synthesis and Application of Ion-Imprinted Nanoparticles in Electrochemical Sensors for Copper (II) Determination. ChemNanoMat 2019, 5, 754–760. [Google Scholar] [CrossRef]
- Manrique-Rodriguez, N.A.; Di Masi, S.; Malitesta, C. Development of Electrochemical Sensors Based on Electrosynthesized Imprinted Polymers for Cobalt (Co2+) Ion Determination in Water. Eng. Proc. 2022, 16, 15. [Google Scholar]
- Li, J.; Zhao, J.; Wei, X. A sensitive and selective sensor for dopamine determination based on a molecularly imprinted electropolymer of o-aminophenol. Sens. Actuators B Chem. 2009, 140, 663–669. [Google Scholar] [CrossRef]
- Chasta, H.; Goyal, R.N. Molecularly imprinted sensor based on o-aminophenol for the selective determination of norepinephrine in pharmaceutical and biological samples. Talanta 2014, 125, 167–173. [Google Scholar]
- Torkashvand, M.; Gholivand, M.; Azizi, R. Synthesis, characterization and application of a novel ion-imprinted polymer based voltammetric sensor for selective extraction and trace determination of cobalt (II) ions. Sens. Actuators B Chem. 2017, 243, 283–291. [Google Scholar] [CrossRef]
- Li, S.; Li, J.; Ma, X.; Pang, C.; Yin, G.; Luo, J. Molecularly imprinted electroluminescence switch sensor with a dual recognition effect for determination of ultra-trace levels of cobalt (II). Biosens. Bioelectron. 2019, 139, 111321. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Bao, X.; Gao, B.; Li, M. A novel sulfur quantum dot for the detection of cobalt ions and norfloxacin as a fluorescent “switch”. Dalton Trans. 2019, 48, 8288–8296. [Google Scholar] [CrossRef]
- Crawford, S.E.; Kim, K.-J.; Baltrus, J.P. A portable fiber optic sensor for the luminescent sensing of cobalt ions using carbon dots. J. Mater. Chem. C 2022, 10, 16506–16516. [Google Scholar] [CrossRef]
- Sullam, E.M.; Adam, K.M.; Liu, J.; Chen, H.; Xiao, J. Silicon quantum dots-based fluorescent sensor for the detection of cobalt with high sensitivity and selectivity. Chin. Chem. Lett. 2023, 35, 108476. [Google Scholar] [CrossRef]
- Mohadesi, A.; Teimoori, E.; Taher, M.A.; Beitollah, H. Adsorptive stripping voltammetric determination of cobalt (II) on the carbon paste electrode. Int. J. Electrochem. Sci. 2011, 6, 301–308. [Google Scholar] [CrossRef]
Parameters | Level 1 | Level 2 | Level 3 |
---|---|---|---|
2-AP concentration, mM | 0.2 | 0.5 | 1 |
Co(II) concentration, mM | 1 | 2 | 3 |
CV scans | 10 | 20 | 30 |
Elution time, min | 10 | 25 | 40 |
Ion | Sensitivity (µA/nM) | Error, ± (nM) | Selectivity Factor, β |
---|---|---|---|
Co(II) | 0.41 | 0.04 | / |
Mn(II) | 0.11 | 0.02 | 3.8 |
Zn(II) | 0.05 | 0.01 | 7.5 |
Hg(II) | 0.06 | 0.03 | 6.8 |
Cr(III) | 0.01 | 0.002 | 31.5 |
Cd(II) | 0.11 | 0.01 | 3.6 |
Ni(II) | 0.05 | 0.01 | 8.1 |
Sensor Configuration | Sensing Principle | Linear Range (nM) | LOD (nM) | Reference |
---|---|---|---|---|
MNPs-IIP a | CSDPV | 0.5–20 20–500 | 0.1 | [26] |
MWCNT/Cu/CQDs-IIP c | ECL | 1–100 | 0.31 | [27] |
S QDs | Fluorescence | 0–9.0 × 104 | 20 | [28] |
Fiber-QDs | Luminescence | 0–3 × 106 | 1 × 105 | [29] |
Si QDs | Fluorescence | 1 × 103–1.2 × 105 | 370 | [30] |
Co(II)-nitroso-S complex b | ASV | 55–3.2 × 103 | 30 | [31] |
Co(II)-IIP film d | DPV | 1.9–15 | 1.6 | This work |
Sample | [Co(II)] Added, nM | [Co(II)] Found ±, nM | Recovery (%) |
---|---|---|---|
Tap water | 3.9 | 4.0 ± 0.09 | 103 |
7.8 | 7.7 ± 0.2 | 98 | |
Sea water * | 7.8 | 8.3 ± 0.4 | 106 |
15.6 | 15.5 ± 0.2 | 99 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Di Masi, S.; Manrique Rodriguez, N.A.; Costa, M.; De Benedetto, G.E.; Malitesta, C. Rational Design of a Portable Chemometric-Assisted Voltammetric Sensor Based on Ion-Imprinted Polymeric Film for Co(II) Determination in Water. Nanomaterials 2024, 14, 536. https://doi.org/10.3390/nano14060536
Di Masi S, Manrique Rodriguez NA, Costa M, De Benedetto GE, Malitesta C. Rational Design of a Portable Chemometric-Assisted Voltammetric Sensor Based on Ion-Imprinted Polymeric Film for Co(II) Determination in Water. Nanomaterials. 2024; 14(6):536. https://doi.org/10.3390/nano14060536
Chicago/Turabian StyleDi Masi, Sabrina, Nelson Arturo Manrique Rodriguez, Marco Costa, Giuseppe Egidio De Benedetto, and Cosimino Malitesta. 2024. "Rational Design of a Portable Chemometric-Assisted Voltammetric Sensor Based on Ion-Imprinted Polymeric Film for Co(II) Determination in Water" Nanomaterials 14, no. 6: 536. https://doi.org/10.3390/nano14060536
APA StyleDi Masi, S., Manrique Rodriguez, N. A., Costa, M., De Benedetto, G. E., & Malitesta, C. (2024). Rational Design of a Portable Chemometric-Assisted Voltammetric Sensor Based on Ion-Imprinted Polymeric Film for Co(II) Determination in Water. Nanomaterials, 14(6), 536. https://doi.org/10.3390/nano14060536