A Room Temperature Trimethylamine Gas Sensor Based on Electrospinned Molybdenum Oxide Nanofibers/Ti3C2Tx MXene Heterojunction
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.2. Material Synthesis
2.3. Test Device
2.4. Characterization
3. Results and Discussion
3.1. Sample Characterization
3.2. TMA Sensing Properties
3.3. Design of TMA Concentration Alarm Circuit
3.4. Mechanism of TMA Gas-Sensing Properties
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhang, H.; Chen, X.Y.; Liu, Y.; Yang, C.Q.; Liu, W.Z.; Qi, M.Y.; Zhang, D. PDMS film-based flexible pressure sensor array with surface protruding structure for human motion detection and wrist posture recognition. ACS Appl. Mater. Interfaces 2024, 16, 2554–2563. [Google Scholar] [CrossRef]
- Park, S.; Kim, B.; Jo, Y.; Dai, Z.; Lee, J. Chemiresistive trimethylamine sensor using monolayer SnO2 inverse opals decorated with Cr2O3 nanoclusters. Sens. Actuators B 2024, 309, 127805. [Google Scholar] [CrossRef]
- Li, Y.; Liu, J.Q.; Zhang, J.J.; Liang, X.; Zhang, X.S.; Qi, Q. Deposition of In2O3 nanofibers on polyimide substrates to construct high-performance and flexible trimethylamine sensor. Chin. Chem. Lett. 2020, 31, 2142–2144. [Google Scholar] [CrossRef]
- Zhang, W.H.; Xu, P.; Shen, Y.P.; Feng, J.P.; Liu, Z.X.; Cai, G.; Yang, X.L.; Guan, R.F.; Su, L.X.; Yue, L. Selective detection of trimethylamine utilizing nanosheets assembled hierarchical WO2.9 nanostructure. J. Environ. Chem. Eng. 2021, 9, 106493. [Google Scholar] [CrossRef]
- Sui, X.; Zhang, D.; Wang, J.; Tang, M.; Xia, H.; Wang, Z. Ppb-level detection of trimethylamine as biomarker in exhaled gas based on MoO3/V2O5 hierarchical heterostructure. J. Alloys Compd. 2023, 968, 172104. [Google Scholar] [CrossRef]
- Zhang, D.Z.; Wu, Z.L.; Zong, X.Q. Flexible and highly sensitive H2S gas sensor based on in-situ polymerized SnO2/rGO/PANI ternary nanocomposite with application in halitosis diagnosis. Sens. Actuators B 2019, 289, 32–41. [Google Scholar] [CrossRef]
- Zhang, D.; Yang, Z.; Chen, H. Ozone gas sensing properties of metal-organic frameworks-derived In2O3 hollow microtubes decorated with ZnO nanoparticles. Sens. Actuators B 2019, 301, 127081. [Google Scholar] [CrossRef]
- Pan, W.; Zhang, Y.; Yu, S.; Liu, X.; Zhang, D. Hydrogen sulfide gas sensing properties of metal organic framework-derived α-Fe2O3 hollow nanospheres decorated with MoSe2 nanoflowers. Sens. Actuators B 2021, 334, 130221. [Google Scholar] [CrossRef]
- Guo, J.Y.; Zhang, D.Z.; Li, T.T.; Zhang, J.H.; Yu, L.D. Green light-driven acetone gas sensor based on electrospinned CdS nanospheres/Co3O4 nanofibers hybrid for the detection of exhaled diabetes biomarker. J. Colloid Interface Sci. 2022, 606, 261–271. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Huang, L.; Wang, X.; Lee, C.; Yoon, J.; Zhou, J.; Guo, X.; Lee, J. Molybdenum trioxide nanopaper as a dual gas sensor for detecting trimethylamine and hydrogen sulfide. RSC Adv. 2017, 7, 3680–3685. [Google Scholar] [CrossRef]
- Shen, S.; Zhang, X.; Cheng, X.; Xu, Y.; Gao, S.; Zhao, H.; Zhou, X.; Huo, L. Oxygen-vacancy-enriched porous α-MoO3 nanosheets for trimethylamine sensing. ACS Appl. Nano Mater. 2019, 2, 8016–8026. [Google Scholar] [CrossRef]
- Zhou, L.J.; Mi, Q.; Jin, Y.B.; Li, T.T.; Zhang, D.Z. Construction of MoO3/MoSe2 nanocomposite-based gas sensor for low detection limit trimethylamine sensing at room temperature. J. Mater. Sci. Mater. Electron. 2021, 32, 17301–17310. [Google Scholar] [CrossRef]
- Yan, W.J.; Xu, H.S.; Ling, M.; Zhou, S.Y.; Qiu, T.; Deng, Y.J.; Zhao, Z.D. MOF-derived porous hollow Co3O4@ZnO cages for high-performance MEMS trimethylamine sensors. ACS Sens. 2021, 6, 2613–2621. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Liu, J.; Cui, X.B.; Wang, Y.L.; Gao, Y.; Sun, P.; Liu, F.M.; Shimanoe, K.; Yamazoe, N.; Lu, G.Y. Enhanced gas sensing properties to acetone vapor achieved by α-Fe2O3 particles ameliorated with reduced graphene oxide sheets. Sens. Actuators B 2017, 241, 904–914. [Google Scholar] [CrossRef]
- Liu, J.B.; Hu, J.Y.; Liu, C.; Tan, Y.M.; Zhang, Y. Mechanically exfoliated MoS2 nanosheets decorated with SnS2 nanoparticles for high-stability gas sensors at room temperature. Rare Met. 2020, 40, 1536–1544. [Google Scholar] [CrossRef]
- Pan, Q.N.; Li, T.T.; Zhang, D.Z. Ammonia gas sensing properties and density functional theory investigation of coral-like Au-SnSe2 Schottky junction. Sens. Actuators B 2021, 332, 129440. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, D.Z.; Zhang, B.; Wang, D.Y.; Tang, M.C. Wearable pressure sensor array with layer-by-layer assembled MXene nanosheets/Ag nanoflowers for motion monitoring and human-machine interfaces. ACS Appl. Mater. Interfaces 2022, 14, 48907–48916. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.Y.; Zhang, D.Z.; Yang, Y.; Mi, Q.; Zhang, J.H.; Yu, L.D. Multifunctional latex/polytetrafluoroethylene-based triboelectric nanogenerator for self-powered organ-like MXene/metal-organic framework-derived CuO nanohybrid ammonia sensor. ACS Nano 2021, 15, 2911–2919. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, D.; Wang, Z.H.; Xi, G.S.; Mao, R.Y.; Ma, Y.H.; Wang, D.Y.; Tang, M.C.; Xu, Z.Y.; Luan, H.X. Ultrastretchable, self-healing conductive hydrogel-based triboelectric nanogenerators for human-computer interaction. ACS Appl. Mater. Interfaces 2023, 15, 5128–5138. [Google Scholar] [CrossRef]
- Liu, M.; Ding, Y.; Lu, Z.; Song, P.; Wang, Q. Layered Ti3C2Tx MXene/CuO spindles composites for NH3 detection at room-temperature. J. Alloy Compd. 2023, 938, 168563. [Google Scholar] [CrossRef]
- Pasupuleti, K.; Thomas, A.; Vidyasagar, D.; Rao, V.; Yoon, S.; Kim, Y.; Kim, S.; Kim, M. ZnO@Ti3C2Tx MXene hybrid composite-based Schottky-barrier-coated SAW sensor for effective detection of sub-ppb-level NH3 at room temperature under UV illumination. ACS Mater. Lett. 2023, 5, 2739–2746. [Google Scholar] [CrossRef]
- Peng, J.H.; Chen, X.Z.; Ong, W.J.; Zhao, X.J.; Li, N. Surface and heterointerface engineering of 2D MXenes and their nanocomposites: Insights into electro- and photocatalysis. Chem 2019, 5, 18–50. [Google Scholar] [CrossRef]
- Zou, S.; Gao, J.; Liu, L.M.; Lin, Z.D.; Fu, P.; Wang, S.G.; Chen, Z. Enhanced gas sensing properties at low working temperature of iron molybdate/MXene composite. J. Alloys Compd. 2020, 817, 152785. [Google Scholar] [CrossRef]
- He, T.T.; Liu, W.; Lv, T.; Ma, M.S.; Liu, Z.F.; Vasiliev, A.; Li, X.G. MXene/SnO2 heterojunction based chemical gas sensors. Sens. Actuators B 2021, 329, 129275. [Google Scholar] [CrossRef]
- Zhang, D.Z.; Yu, S.J.; Wang, X.W.; Huang, J.K.; Pan, W.J.; Zhang, J.H.; Meteku, B.E.; Zeng, J.B. UV illumination-enhanced ultrasensitive ammonia gas sensor based on (001) TiO2/MXene heterostructure for food spoilage detection. J. Hazard. Mater. 2022, 423, 127160. [Google Scholar] [CrossRef]
- Gatty, H.; Leijonmarck, S.; Antelius, M.; Stemme, G.; Roxhed, N. An amperometric nitric oxide sensor with fast response and ppb-level concentration detection relevant to asthma monitoring. Sens. Actuators B 2015, 209, 639–644. [Google Scholar] [CrossRef]
- Nakate, U.; Yu, Y.; Park, S. Hydrothermal synthesis of ZnO nanoflakes composed of fine nanoparticles for H2S gas sensing application. Ceram. Int. 2022, 19, 28822–28829. [Google Scholar] [CrossRef]
- Zhen, Y.; Zhao, Q.; Duan, Z.; Xie, C.; Duan, X.; Li, S.; Ye, Z.; Jiang, Y.; Tai, H. Ag2Te nanowires for humidity-resistant trace-level NO2 detection at room temperature. Sens. Actuators B 2022, 363, 131790. [Google Scholar]
- Wang, X.; Zhang, Y.; Chen, Z. Effect of MoO3 constituents on the growth of MoS2 nanosheets by chemical vapor deposition. Mater. Res. Express 2016, 3, 065014. [Google Scholar] [CrossRef]
- Ma, X.; Tu, X.L.; Gao, F.; Xie, Y.; Huang, X.G.; Fernandez, C.; Qu, F.L.; Liu, G.B.; Lu, L.M.; Yu, Y.F. Hierarchical porous MXene/amino carbon nanotubes-based molecular imprinting sensor for highly sensitive and selective sensing of fisetin. Sens. Actuators B 2020, 309, 127815. [Google Scholar] [CrossRef]
- Liu, L.J.; Zhao, Q.; Liu, R.; Zhu, L.F. Hydrogen adsorption-induced catalytic enhancement over Cu nanoparticles immobilized by layered Ti3C2 MXene. Appl. Catal. B 2019, 252, 198–204. [Google Scholar] [CrossRef]
- Han, M.K.; Yin, X.W.; Wu, H.; Hou, Z.X.; Song, C.Q.; Li, X.L.; Zhang, L.T.; Cheng, L.F. Ti3C2 MXenes with modified surface for high-performance electromagnetic absorption and shielding in the X-band. ACS Appl. Mater. Interfaces 2016, 8, 21011–21019. [Google Scholar] [CrossRef]
- Meng, D.; Liu, D.; Wang, S.; Shen, Y.; San, X.; Si, J.; Meng, F. In-situ growth of ordered Pd-doped ZnO nanorod arrays on ceramic tube with enhanced trimethylamine sensing performance. Appl. Surf. Sci. 2019, 463, 348–356. [Google Scholar] [CrossRef]
- Wang, D.; Gu, K.; Zhao, Q.; Zhai, C.; Yang, T.; Lu, Q.; Zhang, J.; Zhang, M. Synthesis and trimethylamine sensing properties of spherical V2O5 hierarchical structures. N. J. Chem. 2018, 42, 14188. [Google Scholar] [CrossRef]
- Meng, D.; Si, J.; Wang, M.; Wang, G.; Shen, Y.; San, X.; Meng, F. One-step synthesis and the enhanced trimethylamine sensing properties of Co3O4/SnO2 flower-like structures. Vacuum 2020, 171, 108994. [Google Scholar] [CrossRef]
- Ma, Z.; Song, P.; Yang, Z.; Wang, Q. Trimethylamine detection of 3D rGO/mesoporous In2O3 nanocomposites at room temperature. Appl. Surf. Sci. 2019, 465, 625–634. [Google Scholar] [CrossRef]
- Mounasamy, V.; Mani, G.; Ponnusamy, D.; Tsuchiya, K.; Prasad, A.; Madanagurusamy, S. Sub-ppm level detection of trimethylamine using V2O3-Cu2O mixed oxide thin films. Ceram. Int. 2019, 45, 19528–19533. [Google Scholar] [CrossRef]
- Li, Z.; Lou, C.; Lei, G.; Lu, G.; Pan, H.; Liu, X.; Zhang, J. Atomic layer deposition of Rh/ZnO nanostructures for anti-humidity detection of trimethylamine. Sens. Actuators B 2022, 355, 131347. [Google Scholar] [CrossRef]
- Qiao, X.; Zhang, Z.; Hou, D.; Li, D.; Liu, Y.; Lan, Y.; Zhang, J.; Feng, P.; Bu, X. Tunable MoS2/SnO2 P-N heterojunctions for an efficient trimethylamine gas sensor and 4-nitrophenol reduction catalyst. ACS Sustain. Chem. Eng. 2018, 6, 12375–12384. [Google Scholar] [CrossRef]
Materials | Fabrication Method | Conc. (ppm) | Tem. (°C) | Response | LOD (ppm) | Ref. |
---|---|---|---|---|---|---|
Pd-ZnO | Solvothermal | 1 | 300 | 2.9 | 1 | [33] |
V2O5 | Hydrothermal | 100 | 240 | 2.8 | 10 | [34] |
V2O3-Cu2O | Electron beam evaporation | 3 | RT | 1.08 | 3 | [35] |
Co3O4/SnO2 | Hydrothermal | 5 | 175 | 9.3 | 5 | [36] |
MoO3/Bi2Mo3O12 | Sol-gel | 10 | 170 | 7.2 | 0.1 | [37] |
Rh/ZnO | Thermal evaporation | 10 | 180 | 11.3 | 0.055 | [38] |
MoS2/SnO2 | Hydrothermal | 5 | 230 | 6 | ~ | [39] |
Ti3C2Tx MXene–MoO3 | Electrospinning- hydrothermal | 10 | RT | 21.2 | 0.5 | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, S.; Guo, J.; Zhang, H.; Shao, X.; Zhang, D. A Room Temperature Trimethylamine Gas Sensor Based on Electrospinned Molybdenum Oxide Nanofibers/Ti3C2Tx MXene Heterojunction. Nanomaterials 2024, 14, 537. https://doi.org/10.3390/nano14060537
Ma S, Guo J, Zhang H, Shao X, Zhang D. A Room Temperature Trimethylamine Gas Sensor Based on Electrospinned Molybdenum Oxide Nanofibers/Ti3C2Tx MXene Heterojunction. Nanomaterials. 2024; 14(6):537. https://doi.org/10.3390/nano14060537
Chicago/Turabian StyleMa, Shiteng, Jingyu Guo, Hao Zhang, Xingyan Shao, and Dongzhi Zhang. 2024. "A Room Temperature Trimethylamine Gas Sensor Based on Electrospinned Molybdenum Oxide Nanofibers/Ti3C2Tx MXene Heterojunction" Nanomaterials 14, no. 6: 537. https://doi.org/10.3390/nano14060537
APA StyleMa, S., Guo, J., Zhang, H., Shao, X., & Zhang, D. (2024). A Room Temperature Trimethylamine Gas Sensor Based on Electrospinned Molybdenum Oxide Nanofibers/Ti3C2Tx MXene Heterojunction. Nanomaterials, 14(6), 537. https://doi.org/10.3390/nano14060537