Binder-Free Three-Dimensional Porous Graphene Cathodes via Self-Assembly for High-Capacity Lithium–Oxygen Batteries
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of PG and Catalyst-Decorated PG Cathode
2.2. Material Characterization
2.3. Electrochemical Performance of LOBs
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Luntz, A.C.; McCloskey, B.D. Nonaqueous Li-Air Batteries: A Status Report. Chem. Rev. 2014, 114, 11721–11750. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Li, L.; Park, J.-B.; Sun, Y.-K.; Wu, F.; Amine, K. Aprotic and Aqueous Li-O2 Batteries. Chem. Rev. 2014, 114, 5611–5640. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Lu, Y.-C. Nonaqueous Lithium–Oxygen batteries: Reaction mechanism and critical open questions. Energy Storage Mater. 2020, 28, 235–246. [Google Scholar] [CrossRef]
- Yu, W.; Shen, Z.; Yoshii, T.; Iwamura, S.; Ono, M.; Matsuda, S.; Aoki, M.; Kondo, T.; Mukai, S.R.; Nakanishi, S.; et al. Hierarchically Porous and Minimally Stacked Graphene Cathodes for High-Performance Lithium–Oxygen Batteries. Adv. Energy Mater. 2024, 14, 2303055. [Google Scholar] [CrossRef]
- Samira, S.; Deshpande, S.; Greeley, J.; Nikolla, E. Aprotic Alkali Metal–O2 Batteries: Role of Cathode Surface-Mediated Processes and Heterogeneous Electrocatalysis. ACS Energy Lett. 2021, 6, 665–674. [Google Scholar] [CrossRef]
- Ren, M.; Chen, J.; Wu, G.; McHugh, E.A.; Tsai, A.-L.; Tour, J.M. Bioinspired Redox Mediator in Lithium–Oxygen Batteries. ACS Catal. 2021, 11, 1833–1840. [Google Scholar] [CrossRef]
- Ma, Z.; Yuan, X.; Li, L.; Ma, Z.-F.; Wilkinson, D.P.; Zhang, L.; Zhang, J. A review of cathode materials and structures for rechargeable lithium-air batteries. Energy Environ. Sci. 2015, 8, 2144–2198. [Google Scholar] [CrossRef]
- Lu, X.; Si, W.; Sun, X.; Liu, B.; Zhang, L.; Yan, C.; Schmidt, O.G. Pd-functionalized MnOx–GeOy nanomembranes as highly efficient cathode materials for Li–O2 batteries. Nano Energy 2016, 19, 428–436. [Google Scholar] [CrossRef]
- Xiao, L.; Yi, J.; Kou, Z.; Li, E.; Deng, B.; Wang, J.; Liu, J. Combinational Design of Electronic Structure and Nanoarray Architecture Achieves a Low-Overpotential Oxygen Electrode for Aprotic Lithium–Oxygen Batteries. Small Methods 2020, 4, 1900619. [Google Scholar] [CrossRef]
- Xiao, L.; Qin, Z.; Yi, J.; Dong, H.; Liu, J. A novel bifunctional oxygen electrode architecture enabled by heterostructures self-scaffolding for lithium-oxygen batteries. J. Energy Chem. 2020, 51, 216. [Google Scholar] [CrossRef]
- Xiao, L.; Yi, J.; Meng, W.; Wang, S.; Deng, B.; Liu, J. Ball-flower-like carbon microspheres via a three-dimensional replication strategy as a high-capacity cathode in lithium-oxygen batteries. Sci. China-Mater. 2019, 62, 633–644. [Google Scholar] [CrossRef]
- Yang, X.-h.; He, P.; Xia, Y.-y. Preparation of mesocellular carbon foam and its application for lithium/oxygen battery. Electrochem. Commun. 2009, 11, 1127–1130. [Google Scholar] [CrossRef]
- Kichambare, P.; Kumar, J.; Rodrigues, S.; Kumar, B. Electrochemical performance of highly mesoporous nitrogen doped carbon cathode in lithium–oxygen batteries. J. Power Sources 2011, 196, 3310–3316. [Google Scholar] [CrossRef]
- Wang, Z.-L.; Xu, D.; Xu, J.-J.; Zhang, L.-L.; Zhang, X.-B. Graphene Oxide Gel-Derived, Free-Standing, Hierarchically Porous Carbon for High-Capacity and High-Rate Rechargeable Li-O2 Batteries. Adv. Funct. Mater. 2012, 22, 3699–3705. [Google Scholar] [CrossRef]
- Kim, M.; Yoo, E.; Ahn, W.-S.; Shim, S.E. Controlling porosity of porous carbon cathode for lithium oxygen batteries: Influence of micro and meso porosity. J. Power Sources 2018, 389, 20–27. [Google Scholar] [CrossRef]
- Guo, X.; Xiao, L.; Yan, P.; Li, M.; Zhu, M.; Liu, J. Synergistic tuning of electrochemical surface area and surface Co3+ by oxygen plasma enhances the capacities of Co3O4 lithium–oxygen battery cathodes. Chin. Chem. Lett. 2021, 32, 3491–3495. [Google Scholar] [CrossRef]
- Lian, Y.; Li, M.; Gao, Y.; Zhao, M.; Liu, J.; Xiao, L. An Electrochemically Stable Polyester Fabric-reinforced Poly (methyl methacrylate) Gel Polymer Electrolyte for Solid-State Lithium–Oxygen Batteries. ACS Appl. Energy Mater. 2023, 6, 11364–11375. [Google Scholar] [CrossRef]
- Papp, J.K.; Forster, J.D.; Burke, C.M.; Kim, H.W.; Luntz, A.C.; Shelby, R.M.; Urban, J.J.; McCloskey, B.D. Poly(vinylidene fluoride) (PVDF) Binder Degradation in Li–O2 Batteries: A Consideration for the Characterization of Lithium Superoxide. J. Phys. Chem. Lett. 2017, 8, 1169–1174. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Lian, Y.; Li, Z.; Zhu, M.; Qiao, Q.; Liu, J.; Xiao, L. An integrated architecture of mutually infiltrated nanoarray cathode and polymer electrolyte improves the performances of solid-state lithium–oxygen batteries. Electrochim. Acta 2023, 453, 142360. [Google Scholar] [CrossRef]
- Li, M.; Li, E.; Yi, J.; Xiao, L.; Liu, J. A Grafted Hybrid Nanosheet Array Architecture Enables Efficient Bifunctional Oxygen Catalytic Electrodes for Rechargeable Lithium–Oxygen Batteries. Adv. Sustain. Syst. 2023, 2300510. [Google Scholar] [CrossRef]
- Zhu, M.; Li, M.; Lian, Y.; Guo, X.; Liu, J.; Ma, P.; Xiao, L. Direct Observation of Solvent Donor Number Effect on Lithium–Oxygen Battery Capacity via a Nanoarray Cathode Model. J. Phys. Chem. C 2022, 126, 10248–10257. [Google Scholar] [CrossRef]
- Huang, H.; Shi, H.; Das, P.; Qin, J.; Li, Y.; Wang, X.; Su, F.; Wen, P.; Li, S.; Lu, P.; et al. The Chemistry and Promising Applications of Graphene and Porous Graphene Materials. Adv. Funct. Mater. 2020, 30, 1909035. [Google Scholar] [CrossRef]
- Samaniego Andrade, S.K.; Lakshmi, S.S.; Bakos, I.; Klébert, S.; Kun, R.; Mohai, M.; Nagy, B.; László, K. The Influence of Reduced Graphene Oxide on the Texture and Chemistry of N,S-Doped Porous Carbon. Implications for Electrocatalytic and Energy Storage Applications. Nanomaterials 2023, 13, 2364. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Wang, J.; Li, X.; Geng, D.; Li, R.; Sun, X. Superior energy capacity of graphene nanosheets for a nonaqueous lithium-oxygen battery. Chem. Commun. 2011, 47, 9438–9440. [Google Scholar] [CrossRef] [PubMed]
- Sun, B.; Wang, B.; Su, D.; Xiao, L.; Ahn, H.; Wang, G. Graphene nanosheets as cathode catalysts for lithium-air batteries with an enhanced electrochemical performance. Carbon 2012, 50, 727–733. [Google Scholar] [CrossRef]
- Kim, S.Y.; Lee, H.-T.; Kim, K.-B. Electrochemical properties of graphene flakes as an air cathode material for Li–O2 batteries in an ether-based electrolyte. Phys. Chem. Chem. Phys. 2013, 15, 20262–20271. [Google Scholar] [CrossRef]
- Su, D.; Han Seo, D.; Ju, Y.; Han, Z.; Ostrikov, K.; Dou, S.; Ahn, H.-J.; Peng, Z.; Wang, G. Ruthenium nanocrystal decorated vertical graphene nanosheets@Ni foam as highly efficient cathode catalysts for lithium-oxygen batteries. NPG Asia Mater. 2016, 8, e286. [Google Scholar] [CrossRef]
- Zhang, P.; Wang, R.; He, M.; Lang, J.; Xu, S.; Yan, X. 3D Hierarchical Co/CoO-Graphene-Carbonized Melamine Foam as a Superior Cathode toward Long-Life Lithium Oxygen Batteries. Adv. Funct. Mater. 2016, 26, 1354–1364. [Google Scholar] [CrossRef]
- Yang, L.; Chen, J.; Xu, S.; Jing, N.; Hao, H.; Wang, Z.; Wang, M.; Wang, G.; Wang, G. Binder-Free Flexible Three-Dimensional Porous Electrodes by Combining Microstructures and Catalysis to Enhance the Performance of Lithium-Oxygen Batteries. Ind. Eng. Chem. Res. 2021, 60, 14113–14123. [Google Scholar] [CrossRef]
- Zhang, W.; Zhu, J.; Ang, H.; Zeng, Y.; Xiao, N.; Gao, Y.; Liu, W.; Hng, H.H.; Yan, Q. Binder-free graphene foams for O2 electrodes of Li–O2 batteries. Nanoscale 2013, 5, 9651–9658. [Google Scholar] [CrossRef]
- Wan, W.; Zhu, X.; He, X.; Wang, Y.; Yan, Y.; Wu, Y.; Lü, Z. Nanoarchitectured CNTs-Grafted Graphene Foam with Hierarchical Pores as a Binder-Free Cathode for Lithium-Oxygen Batteries. J. Electrochem. Soc. 2018, 165, A1741. [Google Scholar] [CrossRef]
- Huang, G.; Han, J.; Yang, C.; Wang, Z.; Fujita, T.; Hirata, A.; Chen, M. Graphene-based quasi-solid-state lithium–oxygen batteries with high energy efficiency and a long cycling lifetime. NPG Asia Mater. 2018, 10, 1037–1045. [Google Scholar] [CrossRef]
- Zhu, X.; Zhang, P.; Xu, S.; Yan, X.; Xue, Q. Free-Standing Three-Dimensional Graphene/Manganese Oxide Hybrids As Binder-Free Electrode Materials for Energy Storage Applications. ACS Appl. Mater. Interfaces 2014, 6, 11665–11674. [Google Scholar] [CrossRef] [PubMed]
- Jiang, J.; He, P.; Tong, S.; Zheng, M.; Lin, Z.; Zhang, X.; Shi, Y.; Zhou, H. Ruthenium functionalized graphene aerogels with hierarchical and three-dimensional porosity as a free-standing cathode for rechargeable lithium-oxygen batteries. NPG Asia Mater. 2016, 8, e239. [Google Scholar] [CrossRef]
- Xiao, J.; Mei, D.; Li, X.; Xu, W.; Wang, D.; Graff, G.L.; Bennett, W.D.; Nie, Z.; Saraf, L.V.; Aksay, I.A.; et al. Hierarchically Porous Graphene as a Lithium–Air Battery Electrode. Nano Lett. 2011, 11, 5071–5078. [Google Scholar] [CrossRef] [PubMed]
- Sun, B.; Huang, X.; Chen, S.; Munroe, P.; Wang, G. Porous Graphene Nanoarchitectures: An Efficient Catalyst for Low Charge-Overpotential, Long Life, and High Capacity Lithium–Oxygen Batteries. Nano Lett. 2014, 14, 3145–3152. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.Y.; Kim, M.; Kim, D.W.; Suk, J.; Park, O.O.; Kang, Y. Flexible binder-free graphene paper cathodes for high-performance Li-O2 batteries. Carbon 2015, 93, 625–635. [Google Scholar] [CrossRef]
- Wu, J.; Liu, Y.; Cui, Y.; Ouyang, J.; Baker, A.P.; Li, Z.; Zhang, H. Pluronic F127 as auxiliary template for preparing nitrogen and oxygen dual doped mesoporous carbon cathode of lithium-oxygen batteries. J. Phys. Chem. Solids 2018, 113, 31–38. [Google Scholar] [CrossRef]
- Huang, X.; Zhao, W.; Zhu, C.; Chen, X.; Han, X.; Xing, J.; Bao, L.; Meng, L.; Shi, N.N.; Gao, P.; et al. Modification of the Interlayer Coupling and Chemical Reactivity of Multilayer Graphene through Wrinkle Engineering. Chem. Mater. 2021, 33, 2506–2515. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, Z. Spontaneous rolling-up and assembly of graphene designed by using defects. Nanoscale 2018, 10, 6487–6495. [Google Scholar] [CrossRef]
- Peer, M.; Lusardi, M.; Jensen, K.F. Facile Soft-Templated Synthesis of High-Surface Area and Highly Porous Carbon Nitrides. Chem. Mater. 2017, 29, 1496–1506. [Google Scholar] [CrossRef]
- Han, S.; Wu, D.; Li, S.; Zhang, F.; Feng, X. Porous Graphene Materials for Advanced Electrochemical Energy Storage and Conversion Devices. Adv. Mater. 2014, 26, 849–864. [Google Scholar] [CrossRef] [PubMed]
- Childres, I.; Jauregui, L.A.; Park, W.; Cao, H.; Chen, Y.P. Raman spectroscopy of graphene and related materials. New Dev. Photon Mater. Res. 2013, 1, 1–20. [Google Scholar]
- Yu, W.; Wang, H.; Qin, L.; Hu, J.; Liu, L.; Li, B.; Zhai, D.; Kang, F. Controllable Electrochemical Fabrication of KO2-Decorated Binder-Free Cathodes for Rechargeable Lithium–Oxygen Batteries. ACS Appl. Mater. Interfaces 2018, 10, 17156–17166. [Google Scholar] [CrossRef]
- Islam, S.; Alfaruqi, M.H.; Mathew, V.; Song, J.; Kim, S.; Kim, S.; Jo, J.; Baboo, J.P.; Pham, D.T.; Putro, D.Y.; et al. Facile synthesis and the exploration of the zinc storage mechanism of β-MnO2 nanorods with exposed (101) planes as a novel cathode material for high performance eco-friendly zinc-ion batteries. J. Mater. Chem. A 2017, 5, 23299–23309. [Google Scholar] [CrossRef]
- Zhu, L.; Jiang, Y.; Zheng, J.; Zhang, N.; Yu, C.; Li, Y.; Pao, C.-W.; Chen, J.-L.; Jin, C.; Lee, J.-F.; et al. Ultrafine Nanoparticle-Supported Ru Nanoclusters with Ultrahigh Catalytic Activity. Small 2015, 11, 4385–4393. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.; Meng, N.; Zhang, Y.; Lian, F. Improved electrocatalytic activity of δ-MnO2@MWCNTs by inducing the oriented growth of oxygen reduction products in Li-O2 batteries. Nano Energy 2019, 58, 508–516. [Google Scholar] [CrossRef]
- Elmasides, C.; Kondarides, D.I.; Grünert, W.; Verykios, X.E. XPS and FTIR Study of Ru/Al2O3 and Ru/TiO2 Catalysts: Reduction Characteristics and Interaction with a Methane–Oxygen Mixture. J. Phys. Chem. B 1999, 103, 5227–5239. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Meng, W.; Gao, Y.; Zhao, M.; Li, M.; Xiao, L. Binder-Free Three-Dimensional Porous Graphene Cathodes via Self-Assembly for High-Capacity Lithium–Oxygen Batteries. Nanomaterials 2024, 14, 754. https://doi.org/10.3390/nano14090754
Liu Y, Meng W, Gao Y, Zhao M, Li M, Xiao L. Binder-Free Three-Dimensional Porous Graphene Cathodes via Self-Assembly for High-Capacity Lithium–Oxygen Batteries. Nanomaterials. 2024; 14(9):754. https://doi.org/10.3390/nano14090754
Chicago/Turabian StyleLiu, Yanna, Wen Meng, Yuying Gao, Menglong Zhao, Ming Li, and Liang Xiao. 2024. "Binder-Free Three-Dimensional Porous Graphene Cathodes via Self-Assembly for High-Capacity Lithium–Oxygen Batteries" Nanomaterials 14, no. 9: 754. https://doi.org/10.3390/nano14090754
APA StyleLiu, Y., Meng, W., Gao, Y., Zhao, M., Li, M., & Xiao, L. (2024). Binder-Free Three-Dimensional Porous Graphene Cathodes via Self-Assembly for High-Capacity Lithium–Oxygen Batteries. Nanomaterials, 14(9), 754. https://doi.org/10.3390/nano14090754