Simultaneous Detection of Carbon Quantum Dots as Tracers for Interwell Connectivity Evaluation in a Pattern with Two Injection Wells
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Nanotracer Synthesis
2.3. Nanotracers’ Characterization
2.3.1. Physicochemical Characterization
2.3.2. Fluorescence Measurements
2.4. Fluid–Rock Interaction
2.4.1. Wettability Contact Angle
2.4.2. Static Retention Tests of Nanotracers
2.4.3. Dynamic Retention Test
2.5. Technology Assurance and Field Implementation
2.5.1. Baseline
2.5.2. Conventional Tracer Fluorescence
2.5.3. Simultaneous Quantification
2.6. Field Implementation
3. Results and Discussion
3.1. Fourier Transform Infrared Spectroscopy (FTIR)
3.2. Zeta Potential and Dynamic Light Scattering (DLS)
3.3. Morphology (TEM-AFM)
3.4. Spectrophotometric Properties
3.5. Contact Angle Measurements
3.5.1. Static Retention Tests
3.5.2. Dynamic Retention Tests
3.6. Technology Assurance and Field Application
3.6.1. Baseline Construction
3.6.2. Simultaneous Quantification
3.7. Field Implementation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Du, Y.; Guan, L. Interwell tracer tests: Lessons learned from past field studies. In Proceedings of the SPE Asia Pacific Oil and Gas Conference and Exhibition, Jakarta, Indonesia, 5–7 April 2005. [Google Scholar]
- Ahmad, M.; Tasneem, M.; Rafiq, M.; Khan, I.; Farooq, M.; Sajjad, M. Interwell tracing by environmental isotopes at Fimkassar Oilfield, Pakistan. Appl. Radiat. Isot. 2003, 58, 611–619. [Google Scholar] [CrossRef] [PubMed]
- Hutchins, R.; Dovan, H.; Sandiford, B. Aqueous tracers for oilfield applications. In Proceedings of the SPE International Conference on Oilfield Chemistry? Anaheim, CA, USA, 20–22 February 1991; p. SPE–21049-MS. [Google Scholar]
- Marure Valdez, D. Aplicación de Trazadores en Yacimientos Petroleros. Bachelor’s Thesis, Universidad Nacional Autónoma de México, Mexico City, Mexico, 2014. [Google Scholar]
- Saldungaray, P.; Duenckel, R.; Palisch, T. Reducing hydraulic fracturing HSE footprint through the application of a non-radioactive method for proppant placement and propped fracture height assessment. In Proceedings of the SPE Middle East Health, Safety, Environment & Sustainable Development Conference and Exhibition, Doha, Qatar, 22–24 September 2014. [Google Scholar]
- Sanni, M.L.; Al-Abbad, M.A.; Kokal, S.L.; Hartvig, S.; Olaf, H.; Jevanord, K. A field case study of inter-well chemical tracer test. In Proceedings of the SPE International Symposium on Oilfield Chemistry, The Woodlands, TX, USA, 13–15 April 2015. [Google Scholar]
- Keshavarz, M.H.; Gharagheizi, F.; Shokrolahi, A.; Zakinejad, S. Accurate prediction of the toxicity of benzoic acid compounds in mice via oral without using any computer codes. J. Hazard. Mater. 2012, 237, 79–101. [Google Scholar] [CrossRef] [PubMed]
- Winniford, W.L.; Dunkle, M.N. Tracers for Oil and Gas Reservoirs. In Analytical Techniques in the Oil and Gas Industry for Environmental Monitoring; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2020; pp. 329–345. [Google Scholar]
- Huinca, E.A.; De Napoli, P. Aplicación de trazadores salinos de amplio rango de salinidad para determinar el volumen poral del sandpack. Bachelor’s Thesis, Universidad Nacional del Comahue, Buenos Aires, Argentina, 2023. [Google Scholar]
- Ihekweme, G.O.; Shondo, J.N.; Orisekeh, K.I.; Kalu-Uka, G.M.; Nwuzor, I.C.; Onwualu, A.P. Characterization of certain Nigerian clay minerals for water purification and other industrial applications. Heliyon 2020, 6, e03783. [Google Scholar] [CrossRef] [PubMed]
- Chatterjee, M.; Toh, S.; Alshmakhy, A.; Bigno, Y.; Hewitt, P. Advanced Research and Development in Unconventional Use of Tracer Technology for EOR and IOR: What lies beyond? In Proceedings of the Abu Dhabi International Petroleum Exhibition and Conference, Abu Dhabi, United Arab Emirates, 15–18 November 2021; p. D041S119R003. [Google Scholar]
- Wang, B.; Ding, Y.; Deng, Z.; Li, Z. Rational design of ternary NiS/CQDs/ZnIn2S4 nanocomposites as efficient noble-metal-free photocatalyst for hydrogen evolution under visible light. Chin. J. Catal. 2019, 40, 335–342. [Google Scholar] [CrossRef]
- Li, M.; Chen, T.; Gooding, J.J.; Liu, J. Review of carbon and graphene quantum dots for sensing. ACS Sens. 2019, 4, 1732–1748. [Google Scholar] [CrossRef] [PubMed]
- Hu, Z.; Gao, H.; Ramisetti, S.B.; Zhao, J.; Nourafkan, E.; Glover, P.W.; Wen, D. Carbon quantum dots with tracer-like breakthrough ability for reservoir characterization. Sci. Total Environ. 2019, 669, 579–589. [Google Scholar] [CrossRef] [PubMed]
- Franco, C.A.; Candela, C.H.; Gallego, J.; Marin, J.; Patiño, L.E.; Ospina, N.; Patiño, E.; Molano, M.; Villamil, F.; Bernal, K.M. Easy and rapid synthesis of carbon quantum dots from Mortino (Vaccinium Meridionale Swartz) extract for use as green tracers in the oil and gas industry: Lab-to-field trial development in Colombia. Ind. Eng. Chem. Res. 2020, 59, 11359–11369. [Google Scholar] [CrossRef]
- Sakthivel, S.; Adebayo, A.; Kanj, M.Y. Experimental evaluation of carbon dots stabilized foam for enhanced oil recovery. Energy Fuels 2019, 33, 9629–9643. [Google Scholar] [CrossRef]
- XIONG, C.; Guangqiang, C.; ZHANG, J.; Nan, L.; Wenlong, X.; Junwen, W.; Jun, L.; ZHANG, N. Nanoparticle foaming agents for major gas fields in China. Pet. Explor. Dev. 2019, 46, 1022–1030. [Google Scholar] [CrossRef]
- Franco, C.A.; Franco, C.A.; Zabala, R.D.; Bahamón, I.t.; Forero, A.n.; Cortés, F.B. Field Applications of nanotechnology in the oil and gas industry: Recent advances and perspectives. Energy Fuels 2021, 35, 19266–19287. [Google Scholar] [CrossRef]
- Sabet, M.; Mahdavi, K. Green synthesis of high photoluminescence nitrogen-doped carbon quantum dots from grass via a simple hydrothermal method for removing organic and inorganic water pollutions. Appl. Surf. Sci. 2019, 463, 283–291. [Google Scholar] [CrossRef]
- Guzmán, J.D.; Betancur, S.; Carrasco-Marín, F.; Franco, C.A.; Nassar, N.N.; Cortés, F.B. Importance of the adsorption method used for obtaining the nanoparticle dosage for asphaltene-related treatments. Energy Fuels 2016, 30, 2052–2059. [Google Scholar] [CrossRef]
- Hurtado, Y.; Franco, C.A.; Riazi, M.; Cortés, F.B. Improving the stability of nitrogen foams using silica nanoparticles coated with polyethylene glycol. J. Mol. Liq. 2020, 300, 112256. [Google Scholar] [CrossRef]
- Villegas, J.P.; Moncayo-Riascos, I.; Galeano-Caro, D.; Riazi, M.; Franco, C.A.; Cortés, F.B. Functionalization of γ-alumina and magnesia nanoparticles with a fluorocarbon surfactant to promote ultra-gas-wet surfaces: Experimental and theoretical approach. ACS Appl. Mater. Interfaces 2020, 12, 13510–13520. [Google Scholar] [CrossRef] [PubMed]
- Díez, R.; Medina, O.E.; Giraldo, L.J.; Cortés, F.B.; Franco, C.A. Development of nanofluids for the inhibition of formation damage caused by fines migration: Effect of the interaction of quaternary amine (CTAB) and MgO nanoparticles. Nanomaterials 2020, 10, 928. [Google Scholar] [CrossRef] [PubMed]
- Vieira, K.O.; Bettini, J.; de Oliveira, L.F.C.; Ferrari, J.L.; Schiavon, M.A. Synthesis of multicolor photoluminescent carbon quantum dots functionalized with hydrocarbons of different chain lengths. New Carbon Mater. 2017, 32, 327–337. [Google Scholar] [CrossRef]
- Zhan, J.; Geng, B.; Wu, K.; Xu, G.; Wang, L.; Guo, R.; Lei, B.; Zheng, F.; Pan, D.; Wu, M. A solvent-engineered molecule fusion strategy for rational synthesis of carbon quantum dots with multicolor bandgap fluorescence. Carbon 2018, 130, 153–163. [Google Scholar] [CrossRef]
- Pillar-Little, T.J.; Wanninayake, N.; Nease, L.; Heidary, D.K.; Glazer, E.C.; Kim, D.Y. Superior photodynamic effect of carbon quantum dots through both type I and type II pathways: Detailed comparison study of top-down-synthesized and bottom-up-synthesized carbon quantum dots. Carbon 2018, 140, 616–623. [Google Scholar] [CrossRef]
- Su, A.; Wang, D.; Shu, X.; Zhong, Q.; Chen, Y.; Liu, J.; Wang, Y. Synthesis of fluorescent carbon quantum dots from dried lemon peel for determination of carmine in drinks. Chem. Res. Chin. Univ. 2018, 34, 164–168. [Google Scholar] [CrossRef]
- Anmei, S.; Qingmei, Z.; Yuye, C.; Yilin, W. Preparation of carbon quantum dots from cigarette filters and its application for fluorescence detection of Sudan I. Anal. Chim. Acta 2018, 1023, 115–120. [Google Scholar] [CrossRef] [PubMed]
- Yuan, L. Synthesis and Photovoltaic Applications of Lead Based Colloidal Quantum Dots. Ph.D. Thesis, UNSW Sydney, Sydney, Australia, 2017. [Google Scholar]
- Lim, J.; Yeap, S.P.; Che, H.X.; Low, S.C. Characterization of magnetic nanoparticle by dynamic light scattering. Nanoscale Res. Lett. 2013, 8, 381. [Google Scholar] [CrossRef] [PubMed]
- Clogston, J.D.; Patri, A.K. Zeta potential measurement. In Characterization of Nanoparticles Intended for Drug Delivery; Humana Press: Totowa, NJ, USA, 2011; pp. 63–70. [Google Scholar]
- Larsson, M.; Hill, A.; Duffy, J. Suspension stability; Why particle size, zeta potential and rheology are important. Annu. Trans. Nord. Rheol. Soc 2012, 20, 209–214. [Google Scholar]
- Ateia, E.E.; Rabie, O.; Mohamed, A.T. Assessment of the correlation between optical properties and CQD preparation approaches. Eur. Phys. J. Plus 2024, 139, 24. [Google Scholar] [CrossRef]
- Su, W.; Wu, H.; Xu, H.; Zhang, Y.; Li, Y.; Li, X.; Fan, L. Carbon dots: A booming material for biomedical applications. Mater. Chem. Front. 2020, 4, 821–836. [Google Scholar] [CrossRef]
- Lim, H.; Liu, Y.; Kim, H.Y.; Son, D.I. Facile synthesis and characterization of carbon quantum dots and photovoltaic applications. Thin Solid Film. 2018, 660, 672–677. [Google Scholar] [CrossRef]
- Islam, S.U.; Latief, U.; Ali, J.; Khan, M.S. Long wavelength emissive ZnO/CQDs phosphor with high color purity and its application in sensitive detection of cadmium (II). Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2024, 304, 123292. [Google Scholar] [CrossRef] [PubMed]
- Picollo, M.; Aceto, M.; Vitorino, T. UV-Vis spectroscopy. Phys. Sci. Rev. 2019, 4, 20180008. [Google Scholar] [CrossRef]
- Arumugam, N.; Kim, J. Synthesis of carbon quantum dots from Broccoli and their ability to detect silver ions. Mater. Lett. 2018, 219, 37–40. [Google Scholar] [CrossRef]
- Muthulingam, S.; Bae, K.B.; Khan, R.; Lee, I.-H.; Uthirakumar, P. Carbon quantum dots decorated N-doped ZnO: Synthesis and enhanced photocatalytic activity on UV, visible and daylight sources with suppressed photocorrosion. J. Environ. Chem. Eng. 2016, 4, 1148–1155. [Google Scholar] [CrossRef]
- Shapiro, A.; Jang, Y.; Rubin-Brusilovski, A.; Budniak, A.K.; Horani, F.; Sashchiuk, A.; Lifshitz, E. Tuning optical activity of IV–VI colloidal quantum dots in the short-wave infrared (SWIR) spectral regime. Chem. Mater. 2016, 28, 6409–6416. [Google Scholar] [CrossRef]
- Dutta Choudhury, S.; Badugu, R.; Lakowicz, J.R. Directing fluorescence with plasmonic and photonic structures. Acc. Chem. Res. 2015, 48, 2171–2180. [Google Scholar] [CrossRef] [PubMed]
- Karelovic, A.; Galdames, G.; Medina, J.C.; Yévenes, C.; Barra, Y.; Jiménez, R. Mechanism and structure sensitivity of methanol synthesis from CO2 over SiO2-supported Cu nanoparticles. J. Catal. 2019, 369, 415–426. [Google Scholar] [CrossRef]
- Yang, T.; Tang, Y.a.; Liu, L.; Lv, X.; Wang, Q.; Ke, H.; Deng, Y.; Yang, H.; Yang, X.; Liu, G. Size-dependent Ag2S nanodots for second near-infrared fluorescence/photoacoustics imaging and simultaneous photothermal therapy. Acs Nano 2017, 11, 1848–1857. [Google Scholar] [CrossRef] [PubMed]
- Castañeda-Serna, H.U.; Calderón-Domínguez, G.; García-Bórquez, A.; de la Paz Salgado-Cruz, M.; Rebollo, R.R.F. Structural and luminescent properties of CQDs produced by microwave and conventional hydrothermal methods using pelagic Sargassum as carbon source. Opt. Mater. 2022, 126, 112156. [Google Scholar] [CrossRef]
- Wu, Y.; Li, C.; van der Mei, H.C.; Busscher, H.J.; Ren, Y. Carbon quantum dots derived from different carbon sources for antibacterial applications. Antibiotics 2021, 10, 623. [Google Scholar] [CrossRef] [PubMed]
- Dimos, K. Carbon quantum dots: Surface passivation and functionalization. Curr. Org. Chem. 2016, 20, 682–695. [Google Scholar] [CrossRef]
- Kou, X.; Jiang, S.; Park, S.-J.; Meng, L.-Y. A review: Recent advances in preparations and applications of heteroatom-doped carbon quantum dots. Dalton Trans. 2020, 49, 6915–6938. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Song, Y.; Yan, X.; Zhu, C.; Ma, Y.; Du, D.; Lin, Y. Carbon quantum dots as fluorescence resonance energy transfer sensors for organophosphate pesticides determination. Biosens. Bioelectron. 2017, 94, 292–297. [Google Scholar] [CrossRef] [PubMed]
- Foroozesh, J.; Kumar, S. Nanoparticles behaviors in porous media: Application to enhanced oil recovery. J. Mol. Liq. 2020, 316, 113876. [Google Scholar] [CrossRef]
- Al-Hajri, S.; Mahmood, S.M.; Akbari, S.; Abdulelah, H.; Yekeen, N.; Saraih, N. Experimental investigation and development of correlation for static and dynamic polymer adsorption in porous media. J. Pet. Sci. Eng. 2020, 189, 106864. [Google Scholar] [CrossRef]
- Sun, T.; Song, J.; Liu, Z.; Jiang, W. The transport and retention of CQDs-doped TiO2 in packed columns and 3D printed micromodels. J. Environ. Sci. 2022, 113, 365–375. [Google Scholar] [CrossRef] [PubMed]
- Cutler, G. Detergency: Theory and Technology; CRC Press: Boca Raton, FL, USA, 2020. [Google Scholar]
- Shi, G.; Wang, H.; Zhang, Y.; Cheng, C.; Zhai, T.; Chen, B.; Liu, X.; Jono, R.; Mao, X.; Liu, Y. The effect of water on colloidal quantum dot solar cells. Nat. Commun. 2021, 12, 4381. [Google Scholar] [CrossRef] [PubMed]
- Serres-Piole, C.; Preud’Homme, H.; Moradi-Tehrani, N.; Allanic, C.; Jullia, H.; Lobinski, R. Water tracers in oilfield applications: Guidelines. J. Pet. Sci. Eng. 2012, 98, 22–39. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
Porosity | 20% |
Mineralogy | 80% Quartz and 20% Kaolinite |
Pressure | 2000 psi |
Temperature | 114 °C |
SW | 22% |
Injection water salinity | 800 ppm |
Tracer | Theoretical Concentration (mg/L) | Calculated Concentration (mg/L) | Interference Percentage (%) |
---|---|---|---|
CQDgreen | 500 | 567.16 | 11.55 |
250 | 285.47 | ||
50 | 54.33 | ||
10 | 9.01 | ||
CQDred | 500 | 550.10 | 14.32 |
250 | 281.02 | ||
50 | 58.45 | ||
10 | 11.80 | ||
CQDblue | 500 | 538.42 | 7.90 |
250 | 246.71 | ||
50 | 47.77 | ||
10 | 11.81 | ||
CQDop | 500 | 468.21 | 15.48 |
250 | 267.78 | ||
50 | 57.10 | ||
10 | 13.43 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rosales, S.; Zapata, K.; Cortes, F.B.; Rojano, B.; Diaz, C.; Cortes, C.; Jaramillo, D.; Vasquez, A.; Ramirez, D.; Franco, C.A. Simultaneous Detection of Carbon Quantum Dots as Tracers for Interwell Connectivity Evaluation in a Pattern with Two Injection Wells. Nanomaterials 2024, 14, 789. https://doi.org/10.3390/nano14090789
Rosales S, Zapata K, Cortes FB, Rojano B, Diaz C, Cortes C, Jaramillo D, Vasquez A, Ramirez D, Franco CA. Simultaneous Detection of Carbon Quantum Dots as Tracers for Interwell Connectivity Evaluation in a Pattern with Two Injection Wells. Nanomaterials. 2024; 14(9):789. https://doi.org/10.3390/nano14090789
Chicago/Turabian StyleRosales, Stephania, Karol Zapata, Farid B. Cortes, Benjamín Rojano, Carlos Diaz, Carlos Cortes, David Jaramillo, Adriana Vasquez, Diego Ramirez, and Camilo A. Franco. 2024. "Simultaneous Detection of Carbon Quantum Dots as Tracers for Interwell Connectivity Evaluation in a Pattern with Two Injection Wells" Nanomaterials 14, no. 9: 789. https://doi.org/10.3390/nano14090789
APA StyleRosales, S., Zapata, K., Cortes, F. B., Rojano, B., Diaz, C., Cortes, C., Jaramillo, D., Vasquez, A., Ramirez, D., & Franco, C. A. (2024). Simultaneous Detection of Carbon Quantum Dots as Tracers for Interwell Connectivity Evaluation in a Pattern with Two Injection Wells. Nanomaterials, 14(9), 789. https://doi.org/10.3390/nano14090789