Surface Functionalization of Nanocarriers with Anti-EGFR Ligands for Cancer Active Targeting
Abstract
:1. Introduction
2. Epidermal Growth Factor Receptor
3. EGFR-Targeting Ligands
3.1. Epidermal Growth Factor
3.2. GE11 Peptide
3.3. Anti-EGFR Whole Antibodies
3.4. Anti-EGFR Antibody Fragments
3.5. Anti-EGFR Nanobodies
3.6. Anti-EGFR Affibodies
3.7. Anti-EGFR Aptamers
4. Bioconjugation Strategies
4.1. Covalent Conjugation Strategies
4.1.1. Carbodiimide Chemistry
4.1.2. Schiff Base Reaction
4.1.3. Thiol-Maleimide Chemistry
4.1.4. Dative Chemistry (Thiol-Metal Bond)
4.1.5. Click Chemistry
4.2. Non-Covalent Conjugation Strategies
4.2.1. Interaction by Adapter Molecules
4.2.2. Electrostatic Interaction
4.2.3. Fc-Binding Receptors Mediated Conjugation
5. Characterization Techniques
5.1. Dynamic Light Scattering
5.2. Fluorescence Experiments
5.3. Electrophoretic Techniques
5.4. Protein-Based Assays
5.5. Spectroscopy Techniques
5.6. Thermogravimetric Analysis
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gavas, S.; Quazi, S.; Karpiński, T.M. Nanoparticles for Cancer Therapy: Current Progress and Challenges. Nanoscale Res. Lett. 2021, 16, 173. [Google Scholar] [CrossRef]
- Chehelgerdi, M.; Chehelgerdi, M.; Allela, O.Q.B.; Pecho, R.D.C.; Jayasankar, N.; Rao, D.P.; Thamaraikani, T.; Vasanthan, M.; Viktor, P.; Lakshmaiya, N.; et al. Progressing Nanotechnology to Improve Targeted Cancer Treatment: Overcoming Hurdles in Its Clinical Implementation. Mol. Cancer 2023, 22, 169. [Google Scholar] [CrossRef] [PubMed]
- Fonseca, M.; Jarak, I.; Victor, F.; Domingues, C.; Veiga, F.; Figueiras, A. Polymersomes as the Next Attractive Generation of Drug Delivery Systems: Definition, Synthesis and Applications. Materials 2024, 17, 319. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Li, B.; Qiu, L.; Qiao, X.; Yang, H. Dendrimer-Based Drug Delivery Systems: History, Challenges, and Latest Developments. J. Biol. Eng. 2022, 16, 18. [Google Scholar] [CrossRef] [PubMed]
- Bose, A.; Roy Burman, D.; Sikdar, B.; Patra, P. Nanomicelles: Types, Properties and Applications in Drug Delivery. IET Nanobiotechnol. 2021, 15, 19–27. [Google Scholar] [CrossRef] [PubMed]
- Vallet-Regí, M.; Schüth, F.; Lozano, D.; Colilla, M.; Manzano, M. Engineering Mesoporous Silica Nanoparticles for Drug Delivery: Where Are We after Two Decades? Chem. Soc. Rev. 2022, 51, 5365–5451. [Google Scholar] [CrossRef]
- Montiel Schneider, M.G.; Martín, M.J.; Otarola, J.; Vakarelska, E.; Simeonov, V.; Lassalle, V.; Nedyalkova, M. Biomedical Applications of Iron Oxide Nanoparticles: Current Insights Progress and Perspectives. Pharmaceutics 2022, 14, 204. [Google Scholar] [CrossRef] [PubMed]
- Yafout, M.; Ousaid, A.; Khayati, Y.; El Otmani, I.S. Gold Nanoparticles as a Drug Delivery System for Standard Chemotherapeutics: A New Lead for Targeted Pharmacological Cancer Treatments. Sci. Afr. 2021, 11, e00685. [Google Scholar] [CrossRef]
- Hamidu, A.; Pitt, W.G.; Husseini, G.A. Recent Breakthroughs in Using Quantum Dots for Cancer Imaging and Drug Delivery Purposes. Nanomaterials 2023, 13, 2566. [Google Scholar] [CrossRef] [PubMed]
- Nsairat, H.; Khater, D.; Sayed, U.; Odeh, F.; Al Bawab, A.; Alshaer, W. Liposomes: Structure, Composition, Types, and Clinical Applications. Heliyon 2022, 8, e09394. [Google Scholar] [CrossRef] [PubMed]
- Mehta, M.; Bui, T.A.; Yang, X.; Aksoy, Y.; Goldys, E.M.; Deng, W. Lipid-Based Nanoparticles for Drug/Gene Delivery: An Overview of the Production Techniques and Difficulties Encountered in Their Industrial Development. ACS Mater. Au 2023, 3, 600–619. [Google Scholar] [CrossRef] [PubMed]
- Zielińska, A.; Carreiró, F.; Oliveira, A.M.; Neves, A.; Pires, B.; Venkatesh, D.N.; Durazzo, A.; Lucarini, M.; Eder, P.; Silva, A.M.; et al. Polymeric Nanoparticles: Production, Characterization, Toxicology and Ecotoxicology. Molecules 2020, 25, 3731. [Google Scholar] [CrossRef] [PubMed]
- Tonga, G.Y.; Moyano, D.F.; Kim, C.S.; Rotello, V.M. Inorganic Nanoparticles for Therapeutic Delivery: Trials, Tribulations and Promise. Curr. Opin. Colloid Interface Sci. 2014, 19, 49–55. [Google Scholar] [CrossRef]
- Khalid, K.; Tan, X.; Mohd Zaid, H.F.; Tao, Y.; Lye Chew, C.; Chu, D.-T.; Lam, M.K.; Ho, Y.-C.; Lim, J.W.; Chin Wei, L. Advanced in Developmental Organic and Inorganic Nanomaterial: A Review. Bioengineered 2020, 11, 328–355. [Google Scholar] [CrossRef] [PubMed]
- Bhatti, R.; Shakeel, H.; Malik, K.; Qasim, M.; Khan, M.A.; Ahmed, N.; Jabeen, S. Inorganic Nanoparticles: Toxic Effects, Mechanisms of Cytotoxicity and Phytochemical Interactions. Adv. Pharm. Bull. 2022, 12, 757–762. [Google Scholar] [CrossRef] [PubMed]
- Dhiman, N.; Awasthi, R.; Sharma, B.; Kharkwal, H.; Kulkarni, G.T. Lipid Nanoparticles as Carriers for Bioactive Delivery. Front. Chem. 2021, 9, 580118. [Google Scholar] [CrossRef]
- Ghasemiyeh, P.; Mohammadi-Samani, S. Solid Lipid Nanoparticles and Nanostructured Lipid Carriers as Novel Drug Delivery Systems: Applications, Advantages and Disadvantages. Res. Pharm. Sci. 2018, 13, 288–303. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Liu, H.; Ye, Y.; Lei, Y.; Islam, R.; Tan, S.; Tong, R.; Miao, Y.-B.; Cai, L. Smart Nanoparticles for Cancer Therapy. Signal Transduct. Target. Ther. 2023, 8, 418. [Google Scholar] [CrossRef] [PubMed]
- Abbasi, R.; Shineh, G.; Mobaraki, M.; Doughty, S.; Tayebi, L. Structural Parameters of Nanoparticles Affecting Their Toxicity for Biomedical Applications: A Review. J. Nanopart. Res. 2023, 25, 43. [Google Scholar] [CrossRef] [PubMed]
- Elumalai, K.; Srinivasan, S.; Shanmugam, A. Review of the Efficacy of Nanoparticle-Based Drug Delivery Systems for Cancer Treatment. Biomed. Technol. 2024, 5, 109–122. [Google Scholar] [CrossRef]
- Yoo, H.; Kim, Y.; Kim, J.; Cho, H.; Kim, K. Overcoming Cancer Drug Resistance with Nanoparticle Strategies for Key Protein Inhibition. Molecules 2024, 29, 3994. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Zhang, Y.; Lai, Y.; Xu, W.; Lei, S.; Chen, G.; Wang, Z. A Computer-Aided, Heterodimer-Based “Triadic” Carrier-Free Drug Delivery Platform to Mitigate Multidrug Resistance in Lung Cancer and Enhance Efficiency. J. Colloid Interface Sci. 2025, 677, 523–540. [Google Scholar] [CrossRef] [PubMed]
- Yusuf, A.; Almotairy, A.R.Z.; Henidi, H.; Alshehri, O.Y.; Aldughaim, M.S. Nanoparticles as Drug Delivery Systems: A Review of the Implication of Nanoparticles’ Physicochemical Properties on Responses in Biological Systems. Polymers 2023, 15, 1596. [Google Scholar] [CrossRef] [PubMed]
- Mahmoudi, M.; Landry, M.P.; Moore, A.; Coreas, R. The Protein Corona from Nanomedicine to Environmental Science. Nat. Rev. Mater. 2023, 8, 422–438. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Gao, S.; Yang, D.; Fang, Y.; Lin, X.; Jin, X.; Liu, Y.; Liu, X.; Su, K.; Shi, K. Influencing Factors and Strategies of Enhancing Nanoparticles into Tumors in Vivo. Acta Pharm. Sin. B 2021, 11, 2265–2285. [Google Scholar] [CrossRef] [PubMed]
- Hoshyar, N.; Gray, S.; Han, H.; Bao, G. The Effect of Nanoparticle Size on in Vivo Pharmacokinetics and Cellular Interaction. Nanomedicine 2016, 11, 673–692. [Google Scholar] [CrossRef]
- Grandhi, S.; Al-Tabakha, M.; Avula, P.R. Enhancement of Liver Targetability through Statistical Optimization and Surface Modification of Biodegradable Nanocapsules Loaded with Lamivudine. Adv. Pharmacol. Pharm. Sci. 2023, 2023, 8902963. [Google Scholar] [CrossRef]
- Blanco, E.; Shen, H.; Ferrari, M. Principles of Nanoparticle Design for Overcoming Biological Barriers to Drug Delivery. Nat. Biotechnol. 2015, 33, 941–951. [Google Scholar] [CrossRef] [PubMed]
- Suk, J.S.; Xu, Q.; Kim, N.; Hanes, J.; Ensign, L.M. PEGylation as a Strategy for Improving Nanoparticle-Based Drug and Gene Delivery. Adv. Drug Deliv. Rev. 2016, 99, 28–51. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhan, J.; Huang, J.; Wang, X.; Chen, Z.; Yang, Z.; Li, J. Dynamic Responsiveness of Self-Assembling Peptide-Based Nano-Drug Systems. Interdiscip. Med. 2023, 1, e20220005. [Google Scholar] [CrossRef]
- Chen, Z.; Kankala, R.K.; Long, L.; Xie, S.; Chen, A.; Zou, L. Current Understanding of Passive and Active Targeting Nanomedicines to Enhance Tumor Accumulation. Coord. Chem. Rev. 2023, 481, 215051. [Google Scholar] [CrossRef]
- Wu, J. The Enhanced Permeability and Retention (EPR) Effect: The Significance of the Concept and Methods to Enhance Its Application. J. Pers. Med. 2021, 11, 771. [Google Scholar] [CrossRef] [PubMed]
- Subhan, M.A.; Parveen, F.; Filipczak, N.; Yalamarty, S.S.K.; Torchilin, V.P. Approaches to Improve EPR-Based Drug Delivery for Cancer Therapy and Diagnosis. J. Pers. Med. 2023, 13, 389. [Google Scholar] [CrossRef] [PubMed]
- Matsumura, Y.; Maeda, H. A New Concept for Macromolecular Therapeutics in Cancer Chemotherapy: Mechanism of Tumoritropic Accumulation of Proteins and the Antitumor Agent Smancs. Cancer Res. 1986, 46, 6387–6392. [Google Scholar] [PubMed]
- Hori, K.; Suzuki, M.; Tanda, S.; Saito, S.; Shinozaki, M.; Zhang, Q.-H. Fluctuations in Tumor Blood Flow under Normotension and the Effect of Angiotensin II-Induced Hypertension. Jpn. J. Cancer Res. 1991, 82, 1309–1316. [Google Scholar] [CrossRef]
- Shi, J.; Kantoff, P.W.; Wooster, R.; Farokhzad, O.C. Cancer Nanomedicine: Progress, Challenges and Opportunities. Nat. Rev. Cancer 2017, 17, 20–37. [Google Scholar] [CrossRef] [PubMed]
- Carita, A.C.; Eloy, J.O.; Chorilli, M.; Lee, R.J.; Leonardi, G.R. Recent Advances and Perspectives in Liposomes for Cutaneous Drug Delivery. Curr. Med. Chem. 2018, 25, 606–635. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Zhang, W.; Zhu, G.; Xie, J.; Chen, X. Rethinking Cancer Nanotheranostics. Nat. Rev. Mater. 2017, 2, 17024. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Jiang, J.; Meng, H. Transcytosis—An Effective Targeting Strategy That Is Complementary to “EPR Effect” for Pancreatic Cancer Nano Drug Delivery. Theranostics 2019, 9, 8018. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Cao, J.; Yuan, Z. Strategies and Challenges to Improve the Performance of Tumor-Associated Active Targeting. J. Mater. Chem. B 2020, 8, 3959–3971. [Google Scholar] [CrossRef] [PubMed]
- Salahpour Anarjan, F. Active Targeting Drug Delivery Nanocarriers: Ligands. Nano-Struct. Nano-Objects 2019, 19, 100370. [Google Scholar] [CrossRef]
- Morales-Cruz, M.; Delgado, Y.; Castillo, B.; Figueroa, C.M.; Molina, A.M.; Torres, A.; Milián, M.; Griebenow, K. Smart Targeting to Improve Cancer Therapeutics. Drug Des. Dev. Ther. 2019, 13, 3753–3772. [Google Scholar] [CrossRef] [PubMed]
- Yan, S.; Na, J.; Liu, X.; Wu, P. Different Targeting Ligands-Mediated Drug Delivery Systems for Tumor Therapy. Pharmaceutics 2024, 16, 248. [Google Scholar] [CrossRef] [PubMed]
- Akhtar, M.J.; Ahamed, M.; Alhadlaq, H.A.; Alrokayan, S.A.; Kumar, S. Targeted Anticancer Therapy: Overexpressed Receptors and Nanotechnology. Clin. Chim. Acta 2014, 436, 78–92. [Google Scholar] [CrossRef] [PubMed]
- Thomas, R.; Weihua, Z. Rethink of EGFR in Cancer with Its Kinase Independent Function on Board. Front. Oncol. 2019, 9, 800. [Google Scholar] [CrossRef] [PubMed]
- Salomon, D.S.; Brandt, R.; Ciardiello, F.; Normanno, N. Epidermal Growth Factor-Related Peptides and Their Receptors in Human Malignancies. Crit. Rev. Oncol. Hematol. 1995, 19, 183–232. [Google Scholar] [CrossRef] [PubMed]
- Mitsudomi, T.; Yatabe, Y. Epidermal Growth Factor Receptor in Relation to Tumor Development: EGFR Gene and Cancer. FEBS J. 2010, 277, 301–308. [Google Scholar] [CrossRef] [PubMed]
- Tian, X.; Zhang, H.; Han, Y.; Gu, B.; Zhang, Z. Current Status and Future Prospects of Combined Immunotherapy and Epidermal Growth Factor Receptor Inhibitors in Head and Neck Squamous Cell Carcinoma. Cancer Treat. Rev. 2025, 132, 102864. [Google Scholar] [CrossRef] [PubMed]
- Saba, N.F.; Chen, Z.G.; Haigentz, M.; Bossi, P.; Rinaldo, A.; Rodrigo, J.P.; Mäkitie, A.A.; Takes, R.P.; Strojan, P.; Vermorken, J.B.; et al. Targeting the EGFR and Immune Pathways in Squamous Cell Carcinoma of the Head and Neck (SCCHN): Forging a New Alliance. Mol. Cancer Ther. 2019, 18, 1909–1915. [Google Scholar] [CrossRef]
- Li, L.; Deng, L.; Meng, X.; Gu, C.; Meng, L.; Li, K.; Zhang, X.; Meng, Y.; Xu, W.; Zhao, L.; et al. Tumor-Targeting Anti-EGFR x Anti-PD1 Bispecific Antibody Inhibits EGFR-Overexpressing Tumor Growth by Combining EGFR Blockade and Immune Activation with Direct Tumor Cell Killing. Transl. Oncol. 2021, 14, 100916. [Google Scholar] [CrossRef] [PubMed]
- Rubio-Pérez, L.; Lázaro-Gorines, R.; Harwood, S.L.; Compte, M.; Navarro, R.; Tapia-Galisteo, A.; Bonet, J.; Blanco, B.; Lykkemark, S.; Ramírez-Fernández, Á.; et al. A PD-L1/EGFR Bispecific Antibody Combines Immune Checkpoint Blockade and Direct Anti-Cancer Action for an Enhanced Anti-Tumor Response. OncoImmunology 2023, 12, 2205336. [Google Scholar] [CrossRef]
- Li, Y.; Du, Y.; Liang, X.; Sun, T.; Xue, H.; Tian, J.; Jin, Z. EGFR-Targeted Liposomal Nanohybrid Cerasomes: Theranostic Function and Immune Checkpoint Inhibition in a Mouse Model of Colorectal Cancer. Nanoscale 2018, 10, 16738–16749. [Google Scholar] [CrossRef]
- Ardeshiri, K.; Hassannia, H.; Ghalamfarsa, G.; Jafary, H.; Jadidi, F. Simultaneous Blockade of the CD73/EGFR Axis Inhibits Tumor Growth. IUBMB Life 2025, 77, e2933. [Google Scholar] [CrossRef] [PubMed]
- Sapsford, K.E.; Algar, W.R.; Berti, L.; Gemmill, K.B.; Casey, B.J.; Oh, E.; Stewart, M.H.; Medintz, I.L. Functionalizing Nanoparticles with Biological Molecules: Developing Chemistries That Facilitate Nanotechnology. Chem. Rev. 2013, 113, 1904–2074. [Google Scholar] [CrossRef] [PubMed]
- Marques, A.C.; Costa, P.J.; Velho, S.; Amaral, M.H. Functionalizing Nanoparticles with Cancer-Targeting Antibodies: A Comparison of Strategies. J. Control. Release 2020, 320, 180–200. [Google Scholar] [CrossRef]
- Yi, W.; Xiao, P.; Liu, X.; Zhao, Z.; Sun, X.; Wang, J.; Zhou, L.; Wang, G.; Cao, H.; Wang, D.; et al. Recent Advances in Developing Active Targeting and Multi-Functional Drug Delivery Systems via Bioorthogonal Chemistry. Signal Transduct. Target. Ther. 2022, 7, 386. [Google Scholar] [CrossRef] [PubMed]
- Attia, M.F.; Anton, N.; Wallyn, J.; Omran, Z.; Vandamme, T.F. An Overview of Active and Passive Targeting Strategies to Improve the Nanocarriers Efficiency to Tumour Sites. J. Pharm. Pharmacol. 2019, 71, 1185–1198. [Google Scholar] [CrossRef]
- Nguyen, P.V.; Allard-Vannier, E.; Chourpa, I.; Hervé-Aubert, K. Nanomedicines Functionalized with Anti-EGFR Ligands for Active Targeting in Cancer Therapy: Biological Strategy, Design and Quality Control. Int. J. Pharm. 2021, 605, 120795. [Google Scholar] [CrossRef] [PubMed]
- Carpenter, G.; King, L.; Cohen, S. Epidermal Growth Factor Stimulates Phosphorylation in Membrane Preparations in Vitro. Nature 1978, 276, 409–410. [Google Scholar] [CrossRef]
- Purba, E.R.; Saita, E.; Maruyama, I.N. Activation of the EGF Receptor by Ligand Binding and Oncogenic Mutations: The “Rotation Model”. Cells 2017, 6, 13. [Google Scholar] [CrossRef] [PubMed]
- Chia, C.M.; Winston, R.M.L.; Handyside, A.H. EGF, TGF-α and EGFR Expression in Human Preimplantation Embryos. Development 1995, 121, 299–307. [Google Scholar] [CrossRef]
- Kaufman, N.E.M.; Dhingra, S.; Jois, S.D.; Vicente, M.d.G.H. Molecular Targeting of Epidermal Growth Factor Receptor (EGFR) and Vascular Endothelial Growth Factor Receptor (VEGFR). Molecules 2021, 26, 1076. [Google Scholar] [CrossRef] [PubMed]
- Hubbard, S.R.; Till, J.H. Protein Tyrosine Kinase Structure and Function. Annu. Rev. Biochem. 2000, 69, 373–398. [Google Scholar] [CrossRef] [PubMed]
- Dawson, J.P.; Berger, M.B.; Lin, C.-C.; Schlessinger, J.; Lemmon, M.A.; Ferguson, K.M. Epidermal Growth Factor Receptor Dimerization and Activation Require Ligand-Induced Conformational Changes in the Dimer Interface. Mol. Cell. Biol. 2005, 25, 7734–7742. [Google Scholar] [CrossRef]
- London, M.; Gallo, E. Epidermal Growth Factor Receptor (EGFR) Involvement in Epithelial-Derived Cancers and Its Current Antibody-Based Immunotherapies. Cell Biol. Int. 2020, 44, 1267–1282. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez, S.M.B.; Kamel, A.; Ciubotaru, G.V.; Onose, G.; Sevastre, A.-S.; Sfredel, V.; Danoiu, S.; Dricu, A.; Tataranu, L.G. An Overview of EGFR Mechanisms and Their Implications in Targeted Therapies for Glioblastoma. Int. J. Mol. Sci. 2023, 24, 11110. [Google Scholar] [CrossRef] [PubMed]
- Sigismund, S.; Avanzato, D.; Lanzetti, L. Emerging Functions of the EGFR in Cancer. Mol. Oncol. 2018, 12, 3–20. [Google Scholar] [CrossRef] [PubMed]
- Wilson, K.J.; Gilmore, J.L.; Foley, J.; Lemmon, M.A.; Riese, D.J. Functional Selectivity of EGF Family Peptide Growth Factors: Implications for Cancer. Pharmacol. Ther. 2009, 122, 1–8. [Google Scholar] [CrossRef]
- Wilson, K.J.; Mill, C.; Lambert, S.; Buchman, J.; Wilson, T.R.; Hernandez-Gordillo, V.; Gallo, R.M.; Ades, L.M.C.; Settleman, J.; Riese, D.J. EGFR Ligands Exhibit Functional Differences in Models of Paracrine and Autocrine Signaling. Growth Factors 2012, 30, 107–116. [Google Scholar] [CrossRef]
- Akbarzadeh Khiavi, M.; Safary, A.; Barar, J.; Ajoolabady, A.; Somi, M.H.; Omidi, Y. Multifunctional Nanomedicines for Targeting Epidermal Growth Factor Receptor in Colorectal Cancer. Cell. Mol. Life Sci. 2020, 77, 997–1019. [Google Scholar] [CrossRef]
- Gullick, W.J.; Marsden, J.J.; Whittle, N.; Ward, B.; Bobrow, L.; Waterfield, M.D. Expression of Epidermal Growth Factor Receptors on Human Cervical, Ovarian, and Vulval Carcinomas. Cancer Res. 1986, 46, 285–292. [Google Scholar] [PubMed]
- Ciardiello, F.; Tortora, G. Epidermal Growth Factor Receptor (EGFR) as a Target in Cancer Therapy: Understanding the Role of Receptor Expression and Other Molecular Determinants That Could Influence the Response to Anti-EGFR Drugs. Eur. J. Cancer 2003, 39, 1348–1354. [Google Scholar] [CrossRef] [PubMed]
- Ali, R.; Wendt, M.K. The Paradoxical Functions of EGFR during Breast Cancer Progression. Signal Transduct. Target. Ther. 2017, 2, 16042. [Google Scholar] [CrossRef] [PubMed]
- Rocha-Lima, C.M.; Soares, H.P.; Raez, L.E.; Singal, R. EGFR Targeting of Solid Tumors. Cancer Control 2007, 14, 295–304. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Ji, H.; Zaghlul, S.; McNamara, K.; Liang, M.-C.; Shimamura, T.; Kubo, S.; Takahashi, M.; Chirieac, L.R.; Padera, R.F.; et al. Therapeutic Anti-EGFR Antibody 806 Generates Responses in Murine de Novo EGFR Mutant–Dependent Lung Carcinomas. J. Clin. Investig. 2007, 117, 346. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Ke, L.; Zhang, Z.; Yu, J.; Meng, X. Development of EGFR TKIs and Options to Manage Resistance of Third-Generation EGFR TKI Osimertinib: Conventional Ways and Immune Checkpoint Inhibitors. Front. Oncol. 2020, 10, 602762. [Google Scholar] [CrossRef] [PubMed]
- Abourehab, M.A.S.; Alqahtani, A.M.; Youssif, B.G.M.; Gouda, A.M. Globally Approved EGFR Inhibitors: Insights into Their Syntheses, Target Kinases, Biological Activities, Receptor Interactions, and Metabolism. Molecules 2021, 26, 6677. [Google Scholar] [CrossRef] [PubMed]
- Hrustanovic, G.; Lee, B.J.; Bivona, T.G. Mechanisms of Resistance to EGFR Targeted Therapies. Cancer Biol. Ther. 2013, 14, 304–314. [Google Scholar] [CrossRef] [PubMed]
- Veeraraghavan, V.P.; Daniel, S.; Dasari, A.K.; Aileni, K.R.; Patil, C.; Patil, S.R. Emerging Targeted Therapies in Oral Oncology: Focus on EGFR Inhibition. Oral Oncol. Rep. 2024, 11, 100592. [Google Scholar] [CrossRef]
- Alsaed, B.; Lin, L.; Son, J.; Li, J.; Smolander, J.; Lopez, T.; Eser, P.Ö.; Ogino, A.; Ambrogio, C.; Eum, Y.; et al. Intratumor Heterogeneity of EGFR Expression Mediates Targeted Therapy Resistance and Formation of Drug Tolerant Microenvironment. Nat. Commun. 2025, 16, 28. [Google Scholar] [CrossRef] [PubMed]
- Ang, K.K.; Berkey, B.A.; Tu, X.; Zhang, H.-Z.; Katz, R.; Hammond, E.H.; Fu, K.K.; Milas, L. Impact of Epidermal Growth Factor Receptor Expression on Survival and Pattern of Relapse in Patients with Advanced Head and Neck Carcinoma1. Cancer Res. 2002, 62, 7350–7356. [Google Scholar] [PubMed]
- Sakai, A.; Tagami, M.; Kakehashi, A.; Katsuyama-Yoshikawa, A.; Misawa, N.; Wanibuchi, H.; Azumi, A.; Honda, S. Expression, Intracellular Localization, and Mutation of EGFR in Conjunctival Squamous Cell Carcinoma and the Association with Prognosis and Treatment. PLoS ONE 2020, 15, e0238120. [Google Scholar] [CrossRef] [PubMed]
- de Melo Maia, B.; Fontes, A.M.; Lavorato-Rocha, A.M.; Rodrigues, I.S.; de Brot, L.; Baiocchi, G.; Stiepcich, M.M.; Soares, F.A.; Rocha, R.M. EGFR Expression in Vulvar Cancer: Clinical Implications and Tumor Heterogeneity. Hum. Pathol. 2014, 45, 917–925. [Google Scholar] [CrossRef] [PubMed]
- Fan, X.; Liu, B.; Xu, H.; Yu, B.; Shi, S.; Zhang, J.; Wang, X.; Wang, J.; Lu, Z.; Ma, H.; et al. Immunostaining with EGFR Mutation–Specific Antibodies: A Reliable Screening Method for Lung Adenocarcinomas Harboring EGFR Mutation in Biopsy and Resection Samples. Hum. Pathol. 2013, 44, 1499–1507. [Google Scholar] [CrossRef]
- Fakih, M.; Vincent, M. Adverse Events Associated with Anti-EGFR Therapies for the Treatment of Metastatic Colorectal Cancer. Curr. Oncol. 2010, 17, S18–S30. [Google Scholar] [CrossRef] [PubMed]
- Batis, N.; Brooks, J.M.; Payne, K.; Sharma, N.; Nankivell, P.; Mehanna, H. Lack of Predictive Tools for Conventional and Targeted Cancer Therapy: Barriers to Biomarker Development and Clinical Translation. Adv. Drug Deliv. Rev. 2021, 176, 113854. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Tam, K.Y. Combination Strategies Using EGFR-TKi in NSCLC Therapy: Learning from the Gap between Pre-Clinical Results and Clinical Outcomes. Int. J. Biol. Sci. 2018, 14, 204–216. [Google Scholar] [CrossRef]
- Bell, G.I.; Fong, N.M.; Stempien, M.M.; Wormsted, M.A.; Caput, D.; Ku, L.L.; Urdea, M.S.; Rall, L.B.; Sanchez-Pescador, R. Human Epidermal Growth Factor Precursor: cDNA Sequence, Expression in Vitro and Gene Organization. Nucleic Acids Res. 1986, 14, 8427–8446. [Google Scholar] [CrossRef] [PubMed]
- Cohen, S.; Carpenter, G. Human Epidermal Growth Factor: Isolation and Chemical and Biological Properties. Proc. Natl. Acad. Sci. USA 1975, 72, 1317–1321. [Google Scholar] [CrossRef] [PubMed]
- Gregory, H. Isolation and Structure of Urogastrone and Its Relationship to Epidermal Growth Factor. Nature 1975, 257, 325–327. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.-N.; Kuo, T.-Y.; Chen, M.-C.; Tang, T.-Y.; Liu, F.-H.; Weng, C.-F. Expression of Porcine Epidermal Growth Factor in Pichia Pastoris and Its Biology Activity in Early-Weaned Piglets. Life Sci. 2006, 78, 649–654. [Google Scholar] [CrossRef] [PubMed]
- Cohen, S. Epidermal Growth Factor. Biosci. Rep. 1986, 6, 1017–1028. [Google Scholar] [CrossRef] [PubMed]
- Hardwicke, J.; Schmaljohann, D.; Boyce, D.; Thomas, D. Epidermal Growth Factor Therapy and Wound Healing—Past, Present and Future Perspectives. Surgeon 2008, 6, 172–177. [Google Scholar] [CrossRef] [PubMed]
- Milani, S.; Calabrò, A. Role of Growth Factors and Their Receptors in Gastric Ulcer Healing. Microsc. Res. Tech. 2001, 53, 360–371. [Google Scholar] [CrossRef]
- Boonstra, J.; Rijken, P.; Humbel, B.; Cremers, F.; Verkleij, A.; van Bergen en Henegouwen, P. The Epidermal Growth Factor. Cell Biol. Int. 1995, 19, 413–430. [Google Scholar] [CrossRef] [PubMed]
- Kennedy, L.C.; Bickford, L.R.; Lewinski, N.A.; Coughlin, A.J.; Hu, Y.; Day, E.S.; West, J.L.; Drezek, R.A. A New Era for Cancer Treatment: Gold-Nanoparticle-Mediated Thermal Therapies. Small 2011, 7, 169–183. [Google Scholar] [CrossRef] [PubMed]
- Master, A.M.; Gupta, A.S. EGF Receptor-Targeted Nanocarriers for Enhanced Cancer Treatment. Nanomedicine 2012, 7, 1895–1906. [Google Scholar] [CrossRef] [PubMed]
- Matrisian, L.M.; Planck, S.R.; Magun, B.E. Intracellular Processing of Epidermal Growth Factor. I. Acidification of 125I-Epidermal Growth Factor in Intracellular Organelles. J. Biol. Chem. 1984, 259, 3047–3052. [Google Scholar] [CrossRef] [PubMed]
- Zhang, A.; Nakanishi, J. Improved Anti-Cancer Effect of Epidermal Growth Factor-Gold Nanoparticle Conjugates by Protein Orientation through Site-Specific Mutagenesis. Sci. Technol. Adv. Mater. 2021, 22, 616–626. [Google Scholar] [CrossRef] [PubMed]
- Castilho, M.L.; Jesus, V.P.S.; Vieira, P.F.A.; Hewitt, K.C.; Raniero, L. Chlorin E6-EGF Conjugated Gold Nanoparticles as a Nanomedicine Based Therapeutic Agent for Triple Negative Breast Cancer. Photodiagnosis Photodyn. Ther. 2021, 33, 102186. [Google Scholar] [CrossRef]
- Salama, B.; Chang, C.-J.; Kanehira, K.; El-Sherbini, E.-S.; El-Sayed, G.; El-Adl, M.; Taniguchi, A. EGF Conjugation Improves Safety and Uptake Efficacy of Titanium Dioxide Nanoparticles. Molecules 2020, 25, 4467. [Google Scholar] [CrossRef]
- Lopes, J.; Ferreira-Gonçalves, T.; Figueiredo, I.V.; Rodrigues, C.M.P.; Ferreira, H.; Ferreira, D.; Viana, A.S.; Faísca, P.; Gaspar, M.M.; Coelho, J.M.P.; et al. Proof-of-Concept Study of Multifunctional Hybrid Nanoparticle System Combined with NIR Laser Irradiation for the Treatment of Melanoma. Biomolecules 2021, 11, 511. [Google Scholar] [CrossRef]
- Susnik, E.; Bazzoni, A.; Taladriz-Blanco, P.; Balog, S.; Moreno-Echeverri, A.M.; Glaubitz, C.; Brito Oliveira, B.; Ferreira, D.; Viana Baptista, P.; Petri-Fink, A.; et al. Epidermal Growth Factor Alters Silica Nanoparticle Uptake and Improves Gold-Nanoparticle-Mediated Gene Silencing in A549 Cells. Front. Nanotechnol. 2023, 5, 1220514. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, S.; Nakanism, J. Epidermal Growth Factor-Gold Nanoparticle Conjugates-Induced Cellular Responses: Effect of Interfacial Parameters between Cell and Nanoparticle. Anal. Sci. 2021, 37, 741–745. [Google Scholar] [CrossRef]
- Mal, S.; Saha, T.; Halder, A.; Paidesetty, S.K.; Das, S.; Wui, W.T.; Chatterji, U.; Roy, P. EGF-Conjugated Bio-Safe Luteolin Gold Nanoparticles Induce Cellular Toxicity and Cell Death Mediated by Site-Specific Rapid Uptake in Human Triple Negative Breast Cancer Cells. J. Drug Deliv. Sci. Technol. 2023, 80, 104148. [Google Scholar] [CrossRef]
- Zhang, S.; Ouyang, T.; Reinhard, B.M. Multivalent Ligand-Nanoparticle Conjugates Amplify Reactive Oxygen Species Second Messenger Generation and Enhance Epidermal Growth Factor Receptor Phosphorylation. Bioconjug. Chem. 2022, 33, 1716–1728. [Google Scholar] [CrossRef] [PubMed]
- Skóra, B.; Piechowiak, T.; Szychowski, K.A. Epidermal Growth Factor-Labeled Liposomes as a Way to Target the Toxicity of Silver Nanoparticles into EGFR-Overexpressing Cancer Cells In Vitro. Toxicol. Appl. Pharmacol. 2022, 443, 116009. [Google Scholar] [CrossRef] [PubMed]
- Wu, P.; Zhou, Q.; Zhu, H.; Zhuang, Y.; Bao, J. Enhanced Antitumor Efficacy in Colon Cancer Using EGF Functionalized PLGA Nanoparticles Loaded with 5-Fluorouracil and Perfluorocarbon. BMC Cancer 2020, 20, 354. [Google Scholar] [CrossRef] [PubMed]
- Yasami-Khiabani, S.; Karkhaneh, A.; Ali Shokrgozar, M.; Amanzadeh, A.; Golkar, M. Size Effect of Human Epidermal Growth Factor-Conjugated Polystyrene Particles on Cell Proliferation. Biomater. Sci. 2020, 8, 4832–4840. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zhang, Y.; Zhang, G.; Xiang, L.; Pang, H.; Xiong, K.; Lu, Y.; Li, J.; Dai, J.; Lin, S.; et al. Radiotherapy-Induced Enrichment of EGF-Modified Doxorubicin Nanoparticles Enhances the Therapeutic Outcome of Lung Cancer. Drug Deliv. 2022, 29, 588–599. [Google Scholar] [CrossRef] [PubMed]
- Ilhan-Ayisigi, E.; Saglam-Metiner, P.; Sanci, E.; Bakan, B.; Yildirim, Y.; Buhur, A.; Yavasoglu, A.; Yavasoglu, N.U.K.; Yesil-Celiktas, O. Receptor Mediated Targeting of EGF-Conjugated Alginate-PAMAM Nanoparticles to Lung Adenocarcinoma: 2D/3D in Vitro and in Vivo Evaluation. Int. J. Biol. Macromol. 2024, 261, 129758. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Xu, Z.; Alrobaian, M.; Afzal, O.; Kazmi, I.; Almalki, W.H.; Altamimi, A.S.A.; Al-Abbasi, F.A.; Alharbi, K.S.; Altowayan, W.M.; et al. EGF-Functionalized Lipid–Polymer Hybrid Nanoparticles of 5-Fluorouracil and Sulforaphane with Enhanced Bioavailability and Anticancer Activity against Colon Carcinoma. Biotechnol. Appl. Biochem. 2022, 69, 2205–2221. [Google Scholar] [CrossRef] [PubMed]
- Colzani, B.; Biagiotti, M.; Speranza, G.; Dorati, R.; Modena, T.; Conti, B.; Tomasi, C.; Genta, I. Smart Biodegradable Nanoparticulate Materials: Poly-Lactide-Co-Glycolide Functionalization with Selected Peptides. Curr. Nanosci. 2016, 12, 347–356. [Google Scholar] [CrossRef]
- Mickler, F.M.; Möckl, L.; Ruthardt, N.; Ogris, M.; Wagner, E.; Bräuchle, C. Tuning Nanoparticle Uptake: Live-Cell Imaging Reveals Two Distinct Endocytosis Mechanisms Mediated by Natural and Artificial EGFR Targeting Ligand. Nano Lett. 2012, 12, 3417–3423. [Google Scholar] [CrossRef] [PubMed]
- Genta, I.; Chiesa, E.; Colzani, B.; Modena, T.; Conti, B.; Dorati, R. GE11 Peptide as an Active Targeting Agent in Antitumor Therapy: A Minireview. Pharmaceutics 2018, 10, 2. [Google Scholar] [CrossRef] [PubMed]
- Guo, Z.; Sui, J.; Li, Y.; Wei, Q.; Wei, C.; Xiu, L.; Zhu, R.; Sun, Y.; Hu, J.; Li, J.-L. GE11 Peptide-Decorated Acidity-Responsive Micelles for Improved Drug Delivery and Enhanced Combination Therapy of Metastatic Breast Cancer. J. Mater. Chem. B 2022, 10, 9266–9279. [Google Scholar] [CrossRef] [PubMed]
- Paiva, I.; Mattingly, S.; Wuest, M.; Leier, S.; Vakili, M.R.; Weinfeld, M.; Lavasanifar, A.; Wuest, F. Synthesis and Analysis of 64Cu-Labeled GE11-Modified Polymeric Micellar Nanoparticles for EGFR-Targeted Molecular Imaging in a Colorectal Cancer Model. Mol. Pharm. 2020, 17, 1470–1481. [Google Scholar] [CrossRef] [PubMed]
- de Paiva, I.M.; Vakili, M.R.; Soleimani, A.H.; Tabatabaei Dakhili, S.A.; Munira, S.; Paladino, M.; Martin, G.; Jirik, F.R.; Hall, D.G.; Weinfeld, M.; et al. Biodistribution and Activity of EGFR Targeted Polymeric Micelles Delivering a New Inhibitor of DNA Repair to Orthotopic Colorectal Cancer Xenografts with Metastasis. Mol. Pharm. 2022, 19, 1825–1838. [Google Scholar] [CrossRef] [PubMed]
- Du, L.; Xu, Y.; Han, B.; Wang, Y.; Zeng, Q.; Shao, M.; Yu, Z. EGFR-Targeting Peptide Conjugated Polymer–Lipid Hybrid Nanoparticles for Delivery of Salinomycin to Osteosarcoma. J. Cancer Res. Ther. 2023, 19, 1544. [Google Scholar] [CrossRef]
- Li, K.; Pang, L.; Pan, X.; Fan, S.; Wang, X.; Wang, Q.; Dai, P.; Gao, W.; Gao, J. GE11 Modified PLGA/TPGS Nanoparticles Targeting Delivery of Salinomycin to Breast Cancer Cells. Technol. Cancer Res. Treat. 2021, 20, 15330338211004954. [Google Scholar] [CrossRef]
- Tang, H.; Rui, M.; Mai, J.; Guo, W.; Xu, Y. Reimaging Biological Barriers Affecting Distribution and Extravasation of PEG/Peptide-Modified Liposomes in Xenograft SMMC7721 Tumor. Acta Pharm. Sin. B 2020, 10, 546–556. [Google Scholar] [CrossRef] [PubMed]
- Zhou, C.; Xia, Y.; Wei, Y.; Cheng, L.; Wei, J.; Guo, B.; Meng, F.; Cao, S.; van Hest, J.C.M.; Zhong, Z. GE11 Peptide-Installed Chimaeric Polymersomes Tailor-Made for High-Efficiency EGFR-Targeted Protein Therapy of Orthotopic Hepatocellular Carcinoma. Acta Biomater. 2020, 113, 512–521. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Chen, L.; Zhang, Y.; Zhou, S.; Cai, H.-H.; Li, T.; Jin, H.; Cai, J.; Zhou, H.; Pi, J. GE11 Peptide Conjugated Liposomes for EGFR-Targeted and Chemophotothermal Combined Anticancer Therapy. Bioinorg. Chem. Appl. 2021, 2021, 5534870. [Google Scholar] [CrossRef] [PubMed]
- Lan, Q.; Wang, S.; Chen, Z.; Hua, J.; Hu, J.; Luo, S.; Xu, Y. Near-Infrared-Responsive GE11-CuS@Gal Nanoparticles as an Intelligent Drug Release System for Targeting Therapy against Oral Squamous Cell Carcinoma. Int. J. Pharm. 2024, 649, 123667. [Google Scholar] [CrossRef] [PubMed]
- Lu, S.; Bao, X.; Hai, W.; Shi, S.; Chen, Y.; Yu, Q.; Zhang, M.; Xu, Y.; Peng, J. Multi-Functional Self-Assembled Nanoparticles for pVEGF-shRNA Loading and Anti-Tumor Targeted Therapy. Int. J. Pharm. 2020, 575, 118898. [Google Scholar] [CrossRef] [PubMed]
- Haddick, L.; Zhang, W.; Reinhard, S.; Möller, K.; Engelke, H.; Wagner, E.; Bein, T. Particle-Size-Dependent Delivery of Antitumoral miRNA Using Targeted Mesoporous Silica Nanoparticles. Pharmaceutics 2020, 12, 505. [Google Scholar] [CrossRef] [PubMed]
- Grataitong, K.; Huault, S.; Chotwiwatthanakun, C.; Jariyapong, P.; Thongsum, O.; Chawiwithaya, C.; Chakrabandhu, K.; Hueber, A.-O.; Weerachatyanukul, W. Chimeric Virus-like Particles (VLPs) Designed from Shrimp Nodavirus (MrNV) Capsid Protein Specifically Target EGFR-Positive Human Colorectal Cancer Cells. Sci. Rep. 2021, 11, 16579. [Google Scholar] [CrossRef] [PubMed]
- Abdulmalek, S.A.; Saleh, A.M.; Shahin, Y.R.; El Azab, E.F. Functionalized siRNA-Chitosan Nanoformulations Promote Triple-Negative Breast Cancer Cell Death via Blocking the miRNA-21/AKT/ERK Signaling Axis: In-Silico and in Vitro Studies. Naunyn. Schmiedebergs Arch. Pharmacol. 2024, 397, 6941–6962. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Ma, S.; Xu, D.; Meng, X.; Lei, N.; Liu, C.; Zhao, Y.; Qi, Y.; Cheng, Z.; Wang, F. Peptide-Functionalized Therapeutic Nanoplatform for Treatment Orthotopic Triple Negative Breast Cancer and Bone Metastasis. Nanomed. Nanotechnol. Biol. Med. 2023, 50, 102669. [Google Scholar] [CrossRef] [PubMed]
- Gu, H.; Shi, R.; Xu, C.; Lv, W.; Hu, X.; Xu, C.; Pan, Y.; He, X.; Wu, A.; Li, J. EGFR-Targeted Liposomes Combined with Ginsenoside Rh2 Inhibit Triple-Negative Breast Cancer Growth and Metastasis. Bioconjug. Chem. 2023, 34, 1157–1165. [Google Scholar] [CrossRef]
- Song, P.; Wang, B.; Pan, Q.; Jiang, T.; Chen, X.; Zhang, M.; Tao, J.; Zhao, X. GE11-Modified Carboxymethyl Chitosan Micelles to Deliver DOX·PD-L1 siRNA Complex for Combination of ICD and Immune Escape Inhibition against Tumor. Carbohydr. Polym. 2023, 312, 120837. [Google Scholar] [CrossRef] [PubMed]
- Soleimani, A.; Mirzavi, F.; Nikoofal-Sahlabadi, S.; Nikpoor, A.R.; Taghizadeh, B.; Barati, M.; Soukhtanloo, M.; Jaafari, M.R. CD73 Downregulation by EGFR-Targeted Liposomal CD73 siRNA Potentiates Antitumor Effect of Liposomal Doxorubicin in 4T1 Tumor-Bearing Mice. Sci. Rep. 2022, 12, 10423. [Google Scholar] [CrossRef] [PubMed]
- Dong, Z.; Wang, Y.; Guo, J.; Tian, C.; Pan, W.; Wang, H.; Yan, J. Prostate Cancer Therapy Using Docetaxel and Formononetin Combination: Hyaluronic Acid and Epidermal Growth Factor Receptor Targeted Peptide Dual Ligands Modified Binary Nanoparticles to Facilitate the in Vivo Anti-Tumor Activity. Drug Des. Dev. Ther. 2022, 16, 2683–2693. [Google Scholar] [CrossRef]
- Liu, Z.-Y.; Yan, G.-H.; Li, X.-Y.; Zhang, Z.; Guo, Y.-Z.; Xu, K.-X.; Quan, J.-S.; Jin, G.-Y. GE11 Peptide Modified CSO-SPION Micelles for MRI Diagnosis of Targeted Hepatic Carcinoma. Biotechnol. Biotechnol. Equip. 2021, 35, 1574–1586. [Google Scholar] [CrossRef]
- Wang, Y.; Luo, J.; Truebenbach, I.; Reinhard, S.; Klein, P.M.; Höhn, M.; Kern, S.; Morys, S.; Loy, D.M.; Wagner, E.; et al. Double Click-Functionalized siRNA Polyplexes for Gene Silencing in Epidermal Growth Factor Receptor-Positive Tumor Cells. ACS Biomater. Sci. Eng. 2020, 6, 1074–1089. [Google Scholar] [CrossRef] [PubMed]
- Nisar, S.; Handley, S.; Clement, S. Developing a Novel Biodegradable Nanodrug Platform for Overcoming the Challenges in Treating Pancreatic Ductal Adenocarcinoma (PDAC). In Proceedings of the Colloidal Nanoparticles for Biomedical Applications XVI, Online, 6–11 March 2021; SPIE: St. Bellingham, WA, USA, 2021; Volume 11659, pp. 12–31. [Google Scholar]
- Verimli, N.; Goralı, S.İ.; Abisoglu, B.; Altan, C.L.; Sucu, B.O.; Karatas, E.; Tulek, A.; Bayraktaroglu, C.; Beker, M.C.; Erdem, S.S. Development of Light and pH-Dual Responsive Self-Quenching Theranostic SPION to Make EGFR Overexpressing Micro Tumors Glow and Destroy. J. Photochem. Photobiol. B 2023, 248, 112797. [Google Scholar] [CrossRef] [PubMed]
- Tang, H.; Li, L.; Wang, B.; Guangxi Scientific Research Center of Traditional Chinese Medicine. Observation of Antitumor Mechanism of GE11-Modified Paclitaxel and Curcumin Liposomes Based on Cellular Morphology Changes. AAPS Open 2024, 10, 1. [Google Scholar] [CrossRef]
- Patel, U.; Rathnayake, K.; Singh, N.; Hunt, E.C. Dual Targeted Delivery of Liposomal Hybrid Gold Nano-Assembly for Enhanced Photothermal Therapy against Lung Carcinomas. ACS Appl. Bio Mater. 2023, 6, 1915–1933. [Google Scholar] [CrossRef] [PubMed]
- Rathnayake, K.; Patel, U.; Hunt, E.C.; Singh, N. Fabrication of a Dual-Targeted Liposome-Coated Mesoporous Silica Core–Shell Nanoassembly for Targeted Cancer Therapy. ACS Omega 2023, 8, 34481–34498. [Google Scholar] [CrossRef]
- Liu, N.; Cui, M.; Hu, N.; Yang, F.; Mu, Y.; Guo, C.; Guan, X.; Xie, Z. An Engineered Three-in-One Hybrid Nanosystem from Elastin-like Polypeptides for Enhanced Cancer Suppression. Colloids Surf. B Biointerfaces 2022, 220, 112976. [Google Scholar] [CrossRef]
- Pethő, L.; Kasza, G.; Lajkó, E.; Láng, O.; Kőhidai, L.; Iván, B.; Mező, G. Amphiphilic Drug–Peptide–Polymer Conjugates Based on Poly(Ethylene Glycol) and Hyperbranched Polyglycerol for Epidermal Growth Factor Receptor Targeting: The Effect of Conjugate Aggregation on in Vitro Activity. Soft Matter 2020, 16, 5759–5769. [Google Scholar] [CrossRef] [PubMed]
- Bao, B.; Yuan, Q.; Feng, Q.; Li, L.; Li, M.; Tang, Y. Regulating Signal Pathway Triggers Circular Reactive Oxygen Species Production to Augment Oxidative Stress with Enzyme-Activated Nanoparticles. CCS Chem. 2023, 6, 693–708. [Google Scholar] [CrossRef]
- Tao, Y.; Liu, Y.; Dong, Z.; Chen, X.; Wang, Y.; Li, T.; Li, J.; Zang, S.; He, X.; Chen, D.; et al. Cellular Hypoxia Mitigation by Dandelion-like Nanoparticles for Synergistic Photodynamic Therapy of Oral Squamous Cell Carcinoma. ACS Appl. Mater. Interfaces 2022, 14, 44039–44053. [Google Scholar] [CrossRef] [PubMed]
- Woof, J.M.; Burton, D.R. Human Antibody–Fc Receptor Interactions Illuminated by Crystal Structures. Nat. Rev. Immunol. 2004, 4, 89–99. [Google Scholar] [CrossRef] [PubMed]
- Reth, M. Matching Cellular Dimensions with Molecular Sizes. Nat. Immunol. 2013, 14, 765–767. [Google Scholar] [CrossRef] [PubMed]
- Sandin, S.; Öfverstedt, L.-G.; Wikström, A.-C.; Wrange, Ö.; Skoglund, U. Structure and Flexibility of Individual Immunoglobulin G Molecules in Solution. Structure 2004, 12, 409–415. [Google Scholar] [CrossRef] [PubMed]
- Cai, W.-Q.; Zeng, L.-S.; Wang, L.-F.; Wang, Y.-Y.; Cheng, J.-T.; Zhang, Y.; Han, Z.-W.; Zhou, Y.; Huang, S.-L.; Wang, X.-W.; et al. The Latest Battles Between EGFR Monoclonal Antibodies and Resistant Tumor Cells. Front. Oncol. 2020, 10, 1249. [Google Scholar] [CrossRef] [PubMed]
- Zahavi, D.; Weiner, L. Monoclonal Antibodies in Cancer Therapy. Antibodies 2020, 9, 34. [Google Scholar] [CrossRef] [PubMed]
- Susini, V.; Ferraro, G.; Fierabracci, V.; Ursino, S.; Sanguinetti, C.; Caponi, L.; Romiti, N.; Rossi, V.L.; Sanesi, A.; Paolicchi, A.; et al. Orientation of Capture Antibodies on Gold Nanoparticles to Improve the Sensitivity of ELISA-Based Medical Devices. Talanta 2023, 260, 124650. [Google Scholar] [CrossRef]
- Brückner, M.; Simon, J.; Landfester, K.; Mailänder, V. The Conjugation Strategy Affects Antibody Orientation and Targeting Properties of Nanocarriers. Nanoscale 2021, 13, 9816–9824. [Google Scholar] [CrossRef] [PubMed]
- Fang, F.; Zhang, X.; Tang, J.; Wang, Y.; Xu, J.; Sun, Y. EGFR-Targeted Hybrid Lipid Nanoparticles for Chemo-Photothermal Therapy against Colorectal Cancer Cells. Chem. Phys. Lipids 2023, 251, 105280. [Google Scholar] [CrossRef] [PubMed]
- Juan, A.; Segrelles, C.; del Campo-Balguerías, A.; Bravo, I.; Silva, I.; Peral, J.; Ocaña, A.; Clemente-Casares, P.; Alonso-Moreno, C.; Lorz, C. Anti-EGFR Conjugated Nanoparticles to Deliver Alpelisib as Targeted Therapy for Head and Neck Cancer. Cancer Nanotechnol. 2023, 14, 29. [Google Scholar] [CrossRef]
- Duwa, R.; Banstola, A.; Emami, F.; Jeong, J.-H.; Lee, S.; Yook, S. Cetuximab Conjugated Temozolomide-Loaded Poly (Lactic-Co-Glycolic Acid) Nanoparticles for Targeted Nanomedicine in EGFR Overexpressing Cancer Cells. J. Drug Deliv. Sci. Technol. 2020, 60, 101928. [Google Scholar] [CrossRef]
- Kumari, L.; Ehsan, I.; Mondal, A.; Al Hoque, A.; Mukherjee, B.; Choudhury, P.; Sengupta, A.; Sen, R.; Ghosh, P. Cetuximab-Conjugated PLGA Nanoparticles as a Prospective Targeting Therapeutics for Non-Small Cell Lung Cancer. J. Drug Target. 2023, 31, 521–536. [Google Scholar] [CrossRef]
- Hosseini, S.M.; Mohammadnejad, J.; Yousefnia, H.; Alirezapour, B.; Rezayan, A.H. Development of 177Lu-Cetuximab-PAMAM Dendrimeric Nanosystem: A Novel Theranostic Radioimmunoconjugate. J. Cancer Res. Clin. Oncol. 2023, 149, 7779–7791. [Google Scholar] [CrossRef] [PubMed]
- Yue, S.; Zhang, Y.; Wei, Y.; Haag, R.; Sun, H.; Zhong, Z. Cetuximab–Polymersome–Mertansine Nanodrug for Potent and Targeted Therapy of EGFR-Positive Cancers. Biomacromolecules 2022, 23, 100–111. [Google Scholar] [CrossRef]
- Ye, Z.; Zhang, Y.; Liu, Y.; Liu, Y.; Tu, J.; Shen, Y. EGFR Targeted Cetuximab-Valine-Citrulline (vc)-Doxorubicin Immunoconjugates—Loaded Bovine Serum Albumin (BSA) Nanoparticles for Colorectal Tumor Therapy. Int. J. Nanomed. 2021, 16, 2443–2459. [Google Scholar] [CrossRef]
- Salim, E.I.; Mosbah, A.M.; Elhussiny, F.A.; Hanafy, N.A.N.; Abdou, Y. Preparation and Characterization of Cetuximab-Loaded Egg Serum Albumin Nanoparticles and Their Uses as a Drug Delivery System against Caco-2 Colon Cancer Cells. Cancer Nanotechnol. 2023, 14, 4. [Google Scholar] [CrossRef]
- Chen, R.; Huang, Y.; Wang, L.; Zhou, J.; Tan, Y.; Peng, C.; Yang, P.; Peng, W.; Li, J.; Gu, Q.; et al. Cetuximab Functionalization Strategy for Combining Active Targeting and Antimigration Capacities of a Hybrid Composite Nanoplatform Applied to Deliver 5-Fluorouracil: Toward Colorectal Cancer Treatment. Biomater. Sci. 2021, 9, 2279–2294. [Google Scholar] [CrossRef] [PubMed]
- Dorjsuren, B.; Chaurasiya, B.; Ye, Z.; Liu, Y.; Li, W.; Wang, C.; Shi, D.; Evans, C.E.; Webster, T.J.; Shen, Y. Cetuximab-Coated Thermo-Sensitive Liposomes Loaded with Magnetic Nanoparticles and Doxorubicin for Targeted EGFR-Expressing Breast Cancer Combined Therapy. Int. J. Nanomed. 2020, 15, 8201–8215. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Peng, X.; Wang, L.; Li, H.; Cheng, W.; Zheng, X.; Liu, Y. Cetuximab-Conjugated Perfluorohexane/Gold Nanoparticles for Low Intensity Focused Ultrasound Diagnosis Ablation of Thyroid Cancer Treatment. Sci. Technol. Adv. Mater. 2020, 21, 856–866. [Google Scholar] [CrossRef] [PubMed]
- El Hallal, R.; Lyu, N.; Wang, Y. Effect of Cetuximab-Conjugated Gold Nanoparticles on the Cytotoxicity and Phenotypic Evolution of Colorectal Cancer Cells. Molecules 2021, 26, 567. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhang, X.-M.; Sun, Y.; Chen, H.-L.; Zhou, L.-Y. Cetuximab-Decorated and NIR-Activated Nanoparticles Based on Platinum(IV)-Prodrug: Preparation, Characterization and In-Vitro Anticancer Activity in Epidermoid Carcinoma Cells. Iran. J. Pharm. Res. IJPR 2021, 20, 371–383. [Google Scholar] [CrossRef] [PubMed]
- Quatrale, A.E.; Petriella, D.; Porcelli, L.; Tommasi, S.; Silvestris, N.; Colucci, G.; Angelo, A.; Azzariti, A. Anti-EGFR Monoclonal Antibody in Cancer Treatment: In Vitro and in Vivo Evidence. Front. Biosci. Landmark Ed. 2011, 16, 1973–1985. [Google Scholar] [CrossRef] [PubMed]
- Talavera, A.; Friemann, R.; Gómez-Puerta, S.; Martinez-Fleites, C.; Garrido, G.; Rabasa, A.; López-Requena, A.; Pupo, A.; Johansen, R.F.; Sánchez, O.; et al. Nimotuzumab, an Antitumor Antibody That Targets the Epidermal Growth Factor Receptor, Blocks Ligand Binding While Permitting the Active Receptor Conformation. Cancer Res. 2009, 69, 5851–5859. [Google Scholar] [CrossRef] [PubMed]
- Mazorra, Z.; Chao, L.; Lavastida, A.; Sanchez, B.; Ramos, M.; Iznaga, N.; Crombet, T. Nimotuzumab: Beyond the EGFR Signaling Cascade Inhibition. Semin. Oncol. 2018, 45, 18–26. [Google Scholar] [CrossRef] [PubMed]
- Anisuzzman, M.; Komalla, V.; Tarkistani, M.A.M.; Kayser, V. Anti-Tumor Activity of Novel Nimotuzumab-Functionalized Gold Nanoparticles as a Potential Immunotherapeutic Agent against Skin and Lung Cancers. J. Funct. Biomater. 2023, 14, 407. [Google Scholar] [CrossRef] [PubMed]
- García-Foncillas, J.; Sunakawa, Y.; Aderka, D.; Wainberg, Z.; Ronga, P.; Witzler, P.; Stintzing, S. Distinguishing Features of Cetuximab and Panitumumab in Colorectal Cancer and Other Solid Tumors. Front. Oncol. 2019, 9, 849. [Google Scholar] [CrossRef] [PubMed]
- Banstola, A.; Duwa, R.; Emami, F.; Jeong, J.-H.; Yook, S. Enhanced Caspase-Mediated Abrogation of Autophagy by Temozolomide-Loaded and Panitumumab-Conjugated Poly(Lactic-Co-Glycolic Acid) Nanoparticles in Epidermal Growth Factor Receptor Overexpressing Glioblastoma Cells. Mol. Pharm. 2020, 17, 4386–4400. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharya, S.; Parihar, V.K.; Singh, N.; Hatware, K.; Page, A.; Sharma, M.; Prajapati, M.K.; Kanugo, A.; Pawde, D.; Maru, S.; et al. Targeted Delivery of Panitumumab-Scaffold Bosutinib-Encapsulated Polycaprolactone Nanoparticles for EGFR-Overexpressed Colorectal Cancer. Nanomedicine 2023, 18, 713–741. [Google Scholar] [CrossRef]
- Shukla, V.N.; Vikas; Mehata, A.K.; Setia, A.; Kumari, P.; Mahto, S.K.; Muthu, M.S.; Mishra, S.K. Rational Design of Surface Engineered Albumin Nanoparticles of Asiatic Acid for EGFR Targeted Delivery to Lung Cancer: Formulation Development and Pharmacokinetics. Colloids Surf. Physicochem. Eng. Asp. 2023, 676, 132188. [Google Scholar] [CrossRef]
- Jordan, T.; O’Brien, M.A.; Spatarelu, C.-P.; Luke, G.P. Antibody-Conjugated Barium Titanate Nanoparticles for Cell-Specific Targeting. ACS Appl. Nano Mater. 2020, 3, 2636–2646. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharya, S. Anti-EGFR-mAb and 5-Fluorouracil Conjugated Polymeric Nanoparticles for Colorectal Cancer. Recent Patents Anticancer Drug Discov. 2021, 16, 84–100. [Google Scholar] [CrossRef] [PubMed]
- Liszbinski, R.B.; Romagnoli, G.G.; Gorgulho, C.M.; Basso, C.R.; Pedrosa, V.A.; Kaneno, R. Anti-EGFR-Coated Gold Nanoparticles In Vitro Carry 5-Fluorouracil to Colorectal Cancer Cells. Materials 2020, 13, 375. [Google Scholar] [CrossRef]
- Marshall, S.K.; Saelim, B.; Taweesap, M.; Pachana, V.; Panrak, Y.; Makchuchit, N.; Jaroenpakdee, P. Anti-EGFR Targeted Multifunctional I-131 Radio-Nanotherapeutic for Treating Osteosarcoma: In Vitro 3D Tumor Spheroid Model. Nanomaterials 2022, 12, 3517. [Google Scholar] [CrossRef] [PubMed]
- Fang, F.; Chen, Y.Y.; Zhang, X.-M.; Tang, J.; Liu, Y.-H.; Peng, C.-S.; Sun, Y. EGFR-Targeted and NIR-Triggered Lipid-Polymer Hybrid Nanoparticles for Chemo-Photothermal Colorectal Tumor Therapy. Int. J. Nanomed. 2024, 19, 9689–9705. [Google Scholar] [CrossRef] [PubMed]
- Viswanadh, M.K.; Agrawal, N.; Azad, S.; Jha, A.; Poddar, S.; Mahto, S.K.; Muthu, M.S. Novel Redox-Sensitive Thiolated TPGS Based Nanoparticles for EGFR Targeted Lung Cancer Therapy. Int. J. Pharm. 2021, 602, 120652. [Google Scholar] [CrossRef] [PubMed]
- Bates, A.; Power, C.A. David vs. Goliath: The Structure, Function, and Clinical Prospects of Antibody Fragments. Antibodies 2019, 8, 28. [Google Scholar] [CrossRef] [PubMed]
- Chames, P.; Regenmortel, M.V.; Weiss, E.; Baty, D. Therapeutic Antibodies: Successes, Limitations and Hopes for the Future. Br. J. Pharmacol. 2009, 157, 220. [Google Scholar] [CrossRef]
- Archontakis, E.; Woythe, L.; Hoof, B.v.; Albertazzi, L. Mapping the Relationship between Total and Functional Antibodies Conjugated to Nanoparticles with Spectrally-Resolved Direct Stochastic Optical Reconstruction Microscopy (SR-dSTORM). Nanoscale Adv. 2022, 4, 4402–4409. [Google Scholar] [CrossRef] [PubMed]
- Lin, X.; O’Reilly Beringhs, A.; Lu, X. Applications of Nanoparticle-Antibody Conjugates in Immunoassays and Tumor Imaging. AAPS J. 2021, 23, 43. [Google Scholar] [CrossRef] [PubMed]
- Xenaki, K.T.; Oliveira, S.; van Bergen en Henegouwen, P.M.P. Antibody or Antibody Fragments: Implications for Molecular Imaging and Targeted Therapy of Solid Tumors. Front. Immunol. 2017, 8, 1287. [Google Scholar] [CrossRef]
- Kumar, G.; Nandakumar, K.; Mutalik, S.; Rao, C.M. Biologicals to Direct Nanotherapeutics towards HER2-Positive Breast Cancers. Nanomed. Nanotechnol. Biol. Med. 2020, 27, 102197. [Google Scholar] [CrossRef] [PubMed]
- Nelson, A.L. Antibody Fragments. mAbs 2010, 2, 77–83. [Google Scholar] [CrossRef] [PubMed]
- Khatib, S.E.; Salla, M. The Mosaic Puzzle of the Therapeutic Monoclonal Antibodies and Antibody Fragments—A Modular Transition from Full-Length Immunoglobulins to Antibody Mimetics. Leuk. Res. Rep. 2022, 18, 100335. [Google Scholar] [CrossRef] [PubMed]
- Mittelheisser, V.; Coliat, P.; Moeglin, E.; Goepp, L.; Goetz, J.G.; Charbonnière, L.J.; Pivot, X.; Detappe, A. Optimal Physicochemical Properties of Antibody–Nanoparticle Conjugates for Improved Tumor Targeting. Adv. Mater. 2022, 34, 2110305. [Google Scholar] [CrossRef] [PubMed]
- Vlasak, J.; Ionescu, R. Fragmentation of Monoclonal Antibodies. mAbs 2011, 3, 253–263. [Google Scholar] [CrossRef] [PubMed]
- Wang, A.C.; Wang, I.Y. Cleavage Sites of Human IgGl Immunoglobulin by Papain. Immunochemistry 1977, 14, 197–200. [Google Scholar] [CrossRef]
- Richards, D.A.; Maruani, A.; Chudasama, V. Antibody Fragments as Nanoparticle Targeting Ligands: A Step in the Right Direction. Chem. Sci. 2016, 8, 63–77. [Google Scholar] [CrossRef]
- Wu, H.; Ding, X.; Chen, Y.; Cai, Y.; Yang, Z.; Jin, J. EGFR-Targeted Humanized Single Chain Antibody Fragment Functionalized Silica Nanoparticles for Precision Therapy of Cancer. Int. J. Biol. Macromol. 2023, 253, 127538. [Google Scholar] [CrossRef]
- Lu, Y.; Huang, J.; Li, F.; Wang, Y.; Ding, M.; Zhang, J.; Yin, H.; Zhang, R.; Ren, X. EGFR-Specific Single-Chain Variable Fragment Antibody-Conjugated Fe3O4/Au Nanoparticles as an Active MRI Contrast Agent for NSCLC. Magn. Reson. Mater. Phys. Biol. Med. 2021, 34, 581–591. [Google Scholar] [CrossRef] [PubMed]
- Jiang, J.; Lu, Y.; Chu, J.; Zhang, X.; Xu, C.; Liu, S.; Wan, Z.; Wang, J.; Zhang, L.; Liu, K.; et al. Anti-EGFR ScFv Functionalized Exosomes Delivering LPCAT1 Specific siRNAs for Inhibition of Lung Cancer Brain Metastases. J. Nanobiotechnol. 2024, 22, 159. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, P.V.; Hervé-Aubert, K.; David, S.; Lautram, N.; Passirani, C.; Chourpa, I.; Aubrey, N.; Allard-Vannier, E. Targeted Nanomedicine with Anti-EGFR scFv for siRNA Delivery into Triple Negative Breast Cancer Cells. Eur. J. Pharm. Biopharm. 2020, 157, 74–84. [Google Scholar] [CrossRef]
- Tateo, S.; Shinchi, H.; Matsumoto, H.; Nagata, N.; Hashimoto, M.; Wakao, M.; Suda, Y. Optimized Immobilization of Single Chain Variable Fragment Antibody onto Non-Toxic Fluorescent Nanoparticles for Efficient Preparation of a Bioprobe. Colloids Surf. B Biointerfaces 2023, 224, 113192. [Google Scholar] [CrossRef] [PubMed]
- Logan, A.; Howard, C.B.; Huda, P.; Kimpton, K.; Ma, Z.; Thurecht, K.J.; McCarroll, J.A.; Moles, E.; Kavallaris, M. Targeted Delivery of Polo-like Kinase 1 siRNA Nanoparticles Using an EGFR-PEG Bispecific Antibody Inhibits Proliferation of High-Risk Neuroblastoma. J. Control. Release 2024, 367, 806–820. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.-P.; Liu, I.-J.; Chung, M.-J.; Wu, H.-C. Novel Anti-EGFR scFv Human Antibody-Conjugated Immunoliposomes Enhance Chemotherapeutic Efficacy in Squamous Cell Carcinoma of Head and Neck. Oral Oncol. 2020, 106, 104689. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.; Zhang, X.; Guo, C.; Ma, B.; Liu, Z.; Du, Y.; Wang, B.; Li, N.; Huang, X.; Ou, L. Genetically Engineered Cell Membrane-Coated Magnetic Nanoparticles for High-Performance Isolation of Circulating Tumor Cells. Adv. Funct. Mater. 2024, 34, 2304426. [Google Scholar] [CrossRef]
- Moles, E.; Chang, D.W.; Mansfeld, F.M.; Duly, A.; Kimpton, K.; Logan, A.; Howard, C.B.; Thurecht, K.J.; Kavallaris, M. EGFR Targeting of Liposomal Doxorubicin Improves Recognition and Suppression of Non-Small Cell Lung Cancer. Int. J. Nanomed. 2024, 19, 3623–3639. [Google Scholar] [CrossRef] [PubMed]
- Wei, P.-S.; Chen, Y.-J.; Lin, S.-Y.; Chuang, K.-H.; Sheu, M.-T.; Ho, H.-O. In Situ Subcutaneously Injectable Thermosensitive PEG-PLGA Diblock and PLGA-PEG-PLGA Triblock Copolymer Composite as Sustained Delivery of Bispecific Anti-CD3 scFv T-Cell/Anti-EGFR Fab Engager (BiTEE). Biomaterials 2021, 278, 121166. [Google Scholar] [CrossRef] [PubMed]
- Lü, J.-M.; Liang, Z.; Liu, D.; Zhan, B.; Yao, Q.; Chen, C. Two Antibody-Guided Lactic-Co-Glycolic Acid-Polyethylenimine (LGA-PEI) Nanoparticle Delivery Systems for Therapeutic Nucleic Acids. Pharmaceuticals 2021, 14, 841. [Google Scholar] [CrossRef] [PubMed]
- Rashidian, M.; Ploegh, H. Nanobodies as Non-Invasive Imaging Tools. Immuno-Oncol. Technol. 2020, 7, 2–14. [Google Scholar] [CrossRef] [PubMed]
- Wagner, T.R.; Rothbauer, U. Nanobodies—Little Helpers Unravelling Intracellular Signaling. Free Radic. Biol. Med. 2021, 176, 46–61. [Google Scholar] [CrossRef] [PubMed]
- Roovers, R.C.; Vosjan, M.J.W.D.; Laeremans, T.; el Khoulati, R.; de Bruin, R.C.G.; Ferguson, K.M.; Verkleij, A.J.; van Dongen, G.A.M.S.; van Bergen en Henegouwen, P.M.P. A Biparatopic Anti-EGFR Nanobody Efficiently Inhibits Solid Tumour Growth. Int. J. Cancer 2011, 129, 2013–2024. [Google Scholar] [CrossRef] [PubMed]
- Muyldermans, S. Nanobodies: Natural Single-Domain Antibodies. Annu. Rev. Biochem. 2013, 82, 775–797. [Google Scholar] [CrossRef]
- Chapman, A.P.; Antoniw, P.; Spitali, M.; West, S.; Stephens, S.; King, D.J. Therapeutic Antibody Fragments with Prolonged in Vivo Half-Lives. Nat. Biotechnol. 1999, 17, 780–783. [Google Scholar] [CrossRef]
- Song, W.; Wei, W.; Lan, X.; Cai, W. Albumin Binding Improves Nanobody Pharmacokinetics for Dual-Modality PET/NIRF Imaging of CEACAM5 in Colorectal Cancer Models. Eur. J. Nucl. Med. Mol. Imaging 2023, 50, 2591–2594. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Kong, Y.; Zhong, Y.; Huang, A.; Ying, T.; Wu, Y. Half-Life Extension of Single-Domain Antibody–Drug Conjugates by Albumin Binding Moiety Enhances Antitumor Efficacy. MedComm 2024, 5, e557. [Google Scholar] [CrossRef]
- Liu, Y.; Scrivano, L.; Peterson, J.D.; Fens, M.H.A.M.; Hernández, I.B.; Mesquita, B.; Toraño, J.S.; Hennink, W.E.; van Nostrum, C.F.; Oliveira, S. EGFR-Targeted Nanobody Functionalized Polymeric Micelles Loaded with mTHPC for Selective Photodynamic Therapy. Mol. Pharm. 2020, 17, 1276–1292. [Google Scholar] [CrossRef] [PubMed]
- Hernández, I.B.; Grinwis, G.C.M.; Maggio, A.D.; van Bergen en Henegouwen, P.M.P.; Hennink, W.E.; Teske, E.; Hesselink, J.W.; van Nimwegen, S.A.; Mol, J.A.; Oliveira, S. Nanobody-Targeted Photodynamic Therapy for the Treatment of Feline Oral Carcinoma: A Step towards Translation to the Veterinary Clinic. Nanophotonics 2021, 10, 3075–3087. [Google Scholar] [CrossRef] [PubMed]
- Mesquita, B.; Singh, A.; Prats Masdeu, C.; Lokhorst, N.; Hebels, E.R.; van Steenbergen, M.; Mastrobattista, E.; Heger, M.; van Nostrum, C.F.; Oliveira, S. Nanobody-Mediated Targeting of Zinc Phthalocyanine with Polymer Micelles as Nanocarriers. Int. J. Pharm. 2024, 655, 124004. [Google Scholar] [CrossRef] [PubMed]
- Bitsch, P.; Baum, E.S.; Beltrán Hernández, I.; Bitsch, S.; Harwood, J.; Oliveira, S.; Kolmar, H. Penetration of Nanobody-Dextran Polymer Conjugates through Tumor Spheroids. Pharmaceutics 2023, 15, 2374. [Google Scholar] [CrossRef] [PubMed]
- Pham, T.C.; Jayasinghe, M.K.; Pham, T.T.; Yang, Y.; Wei, L.; Usman, W.M.; Chen, H.; Pirisinu, M.; Gong, J.; Kim, S.; et al. Covalent Conjugation of Extracellular Vesicles with Peptides and Nanobodies for Targeted Therapeutic Delivery. J. Extracell. Vesicles 2021, 10, e12057. [Google Scholar] [CrossRef] [PubMed]
- Jin, D.; Liu, M.; Zhang, Y.; Yu, W.; Yu, J.; Luo, Y.; Cheng, J.; Liu, Y. Active Regulation of Protein Coronas for Enhancing the in Vivo Biodistribution and Metabolism of Nanoparticles. Inorg. Chem. Front. 2024, 11, 5741–5752. [Google Scholar] [CrossRef]
- Hu, X.; Liu, H.; Cheng, Z. Engineered Affibodies in Translational Medicine. In Engineering in Translational Medicine; Cai, W., Ed.; Springer: London, UK, 2014; pp. 317–342. ISBN 978-1-4471-4372-7. [Google Scholar]
- Nord, K.; Nilsson, J.; Nilsson, B.; Uhlén, M.; Nygren, P.A. A Combinatorial Library of an Alpha-Helical Bacterial Receptor Domain. Protein Eng. 1995, 8, 601–608. [Google Scholar] [CrossRef] [PubMed]
- Nord, K.; Gunneriusson, E.; Ringdahl, J.; Ståhl, S.; Uhlén, M.; Nygren, P.A. Binding Proteins Selected from Combinatorial Libraries of an Alpha-Helical Bacterial Receptor Domain. Nat. Biotechnol. 1997, 15, 772–777. [Google Scholar] [CrossRef]
- Kronqvist, N.; Malm, M.; Gostring, L.; Gunneriusson, E.; Nilsson, M.; Hoiden Guthenberg, I.; Gedda, L.; Frejd, F.Y.; Stahl, S.; Lofblom, J. Combining Phage and Staphylococcal Surface Display for Generation of ErbB3-Specific Affibody Molecules. Protein Eng. Des. Sel. 2011, 24, 385–396. [Google Scholar] [CrossRef]
- Nygren, P.-Å. Alternative Binding Proteins: Affibody Binding Proteins Developed from a Small Three-Helix Bundle Scaffold. FEBS J. 2008, 275, 2668–2676. [Google Scholar] [CrossRef]
- Friedman, M.; Orlova, A.; Johansson, E.; Eriksson, T.L.J.; Höidén-Guthenberg, I.; Tolmachev, V.; Nilsson, F.Y.; Ståhl, S. Directed Evolution to Low Nanomolar Affinity of a Tumor-Targeting Epidermal Growth Factor Receptor-Binding Affibody Molecule. J. Mol. Biol. 2008, 376, 1388–1402. [Google Scholar] [CrossRef] [PubMed]
- Engfeldt, T.; Renberg, B.; Brumer, H.; Nygren, P.Å.; Eriksson Karlström, A. Chemical Synthesis of Triple-Labelled Three-Helix Bundle Binding Proteins for Specific Fluorescent Detection of Unlabelled Protein. ChemBioChem 2005, 6, 1043–1050. [Google Scholar] [CrossRef] [PubMed]
- Tolmachev, V.; Tran, T.A.; Rosik, D.; Sjöberg, A.; Abrahmsén, L.; Orlova, A. Tumor Targeting Using Affibody Molecules: Interplay of Affinity, Target Expression Level, and Binding Site Composition. J. Nucl. Med. Off. Publ. Soc. Nucl. Med. 2012, 53, 953–960. [Google Scholar] [CrossRef] [PubMed]
- Nord, K.; Gunneriusson, E.; Uhlén, M.; Nygren, P.A. Ligands Selected from Combinatorial Libraries of Protein A for Use in Affinity Capture of Apolipoprotein A-1M and Taq DNA Polymerase. J. Biotechnol. 2000, 80, 45–54. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Li, H.; Yan, Y.; Wang, K.; Cheng, Y.; Li, Y.; Zhu, X.; Xie, J.; Sun, X. Affibody-Modified Gd@C-Dots with Efficient Renal Clearance for Enhanced MRI of EGFR Expression in Non-Small-Cell Lung Cancer. Int. J. Nanomed. 2020, 15, 4691–4703. [Google Scholar] [CrossRef] [PubMed]
- Sayyadi, N.; Zhand, S.; Razavi Bazaz, S.; Warkiani, M.E. Affibody Functionalized Beads for the Highly Sensitive Detection of Cancer Cell-Derived Exosomes. Int. J. Mol. Sci. 2021, 22, 12014. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Zhao, X.; Zhang, H.; Zou, X.; Jia, D.; Liu, W.; Tian, B.; Yuan, D.; Li, Y.; Zhu, Y.; et al. EGFR-Antagonistic Affibody-Functionalized Pt-Based Nanozyme for Enhanced Tumor Radiotherapy. Mater. Today Adv. 2023, 18, 100375. [Google Scholar] [CrossRef]
- Roy, S.; Curry, S.D.; Corbella Bagot, C.; Mueller, E.N.; Mansouri, A.M.; Park, W.; Cha, J.N.; Goodwin, A.P. Enzyme Prodrug Therapy with Photo-Cross-Linkable Anti-EGFR Affibodies Conjugated to Upconverting Nanoparticles. ACS Nano 2022, 16, 15873–15883. [Google Scholar] [CrossRef] [PubMed]
- Karyagina, T.S.; Ulasov, A.V.; Slastnikova, T.A.; Rosenkranz, A.A.; Lupanova, T.N.; Khramtsov, Y.V.; Georgiev, G.P.; Sobolev, A.S. Targeted Delivery of 111In into the Nuclei of EGFR Overexpressing Cells via Modular Nanotransporters with Anti-EGFR Affibody. Front. Pharmacol. 2020, 11, 176. [Google Scholar] [CrossRef] [PubMed]
- Jia, D.; Wang, F.; Yang, Y.; Hu, P.; Song, H.; Lu, Y.; Wang, R.; Li, G.; Liu, R.; Li, J.; et al. Coupling EGFR-Antagonistic Affibody Enhanced Therapeutic Effects of Cisplatin Liposomes in EGFR-Expressing Tumor Models. J. Pharm. Sci. 2022, 111, 450–457. [Google Scholar] [CrossRef] [PubMed]
- Gao, W.; Xia, X.; Yang, X.; Li, Q.; Xia, X.; Huang, W.; Yan, D. Amphiphilic Affibody-PROTAC Conjugate Self-Assembled Nanoagents for Targeted Cancer Therapy. Chem. Eng. J. 2024, 495, 153437. [Google Scholar] [CrossRef]
- Jia, D.; Yang, Y.; Yuan, F.; Fan, Q.; Wang, F.; Huang, Y.; Song, H.; Hu, P.; Wang, R.; Li, G.; et al. Increasing the Antitumor Efficacy of Doxorubicin Liposomes with Coupling an Anti-EGFR Affibody in EGFR-Expressing Tumor Models. Int. J. Pharm. 2020, 586, 119541. [Google Scholar] [CrossRef]
- Jun, H.; Jang, E.; Kim, H.; Yeo, M.; Park, S.G.; Lee, J.; Shin, K.J.; Chae, Y.C.; Kang, S.; Kim, E. TRAIL & EGFR Affibody Dual-Display on a Protein Nanoparticle Synergistically Suppresses Tumor Growth. J. Control. Release 2022, 349, 367–378. [Google Scholar] [CrossRef]
- Robertson, D.L.; Joyce, G.F. Selection in Vitro of an RNA Enzyme That Specifically Cleaves Single-Stranded DNA. Nature 1990, 344, 467–468. [Google Scholar] [CrossRef]
- Oliphant, A.R.; Brandl, C.J.; Struhl, K. Defining the Sequence Specificity of DNA-Binding Proteins by Selecting Binding Sites from Random-Sequence Oligonucleotides: Analysis of Yeast GCN4 Protein. Mol. Cell. Biol. 1989, 9, 2944–2949. [Google Scholar] [CrossRef] [PubMed]
- Ellington, A.D.; Szostak, J.W. In Vitro Selection of RNA Molecules That Bind Specific Ligands. Nature 1990, 346, 818–822. [Google Scholar] [CrossRef] [PubMed]
- Mahmoudian, F.; Ahmari, A.; Shabani, S.; Sadeghi, B.; Fahimirad, S.; Fattahi, F. Aptamers as an Approach to Targeted Cancer Therapy. Cancer Cell Int. 2024, 24, 108. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Q.; Liu, G.; Kai, M. DNA Aptamers in the Diagnosis and Treatment of Human Diseases. Molecules 2015, 20, 20979–20997. [Google Scholar] [CrossRef] [PubMed]
- Orava, E.W.; Cicmil, N.; Gariépy, J. Delivering Cargoes into Cancer Cells Using DNA Aptamers Targeting Internalized Surface Portals. Biochim. Biophys. Acta 2010, 1798, 2190–2200. [Google Scholar] [CrossRef] [PubMed]
- Shaw, J.P.; Kent, K.; Bird, J.; Fishback, J.; Froehler, B. Modified Deoxyoligonucleotides Stable to Exonuclease Degradation in Serum. Nucleic Acids Res. 1991, 19, 747–750. [Google Scholar] [CrossRef] [PubMed]
- Fu, Z.; Xiang, J. Aptamer-Functionalized Nanoparticles in Targeted Delivery and Cancer Therapy. Int. J. Mol. Sci. 2020, 21, 9123. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Zhu, X.; Lu, P.Y.; Rosato, R.R.; Tan, W.; Zu, Y. Oligonucleotide Aptamers: New Tools for Targeted Cancer Therapy. Mol. Ther.-Nucleic Acids 2014, 3, e182. [Google Scholar] [CrossRef] [PubMed]
- Rabiee, N.; Chen, S.; Ahmadi, S.; Veedu, R.N. Aptamer-Engineered (Nano)Materials for Theranostic Applications. Theranostics 2023, 13, 5183–5206. [Google Scholar] [CrossRef] [PubMed]
- Shanaa, O.A.; Rumyantsev, A.; Sambuk, E.; Padkina, M. In Vivo Production of RNA Aptamers and Nanoparticles: Problems and Prospects. Molecules 2021, 26, 1422. [Google Scholar] [CrossRef] [PubMed]
- Kratschmer, C.; Levy, M. Effect of Chemical Modifications on Aptamer Stability in Serum. Nucleic Acid Ther. 2017, 27, 335–344. [Google Scholar] [CrossRef] [PubMed]
- Fallah, A.; Imani Fooladi, A.A.; Havaei, S.A.; Mahboobi, M.; Sedighian, H. Recent Advances in Aptamer Discovery, Modification and Improving Performance. Biochem. Biophys. Rep. 2024, 40, 101852. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Luo, H.; Gubu, A.; Yu, S.; Zhang, H.; Dai, H.; Zhang, Y.; Zhang, B.; Ma, Y.; Lu, A.; et al. Chemically Modified Aptamers for Improving Binding Affinity to the Target Proteins via Enhanced Non-Covalent Bonding. Front. Cell Dev. Biol. 2023, 11, 1091809. [Google Scholar] [CrossRef] [PubMed]
- Mehta, J.; Van Dorst, B.; Rouah-Martin, E.; Herrebout, W.; Scippo, M.-L.; Blust, R.; Robbens, J. In Vitro Selection and Characterization of DNA Aptamers Recognizing Chloramphenicol. J. Biotechnol. 2011, 155, 361–369. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Nguyen, H.H.; Byrom, M.; Ellington, A.D. Inhibition of Cell Proliferation by an Anti-EGFR Aptamer. PLoS ONE 2011, 6, e20299. [Google Scholar] [CrossRef] [PubMed]
- Tuerk, C.; Gold, L. Systematic Evolution of Ligands by Exponential Enrichment: RNA Ligands to Bacteriophage T4 DNA Polymerase. Science 1990, 249, 505–510. [Google Scholar] [CrossRef] [PubMed]
- Blind, M.; Blank, M. Aptamer Selection Technology and Recent Advances. Mol. Ther.-Nucleic Acids 2015, 4, e223. [Google Scholar] [CrossRef] [PubMed]
- Bayat, P.; Nosrati, R.; Alibolandi, M.; Rafatpanah, H.; Abnous, K.; Khedri, M.; Ramezani, M. SELEX Methods on the Road to Protein Targeting with Nucleic Acid Aptamers. Biochimie 2018, 154, 132–155. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Zu, Y. A Highlight of Recent Advances in Aptamer Technology and Its Application. Molecules 2015, 20, 11959–11980. [Google Scholar] [CrossRef]
- Dass, C.R.; Saravolac, E.G.; Li, Y.; Sun, L.-Q. Cellular Uptake, Distribution, and Stability of 10-23 Deoxyribozymes. Antisense Nucleic Acid Drug Dev. 2002, 12, 289–299. [Google Scholar] [CrossRef] [PubMed]
- Dougan, H.; Lyster, D.M.; Vo, C.V.; Stafford, A.; Weitz, J.I.; Hobbs, J.B. Extending the Lifetime of Anticoagulant Oligodeoxynucleotide Aptamers in Blood. Nucl. Med. Biol. 2000, 27, 289–297. [Google Scholar] [CrossRef]
- Ibarra, L.E.; Camorani, S.; Agnello, L.; Pedone, E.; Pirone, L.; Chesta, C.A.; Palacios, R.E.; Fedele, M.; Cerchia, L. Selective Photo-Assisted Eradication of Triple-Negative Breast Cancer Cells through Aptamer Decoration of Doped Conjugated Polymer Nanoparticles. Pharmaceutics 2022, 14, 626. [Google Scholar] [CrossRef] [PubMed]
- Agnello, L.; Tortorella, S.; d’Argenio, A.; Carbone, C.; Camorani, S.; Locatelli, E.; Auletta, L.; Sorrentino, D.; Fedele, M.; Zannetti, A.; et al. Optimizing Cisplatin Delivery to Triple-Negative Breast Cancer through Novel EGFR Aptamer-Conjugated Polymeric Nanovectors. J. Exp. Clin. Cancer Res. 2021, 40, 239. [Google Scholar] [CrossRef] [PubMed]
- Darabi, F.; Saidijam, M.; Nouri, F.; Mahjub, R.; Soleimani, M. Anti-CD44 and EGFR Dual-Targeted Solid Lipid Nanoparticles for Delivery of Doxorubicin to Triple-Negative Breast Cancer Cell Line: Preparation, Statistical Optimization, and In Vitro Characterization. BioMed Res. Int. 2022, 2022, e6253978. [Google Scholar] [CrossRef] [PubMed]
- Camorani, S.; Caliendo, A.; Morrone, E.; Agnello, L.; Martini, M.; Cantile, M.; Cerrone, M.; Zannetti, A.; La Deda, M.; Fedele, M.; et al. Bispecific Aptamer-Decorated and Light-Triggered Nanoparticles Targeting Tumor and Stromal Cells in Breast Cancer Derived Organoids: Implications for Precision Phototherapies. J. Exp. Clin. Cancer Res. 2024, 43, 92. [Google Scholar] [CrossRef]
- Liu, Y.; Dai, X.; Jiang, S.; Qahar, M.; Feng, C.; Guo, D.; Wang, L.; Ma, S.; Huang, L. Targeted Co-Delivery of Gefitinib and Rapamycin by Aptamer-Modified Nanoparticles Overcomes EGFR-TKI Resistance in NSCLC via Promoting Autophagy. Int. J. Mol. Sci. 2022, 23, 8025. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Cheng, W.; Pan, Y.; Jia, L. An Anticancer Agent-Loaded PLGA Nanomedicine with Glutathione-Response and Targeted Delivery for the Treatment of Lung Cancer. J. Mater. Chem. B 2020, 8, 655–665. [Google Scholar] [CrossRef]
- Yang, L.; Li, Z.; Binzel, D.W.; Guo, P.; Williams, T.M. Targeting Oncogenic KRAS in Non-Small Cell Lung Cancer with EGFR Aptamer-Conjugated Multifunctional RNA Nanoparticles. Mol. Ther.-Nucleic Acids 2023, 33, 559–571. [Google Scholar] [CrossRef] [PubMed]
- Guo, S.; Vieweger, M.; Zhang, K.; Yin, H.; Wang, H.; Li, X.; Li, S.; Hu, S.; Sparreboom, A.; Evers, B.M.; et al. Ultra-Thermostable RNA Nanoparticles for Solubilizing and High-Yield Loading of Paclitaxel for Breast Cancer Therapy. Nat. Commun. 2020, 11, 972. [Google Scholar] [CrossRef]
- Zhang, L.; Mu, C.; Zhang, T.; Yang, D.; Wang, C.; Chen, Q.; Tang, L.; Fan, L.; Liu, C.; Shen, J.; et al. Development of Targeted Therapy Therapeutics to Sensitize Triple-Negative Breast Cancer Chemosensitivity Utilizing Bacteriophage Phi29 Derived Packaging RNA. J. Nanobiotechnol. 2021, 19, 13. [Google Scholar] [CrossRef]
- Xiao, D.; Huang, Y.; Huang, S.; Zhuang, J.; Chen, P.; Wang, Y.; Zhang, L. Targeted Delivery of Cancer Drug Paclitaxel to Chordomas Tumor Cells via an RNA Nanoparticle Harboring an EGFR Aptamer. Colloids Surf. B Biointerfaces 2022, 212, 112366. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Wang, S.; Kang, W.; Li, N.; Guo, F.; Chang, H.; Wei, W. Multifunctional Gold Nanoparticle Based Selective Detection of Esophageal Squamous Cell Carcinoma Cells Using Resonance Rayleigh Scattering Assay. Microchem. J. 2021, 163, 105905. [Google Scholar] [CrossRef]
- Peng, L.; Liang, Y.; Zhong, X.; Liang, Z.; Tian, Y.; Li, S.; Liang, J.; Wang, R.; Zhong, Y.; Shi, Y.; et al. Aptamer-Conjugated Gold Nanoparticles Targeting Epidermal Growth Factor Receptor Variant III for the Treatment of Glioblastoma. Int. J. Nanomed. 2020, 15, 1363. [Google Scholar] [CrossRef]
- Nakajima, N.; Ikada, Y. Mechanism of Amide Formation by Carbodiimide for Bioconjugation in Aqueous Media. Bioconjug. Chem. 1995, 6, 123–130. [Google Scholar] [CrossRef] [PubMed]
- Karakoti, A.S.; Shukla, R.; Shanker, R.; Singh, S. Surface Functionalization of Quantum Dots for Biological Applications. Adv. Colloid Interface Sci. 2015, 215, 28–45. [Google Scholar] [CrossRef]
- Nifontova, G.; Kalenichenko, D.; Kriukova, I.; Terryn, C.; Audonnet, S.; Karaulov, A.; Nabiev, I.; Sukhanova, A. Impact of Macrophages on the Interaction of Cetuximab-Functionalized Polyelectrolyte Capsules with EGFR-Expressing Cancer Cells. ACS Appl. Mater. Interfaces 2023, 15, 52137–52149. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Zhang, A.; Zhang, F.; Linhardt, R.J.; Zhu, Z.; Yang, Y.; Zhang, T.; Lin, Z.; Zhang, S.; Zhao, H.; et al. Ganoderenic Acid D-Loaded Functionalized Graphene Oxide-Based Carrier for Active Targeting Therapy of Cervical Carcinoma. Biomed. Pharmacother. 2023, 164, 114947. [Google Scholar] [CrossRef] [PubMed]
- Lu, L.; Duong, V.T.; Shalash, A.O.; Skwarczynski, M.; Toth, I. Chemical Conjugation Strategies for the Development of Protein-Based Subunit Nanovaccines. Vaccines 2021, 9, 563. [Google Scholar] [CrossRef] [PubMed]
- Nobs, L.; Buchegger, F.; Gurny, R.; Allémann, E. Current Methods for Attaching Targeting Ligands to Liposomes and Nanoparticles. J. Pharm. Sci. 2004, 93, 1980–1992. [Google Scholar] [CrossRef] [PubMed]
- Friedman, A.D.; Claypool, S.E.; Liu, R. The Smart Targeting of Nanoparticles. Curr. Pharm. Des. 2013, 19, 6315–6329. [Google Scholar] [CrossRef] [PubMed]
- Abraham, R.; Moller, D.; Gabel, D.; Senter, P.; Hellström, I.; Hellström, K.E. The Influence of Periodate Oxidation on Monoclonal Antibody Avidity and Immunoreactivity. J. Immunol. Methods 1991, 144, 77–86. [Google Scholar] [CrossRef]
- Kawelah, M.R.; Han, S.; Atila Dincer, C.; Jeon, J.; Brisola, J.; Hussain, A.F.; Jeevarathinam, A.S.; Bouchard, R.; Marras, A.E.; Truskett, T.M.; et al. Antibody-Conjugated Polymersomes with Encapsulated Indocyanine Green J-Aggregates and High Near-Infrared Absorption for Molecular Photoacoustic Cancer Imaging. ACS Appl. Mater. Interfaces 2024, 16, 5598–5612. [Google Scholar] [CrossRef]
- Lu, J.; Yu, C.; Du, K.; Chen, S.; Huang, S. Targeted Delivery of Cisplatin Magnetic Nanoparticles for Diagnosis and Treatment of Nasopharyngeal Carcinoma. Colloids Surf. B Biointerfaces 2025, 245, 114252. [Google Scholar] [CrossRef]
- Zhou, S.; Hu, J.; Chen, X.; Duan, H.; Shao, Y.; Lin, T.; Li, X.; Huang, X.; Xiong, Y. Hydrazide-Assisted Directional Antibody Conjugation of Gold Nanoparticles to Enhance Immunochromatographic Assay. Anal. Chim. Acta 2021, 1168, 338623. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, P.; Bertozzi, C.R. Site-Specific Antibody-Drug Conjugates: The Nexus of Bioorthogonal Chemistry, Protein Engineering, and Drug Development. Bioconjug. Chem. 2015, 26, 176–192. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.; Kats, L.; Blättler, W.A.; Lambert, J.M. Formation of N-Substituted 2-Iminothiolanes When Amino Groups in Proteins and Peptides Are Modified by 2-Iminothiolane. Anal. Biochem. 1996, 236, 114–125. [Google Scholar] [CrossRef] [PubMed]
- Juan, A.; Cimas, F.J.; Bravo, I.; Pandiella, A.; Ocaña, A.; Alonso-Moreno, C. An Overview of Antibody Conjugated Polymeric Nanoparticles for Breast Cancer Therapy. Pharmaceutics 2020, 12, 802. [Google Scholar] [CrossRef] [PubMed]
- Saito, G.; Swanson, J.A.; Lee, K.-D. Drug Delivery Strategy Utilizing Conjugation via Reversible Disulfide Linkages: Role and Site of Cellular Reducing Activities. Adv. Drug Deliv. Rev. 2003, 55, 199–215. [Google Scholar] [CrossRef] [PubMed]
- Mustafaoglu, N.; Kiziltepe, T.; Bilgicer, B. Site-Specific Conjugation of an Antibody on a Gold Nanoparticle Surface for One-Step Diagnosis of Prostate Specific Antigen with Dynamic Light Scattering. Nanoscale 2017, 9, 8684–8694. [Google Scholar] [CrossRef] [PubMed]
- Geddie, M.L.; Kirpotin, D.B.; Kohli, N.; Kornaga, T.; Boll, B.; Razlog, M.; Drummond, D.C.; Lugovskoy, A.A. Development of Disulfide-Stabilized Fabs for Targeting of Antibody-Directed Nanotherapeutics. mAbs 2022, 14, 2083466. [Google Scholar] [CrossRef] [PubMed]
- Daniel, M.-C.; Astruc, D. Gold Nanoparticles: Assembly, Supramolecular Chemistry, Quantum-Size-Related Properties, and Applications toward Biology, Catalysis, and Nanotechnology. Chem. Rev. 2004, 104, 293–346. [Google Scholar] [CrossRef] [PubMed]
- Vilímová, I.; Hervé-Aubert, K.; Chourpa, I. Formation of miRNA Nanoprobes—Conjugation Approaches Leading to the Functionalization. Molecules 2022, 27, 8428. [Google Scholar] [CrossRef] [PubMed]
- Queiroz, S.M.; Veriato, T.S.; Raniero, L.; Castilho, M.L. Gold Nanoparticles Conjugated with Epidermal Growth Factor and Gadolinium for Precision Delivery of Contrast Agents in Magnetic Resonance Imaging. Radiol. Phys. Technol. 2024, 17, 153–164. [Google Scholar] [CrossRef] [PubMed]
- Andrade, L.M.; Martins, E.M.N.; Versiani, A.F.; Reis, D.S.; da Fonseca, F.G.; Souza, I.P.d.; Paniago, R.M.; Pereira-Maia, E.; Ladeira, L.O. The Physicochemical and Biological Characterization of a 24-Month-Stored Nanocomplex Based on Gold Nanoparticles Conjugated with Cetuximab Demonstrated Long-Term Stability, EGFR Affinity and Cancer Cell Death Due to Apoptosis. Mater. Sci. Eng. C 2020, 107, 110203. [Google Scholar] [CrossRef] [PubMed]
- Kolb, H.C.; Finn, M.G.; Sharpless, K.B. Click Chemistry: Diverse Chemical Function from a Few Good Reactions. Angew. Chem. Int. Ed. 2001, 40, 2004–2021. [Google Scholar] [CrossRef]
- Wang, Q.; Chan, T.R.; Hilgraf, R.; Fokin, V.V.; Sharpless, K.B.; Finn, M.G. Bioconjugation by Copper(I)-Catalyzed Azide-Alkyne [3 + 2] Cycloaddition. J. Am. Chem. Soc. 2003, 125, 3192–3193. [Google Scholar] [CrossRef]
- Meldal, M.; Tornøe, C.W. Cu-Catalyzed Azide–Alkyne Cycloaddition. Chem. Rev. 2008, 108, 2952–3015. [Google Scholar] [CrossRef] [PubMed]
- Jewett, J.C.; Bertozzi, C.R. Cu-Free Click Cycloaddition Reactions in Chemical Biology. Chem. Soc. Rev. 2010, 39, 1272–1279. [Google Scholar] [CrossRef] [PubMed]
- Yi, G.; Son, J.; Yoo, J.; Park, C.; Koo, H. Application of Click Chemistry in Nanoparticle Modification and Its Targeted Delivery. Biomater. Res. 2018, 22, 13. [Google Scholar] [CrossRef] [PubMed]
- Devaraj, N.K.; Weissleder, R. Biomedical Applications of Tetrazine Cycloadditions. Acc. Chem. Res. 2011, 44, 816–827. [Google Scholar] [CrossRef] [PubMed]
- Gai, M.; Simon, J.; Lieberwirth, I.; Mailänder, V.; Morsbach, S.; Landfester, K. A Bio-Orthogonal Functionalization Strategy for Site-Specific Coupling of Antibodies on Vesicle Surfaces after Self-Assembly. Polym. Chem. 2020, 11, 527–540. [Google Scholar] [CrossRef]
- Zhang, X.; Ou, C.; Liu, H.; Wang, L.-X. Synthesis and Evaluation of Three Azide-Modified Disaccharide Oxazolines as Enzyme Substrates for Single-Step Fc Glycan-Mediated Antibody-Drug Conjugation. Bioconjug. Chem. 2022, 33, 1179–1191. [Google Scholar] [CrossRef]
- Jeong, S.; Park, J.Y.; Cha, M.G.; Chang, H.; Kim, Y.; Kim, H.-M.; Jun, B.-H.; Lee, D.S.; Lee, Y.-S.; Jeong, J.M.; et al. Highly Robust and Optimized Conjugation of Antibodies to Nanoparticles Using Quantitatively Validated Protocols. Nanoscale 2017, 9, 2548–2555. [Google Scholar] [CrossRef] [PubMed]
- Thorek, D.L.J.; Elias, D.R.; Tsourkas, A. Comparative Analysis of Nanoparticle-Antibody Conjugations: Carbodiimide versus Click Chemistry. Mol. Imaging 2009, 8, 221–229. [Google Scholar] [CrossRef] [PubMed]
- Tieu, T.; Wojnilowicz, M.; Huda, P.; Thurecht, K.J.; Thissen, H.; Voelcker, N.H.; Cifuentes-Rius, A. Nanobody-Displaying Porous Silicon Nanoparticles for the Co-Delivery of siRNA and Doxorubicin. Biomater. Sci. 2021, 9, 133–147. [Google Scholar] [CrossRef] [PubMed]
- Van Zundert, I.; Bravo, M.; Deschaume, O.; Cybulski, P.; Bartic, C.; Hofkens, J.; Uji-i, H.; Fortuni, B.; Rocha, S. Versatile and Robust Method for Antibody Conjugation to Nanoparticles with High Targeting Efficiency. Pharmaceutics 2021, 13, 2153. [Google Scholar] [CrossRef] [PubMed]
- Tran, T.T.T.; Phung, C.D.; Yeo, B.Z.J.; Prajogo, R.C.; Jayasinghe, M.K.; Yuan, J.; Tan, D.S.W.; Yeo, E.Y.M.; Goh, B.C.; Tam, W.L.; et al. Customised Design of Antisense Oligonucleotides Targeting EGFR Driver Mutants for Personalised Treatment of Non-Small Cell Lung Cancer. eBioMedicine 2024, 108, 105356. [Google Scholar] [CrossRef] [PubMed]
- Weller, S.; Li, X.; Petersen, L.R.; Kempen, P.; Clergeaud, G.; Andresen, T.L. Influence of Different Conjugation Methods for Activating Antibodies on Polymeric Nanoparticles: Effects for Polyclonal Expansion of Human CD8+ T Cells. Int. Immunopharmacol. 2024, 129, 111643. [Google Scholar] [CrossRef] [PubMed]
- Jain, A.; Cheng, K. The Principles and Applications of Avidin-Based Nanoparticles in Drug Delivery and Diagnosis. J. Control. Release Off. J. Control. Release Soc. 2017, 245, 27–40. [Google Scholar] [CrossRef] [PubMed]
- Diamandis, E.P.; Christopoulos, T.K. The Biotin-(Strept)Avidin System: Principles and Applications in Biotechnology. Clin. Chem. 1991, 37, 625–636. [Google Scholar] [CrossRef] [PubMed]
- González, M.; Argaraña, C.E.; Fidelio, G.D. Extremely High Thermal Stability of Streptavidin and Avidin upon Biotin Binding. Biomol. Eng. 1999, 16, 67–72. [Google Scholar] [CrossRef]
- Tausig, F.; Wolf, F.J. Streptavidin—A Substance with Avidin-like Properties Produced by Microorganisms. Biochem. Biophys. Res. Commun. 1964, 14, 205–209. [Google Scholar] [CrossRef] [PubMed]
- De Cuyper, M.; Hodenius, M.; Lacava, Z.G.M.; Azevedo, R.B.; da Silva, M.d.F.; Morais, P.C.; Santana, M.H.A. Attachment of Water-Soluble Proteins to the Surface of (Magnetizable) Phospholipid Colloids via NeutrAvidin-Derivatized Phospholipids. J. Colloid Interface Sci. 2002, 245, 274–280. [Google Scholar] [CrossRef] [PubMed]
- Vermette, P.; Gengenbach, T.; Divisekera, U.; Kambouris, P.A.; Griesser, H.J.; Meagher, L. Immobilization and Surface Characterization of NeutrAvidin Biotin-Binding Protein on Different Hydrogel Interlayers. J. Colloid Interface Sci. 2003, 259, 13–26. [Google Scholar] [CrossRef] [PubMed]
- Egnuni, T.; Ingram, N.; Mirza, I.; Coletta, P.L.; McLaughlan, J.R. Evaluation of the Targeting and Therapeutic Efficiency of Anti-EGFR Functionalised Nanoparticles in Head and Neck Cancer Cells for Use in NIR-II Optical Window. Pharmaceutics 2021, 13, 1651. [Google Scholar] [CrossRef] [PubMed]
- Nelemans, L.C.; Choukrani, G.; Ustyanovska-Avtenyuk, N.; Wiersma, V.R.; Dähne, L.; Bremer, E. Design of Vaterite Nanoparticles for Controlled Delivery of Active Immunotherapeutic Proteins. Part. Part. Syst. Charact. 2024, 41, 2300153. [Google Scholar] [CrossRef]
- Peng, B.; Nguyen, T.M.; Jayasinghe, M.K.; Gao, C.; Pham, T.T.; Vu, L.T.; Yeo, E.Y.M.; Yap, G.; Wang, L.; Goh, B.C.; et al. Robust Delivery of RIG-I Agonists Using Extracellular Vesicles for Anti-Cancer Immunotherapy. J. Extracell. Vesicles 2022, 11, e12187. [Google Scholar] [CrossRef] [PubMed]
- Bian, T.; Gardin, A.; Gemen, J.; Houben, L.; Perego, C.; Lee, B.; Elad, N.; Chu, Z.; Pavan, G.M.; Klajn, R. Electrostatic Co-Assembly of Nanoparticles with Oppositely Charged Small Molecules into Static and Dynamic Superstructures. Nat. Chem. 2021, 13, 940–949. [Google Scholar] [CrossRef] [PubMed]
- Götting, N.; Fritz, H.; Maier, M.; von Stamm, J.; Schoofs, T.; Bayer, E. Effects of Oligonucleotide Adsorption on the Physicochemical Characteristics of a Nanoparticle-Based Model Delivery System for Antisense Drugs. Colloid Polym. Sci. 1999, 277, 145–152. [Google Scholar] [CrossRef]
- Gessner, A.; Lieske, A.; Paulke, B.-R.; Müller, R.H. Functional Groups on Polystyrene Model Nanoparticles: Influence on Protein Adsorption. J. Biomed. Mater. Res. A 2003, 65A, 319–326. [Google Scholar] [CrossRef] [PubMed]
- Gessner, A.; Lieske, A.; Paulke, B.R.; Müller, R.H. Influence of Surface Charge Density on Protein Adsorption on Polymeric Nanoparticles: Analysis by Two-Dimensional Electrophoresis. Eur. J. Pharm. Biopharm. 2002, 54, 165–170. [Google Scholar] [CrossRef] [PubMed]
- Cho, J.; Caruso, F. Investigation of the Interactions between Ligand-Stabilized Gold Nanoparticles and Polyelectrolyte Multilayer Films. Chem. Mater. 2005, 17, 4547–4553. [Google Scholar] [CrossRef]
- Huang, B.; Abraham, W.D.; Zheng, Y.; Bustamante López, S.C.; Luo, S.S.; Irvine, D.J. Active Targeting of Chemotherapy to Disseminated Tumors Using Nanoparticle-Carrying T Cells. Sci. Transl. Med. 2015, 7, 291ra94. [Google Scholar] [CrossRef] [PubMed]
- Cavalcante, M.F.; Kazuma, S.M.; Bender, E.A.; Adorne, M.D.; Ullian, M.; Veras, M.M.; Saldiva, P.H.N.; Maranhão, A.Q.; Guterres, S.S.; Pohlmann, A.R.; et al. A Nanoformulation Containing a scFv Reactive to Electronegative LDL Inhibits Atherosclerosis in LDL Receptor Knockout Mice. Eur. J. Pharm. Biopharm. 2016, 107, 120–129. [Google Scholar] [CrossRef] [PubMed]
- Antonow, M.B.; Franco, C.; Prado, W.; Beckenkamp, A.; Silveira, G.P.; Buffon, A.; Guterres, S.S.; Pohlmann, A.R. Arginylglycylaspartic Acid-Surface-Functionalized Doxorubicin-Loaded Lipid-Core Nanocapsules as a Strategy to Target Alpha(V) Beta(3) Integrin Expressed on Tumor Cells. Nanomaterials 2018, 8, 2. [Google Scholar] [CrossRef] [PubMed]
- Zhao, N.; Ding, B.; Zhang, Y.; Klockow, J.L.; Lau, K.; Chin, F.T.; Cheng, Z.; Liu, H. Reactive Oxygen Species and Enzyme Dual-Responsive Biocompatible Drug Delivery System for Targeted Tumor Therapy. J. Control. Release 2020, 324, 330–340. [Google Scholar] [CrossRef] [PubMed]
- Djermane, R.; Nieto, C.; Vega, M.A.; del Valle, E.M.M. EGFR-Targeting Polydopamine Nanoparticles Co-Loaded with 5-Fluorouracil, Irinotecan, and Leucovorin to Potentially Enhance Metastatic Colorectal Cancer Therapy. Sci. Rep. 2024, 14, 29265. [Google Scholar] [CrossRef]
- Liu, M.; Sun, C.; Jiang, J.; Wan, L.; Hu, C.; Wen, C.; Huang, G.; Ruan, Q.; Wu, S.; Qiao, D.; et al. Aptamer-Functionalized ZIF-8 Nanomedicine for Targeted Delivery of Gefitinib and siRNA to Treat Tyrosine-Kinase-Inhibitor-Resistant Nonsmall-Cell Lung Cancer. ACS Appl. Nano Mater. 2023, 6, 21587–21602. [Google Scholar] [CrossRef]
- Anaki, A.; Tzror-Azankot, C.; Motiei, M.; Sadan, T.; Popovtzer, R. Impact of Synthesis Methods on the Functionality of Antibody-Conjugated Gold Nanoparticles for Targeted Therapy. Nanoscale Adv. 2024, 6, 5420–5429. [Google Scholar] [CrossRef] [PubMed]
- Hirata, Y.; Tashima, R.; Mitsuhashi, N.; Yoneda, S.; Ozono, M.; Fukuta, T.; Majima, E.; Kogure, K. A Simple, Fast, and Orientation-Controllable Technology for Preparing Antibody-Modified Liposomes. Int. J. Pharm. 2021, 607, 120966. [Google Scholar] [CrossRef] [PubMed]
- Kedmi, R.; Veiga, N.; Ramishetti, S.; Goldsmith, M.; Rosenblum, D.; Dammes, N.; Hazan-Halevy, I.; Nahary, L.; Leviatan-Ben-Arye, S.; Harlev, M.; et al. A Modular Platform for Targeted RNAi Therapeutics. Nat. Nanotechnol. 2018, 13, 214–219. [Google Scholar] [CrossRef] [PubMed]
- Kampel, L.; Goldsmith, M.; Ramishetti, S.; Veiga, N.; Rosenblum, D.; Gutkin, A.; Chatterjee, S.; Penn, M.; Lerman, G.; Peer, D.; et al. Therapeutic Inhibitory RNA in Head and Neck Cancer via Functional Targeted Lipid Nanoparticles. J. Control. Release 2021, 337, 378–389. [Google Scholar] [CrossRef] [PubMed]
- Karami, M.H.; Abdouss, M. Assessing Particle Size and Surface Charge in Drug Carrier Nanoparticles for Enhanced Cancer Treatment: A Comprehensive Review Utilizing DLS and Zeta Potential Characterization. Polym. Sci. Peer Rev. J. 2024, 5, 000615. [Google Scholar]
- Munhoz, A.H.; de Paiva, H.; de Miranda, L.F.; de Oliveira, E.C.; Andrades, R.C.; Neto, A.C. Synthesis and Characterization of Pseudoboehmite and Gamma-Alumina. Mater. Sci. Forum 2015, 820, 131–136. [Google Scholar] [CrossRef]
- Shukla, V.N.; Vikas; Mehata, A.K.; Setia, A.; Kumari, P.; Mahto, S.K.; Muthu, M.S.; Mishra, S.K. EGFR Targeted Albumin Nanoparticles of Oleanolic Acid: In Silico Screening of Nanocarrier, Cytotoxicity and Pharmacokinetics for Lung Cancer Therapy. Int. J. Biol. Macromol. 2023, 246, 125719. [Google Scholar] [CrossRef] [PubMed]
- Shivanna, A.T.; Dash, B.S.; Lu, Y.-J.; Lin, W.-T.; Chen, J.-P. Magnetic Lipid-Poly(Lactic-Co-Glycolic Acid) Nanoparticles Conjugated with Epidermal Growth Factor Receptor Antibody for Dual-Targeted Delivery of CPT-11. Int. J. Pharm. 2024, 667, 124856. [Google Scholar] [CrossRef]
- Li, X.; Zhang, L.; Guo, X.; Xie, F.; Shen, C.; Jun, Y.; Luo, C.; Liu, L.; Yu, X.; Zhang, Z.; et al. Self-Assembled RNA Nanocarrier-Mediated Chemotherapy Combined with Molecular Targeting in the Treatment of Esophageal Squamous Cell Carcinoma. J. Nanobiotechnol. 2021, 19, 388. [Google Scholar] [CrossRef]
- Carolina Cruz de Sousa, A.; da Silva Santos, E.; da Silva Moreira, T.; Gabriela Araújo Mendes, M.; Rodrigues Arruda, B.; de Jesus Guimarães, C.; de Brito Vieira Neto, J.; Santiago de Oliveira, Y.; Pedro Ayala, A.; Rodrigues da Costa, M.D.; et al. Anti-EGFR Immunoliposomes for Cabazitaxel Delivery: From Formulation Development to in Vivo Evaluation in Prostate Cancer Xenograft Model. Int. J. Pharm. 2024, 661, 124439. [Google Scholar] [CrossRef] [PubMed]
- Ruiz, A.L.; Arribas, E.V.; McEnnis, K. Poly(Lactic-Co-Glycolic Acid) Encapsulated Platinum Nanoparticles for Cancer Treatment. Mater. Adv. 2022, 3, 2858–2870. [Google Scholar] [CrossRef]
- Eivazi, N.; Rahmani, R.; Paknejad, M. Specific Cellular Internalization and pH-Responsive Behavior of Doxorubicin Loaded PLGA-PEG Nanoparticles Targeted with Anti EGFRvIII Antibody. Life Sci. 2020, 261, 118361. [Google Scholar] [CrossRef] [PubMed]
- Kielkopf, C.L.; Bauer, W.; Urbatsch, I.L. Sodium Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis of Proteins. Cold Spring Harb. Protoc. 2021, 12, 494–504. [Google Scholar] [CrossRef] [PubMed]
- Nowakowski, A.B.; Wobig, W.J.; Petering, D.H. Native SDS-PAGE: High Resolution Electrophoretic Separation of Proteins with Retention of Native Properties Including Bound Metal Ions. Met. Integr. Biometal Sci. 2014, 6, 1068. [Google Scholar] [CrossRef] [PubMed]
- Lee, P.Y.; Costumbrado, J.; Hsu, C.-Y.; Kim, Y.H. Agarose Gel Electrophoresis for the Separation of DNA Fragments. J. Vis. Exp. JoVE 2012, 62, 3923. [Google Scholar] [CrossRef]
- Saravanakumar, K.; Sathiyaseelan, A.; Mariadoss, A.V.A.; Jeevithan, E.; Hu, X.; Shin, S.; Wang, M.-H. Dual Stimuli-Responsive Release of Aptamer AS1411 Decorated Erlotinib Loaded Chitosan Nanoparticles for Non-Small-Cell Lung Carcinoma Therapy. Carbohydr. Polym. 2020, 245, 116407. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Liu, R.; Dong, J.; Xia, X.; Yang, H.; Wei, S.; Fan, L.; Fang, M.; Zou, Y.; Zheng, M.; et al. Targeted Protein Degradation via Cellular Trafficking of Nanoparticles. Nat. Nanotechnol. 2024, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Tanzadehpanah, H.; Mahaki, H.; Manoochehri, H.; Soleimani, M.; Najafi, R. AS1411 Aptamer Improves Therapeutic Efficacy of PEGylated Nanoliposomes Loaded with Gefitinib in the Mice Bearing CT26 Colon Carcinoma. J. Nanopart. Res. 2022, 24, 252. [Google Scholar] [CrossRef]
- Bradford, M.M. A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef] [PubMed]
- Smith, P.K.; Krohn, R.I.; Hermanson, G.T.; Mallia, A.K.; Gartner, F.H.; Provenzano, M.D.; Fujimoto, E.K.; Goeke, N.M.; Olson, B.J.; Klenk, D.C. Measurement of Protein Using Bicinchoninic Acid. Anal. Biochem. 1985, 150, 76–85. [Google Scholar] [CrossRef] [PubMed]
- Menzel, C.; Bernkop-Schnürch, A. Enzyme Decorated Drug Carriers: Targeted Swords to Cleave and Overcome the Mucus Barrier. Adv. Drug Deliv. Rev. 2018, 124, 164–174. [Google Scholar] [CrossRef] [PubMed]
- Cortés-Ríos, J.; Zárate, A.M.; Figueroa, J.D.; Medina, J.; Fuentes-Lemus, E.; Rodríguez-Fernández, M.; Aliaga, M.; López-Alarcón, C. Protein Quantification by Bicinchoninic Acid (BCA) Assay Follows Complex Kinetics and Can Be Performed at Short Incubation Times. Anal. Biochem. 2020, 608, 113904. [Google Scholar] [CrossRef]
- Jha, A.; Goswami, P.; Kumar, M.; Bharti, K.; Manjit, M.; Satpute, A.P.; Gupta, A.; Moorkoth, S.; Koch, B.; Mishra, B. Cetuximab Functionalized Chitosan/Hyaluronic Acid-Based Nanoparticles Loaded with Cabazitaxel Enhances Anti-Tumor Efficacy in DMBA-Induced Breast Cancer Model in Rats through Spatial Targeting. Chem. Phys. Impact 2024, 9, 100750. [Google Scholar] [CrossRef]
- Kumar, K.; Rawat, S.G.; Manjit; Mishra, M.; Rani, V.; Jadhav, A.P.; Priya; Kumar, A.; Chawla, R. Dual targeting pH responsive chitosan nanoparticles for enhanced active cellular internalization of gemcitabine in non-small cell lung cancer. Int. J. Biol. Macromol. 2023; 249, 126057. [Google Scholar] [CrossRef]
- Bagheri, P.; Eremina, O.E.; Fernando, A.; Kamal, M.; Stegis, I.; Vazquez, C.; Shishido, S.N.; Kuhn, P.; Zavaleta, C. A Systematic Approach toward Enabling Maximal Targeting Efficiency of Cell Surface Proteins with Actively Targeted SERS Nanoparticles. ACS Appl. Mater. Interfaces 2024, 16, 15847–15860. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Wang, F.; Li, Y.; Chen, R.; Wang, X.; Chen, J.; Lin, X.; Zhang, H.; Huang, Y.; Wang, R. Engineered Extracellular Vesicles with Polypeptide for Targeted Delivery of Doxorubicin against EGFR-positive Tumors. Oncol. Rep. 2024, 52, 154. [Google Scholar] [CrossRef] [PubMed]
- Selvan, G.A.; Rachel, S.; Gajendran, T. Chapter 13—Several Assorted Characterization Methods of Nanoparticles. In Nanomaterials; Kumar, R.P., Bharathiraja, B., Eds.; Academic Press: Cambridge, MA, USA, 2021; pp. 301–308. ISBN 978-0-12-822401-4. [Google Scholar]
- Abraham, J.; Jose, B.; Jose, A.; Thomas, S. Chapter 2—Characterization of Green Nanoparticles from Plants. In Phytonanotechnology; Thajuddin, N., Mathew, S., Eds.; Micro and Nano Technologies; Elsevier: Amsterdam, The Netherlands, 2020; pp. 21–39. ISBN 978-0-12-822348-2. [Google Scholar]
- Zhang, Z.; Meng, X.; Cui, W.; Ahmad, S.S.; Kamal, M.A.; Zhang, J. NMR: From Molecular Mechanism to Its Application in Medical Care. Med. Chem. Shariqah United Arab Emir. 2020, 16, 1089–1098. [Google Scholar] [CrossRef]
- López-Cebral, R.; Martín-Pastor, M.; Seijo, B.; Sanchez, A. Progress in the Characterization of Bio-Functionalized Nanoparticles Using NMR Methods and Their Applications as MRI Contrast Agents. Prog. Nucl. Magn. Reson. Spectrosc. 2014, 79, 1–13. [Google Scholar] [CrossRef]
- Stevie, F.A.; Donley, C.L. Introduction to X-Ray Photoelectron Spectroscopy. J. Vac. Sci. Technol. A 2020, 38, 063204. [Google Scholar] [CrossRef]
- Baer, D.R. Guide to Making XPS Measurements on Nanoparticles. J. Vac. Sci. Technol. A 2020, 38, 031201. [Google Scholar] [CrossRef]
- Vikas; Viswanadh, M.K.; Mehata, A.K.; Sharma, V.; Priya, V.; Varshney, N.; Mahto, S.K.; Muthu, M.S. Bioadhesive Chitosan Nanoparticles: Dual Targeting and Pharmacokinetic Aspects for Advanced Lung Cancer Treatment. Carbohydr. Polym. 2021, 274, 118617. [Google Scholar] [CrossRef]
- Dongargaonkar, A.A.; Clogston, J.D. Quantitation of Surface Coating on Nanoparticles Using Thermogravimetric Analysis. In Characterization of Nanoparticles Intended for Drug Delivery; McNeil, S.E., Ed.; Springer: New York, NY, USA, 2018; pp. 57–63. ISBN 978-1-4939-7352-1. [Google Scholar]
- Mansfield, E.; Tyner, K.M.; Poling, C.M.; Blacklock, J.L. Determination of Nanoparticle Surface Coatings and Nanoparticle Purity Using Microscale Thermogravimetric Analysis. Anal. Chem. 2014, 86, 1478–1484. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.T.-W.; Spinato, C.; Klippstein, R.; Costa, P.M.; Martincic, M.; Pach, E.; Ruiz de Garibay, A.P.; Ménard-Moyon, C.; Feldman, R.; Michel, Y.; et al. Neutron-Irradiated Antibody-Functionalised Carbon Nanocapsules for Targeted Cancer Radiotherapy. Carbon 2020, 162, 410–422. [Google Scholar] [CrossRef]
- Johnson, K.K.; Koshy, P.; Kopecky, C.; Devadason, M.; Biazik, J.; Zheng, X.; Jiang, Y.; Wang, X.; Liu, Y.; Holst, J.; et al. ROS-Mediated Anticancer Effects of EGFR-Targeted Nanoceria. J. Biomed. Mater. Res. A 2024, 112, 754–769. [Google Scholar] [CrossRef] [PubMed]
Ab Fragment | Type of NPs | Applications and Outcomes | References |
---|---|---|---|
scFv (husA) | Inorganic (FITC-labelled DOX-loaded MSNPs) | Reduction in viability of EGFR-overexpressing A431, HeLa and MCF-7 cells; higher uptake in EGFR-overexpressing A431 cells than in EGFR-low expressing HEK293 cells; inhibited tumor growth in A431 tumor-bearing mice. | [191] |
scFv | Inorganic (Fe3O4/AuNPs) | MRI bioprobe for detection and treatment of NSCLC; higher uptake in EGFR-overexpressing SPC-A1 cells than in EGFR-low expressing H69 cells; in vivo tumor accumulation in SPC-A1 tumors and not in H69 tumors. | [192] |
scFv | Organic (si-RNA-loaded engineered exosomes) | Inhibition of lung cancer brain metastasis; higher uptake in EGFR-overexpressing lung cancer cells PC9; efficient siRNA delivery across blood–brain barrier (BBB) in tumor-bearing mice. | [193] |
scFv | Inorganic-organic (superparamagnetic iron oxide NPs (SPIONs) coated with PEG and chitosan) | siRNA delivery into TNBC cells; higher cellular uptake (1.5x) in EGFR-overexpressing MDA-MB-231 cells; protection of siRNA and 69.4% in vitro transfection efficiency. | [194] |
Targeting Ligand | Advantages | Limitations | Structure and MW | Kd | References |
---|---|---|---|---|---|
EGF | Small size enabling high tumor penetration; smaller final size of the system obtained; high natural affinity for EGFR; low cytotoxicity; moderate stability in vitro; stability at physiological conditions and neutral pH; ease of conjugation to nanocarriers; availability via recombinant expression | Expensive production; possible antigenicity issues and immune responses in vivo; prone to proteolysis in vivo | Small protein of 53 amino acids, 6 kDa | 2 nM | [99,100,101,102,103,104,105,106,107,108,109,110,111,112] |
GE11 | Very small size facilitating tumor penetration and diffusion; smaller final size of the system obtained; no mitogenic activity; high chemical stability; ease of production and synthesis; cost-effective manufacture | Lower affinity for EGFR but sufficient for targeting purposes | Small peptide of 12 amino acids, 1.54 kDa | 22 nM | [116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144] |
Antibodies | Large size allowing increased circulation time and long half-life in vivo; larger final size of the system obtained; possible aggregation of the system observed; possible multivalent receptor binding; highest binding affinity; longest history of usage; possible therapeutic effects through EGFR pathway inhibition | Poor tissue penetration due to bulky nature and large size; high immunogenicity, poor stability, challenging control over oriented conjugation | Y-shaped protein consisting of two heavy and two light chains, 150 kDa | 0.05–20 nM | [152,153,154,155,156,157,158,159,160,161,162,163,164,168,170,171,172,173,174,175,176,177,178] |
Ab fragments | Smaller size than full Abs facilitating higher tumor penetration; smaller final size of the system obtained; reduced immunogenicity due to lack of Fc regions; easier and cheaper production compared to full mAbs; retained high affinity of the binding regions; high loading capacity; controlled orientation | Generally lower binding affinity than full Abs; faster renal clearance and reduced circulation times (that can be overcome with conjugation to NPs) | F(ab’)2: two antigen-binding sites joined at the hinge region through disulfide bonds, 110 kDa Fab’: reduced F(ab’)2 fragment, containing a free sulfhydryl group, 55 kDa Fab: monovalent fragments composed of the VH, CH1, VL and CL regions, 50 kDa | 1–10 nM | [191,192,193,194,195,196,197,198,199,200,201] |
Nanobodies | Small size enabling high tumor penetration; smaller final size of the system obtained; high stability being resistant to denaturation and proteolysis; low immunogenicity; good solubility; binding to unique epitopes; versatile functionalization; easy and cost-effective production | Short half-life and rapid clearance from circulation (that can be overcome with conjugation to NPs); limited applications and clinical studies compared to full mAbs and Ab fragments | Heavy-chain variable domains (VHH) of camelid and shark Abs, 12–15 kDa | 2–25 nM | [209,210,211,212,213,214] |
Affibodies | Small size enabling high tumor penetration; smaller final size of the system obtained; high thermal and chemical stability; low immunogenicity due to Ab mimics and engineered protein scaffold nature; good solubility; large number of libraries available; versatile functionalization; ease of production and synthesis | Short half-life, rapid clearance from circulation (that can be overcome with conjugation to NPs); limited applications and clinical studies compared to full mAbs and Ab fragments | Three-helix bundle formed by 58 amino acids, 6 kDa | 2.8 nM | [224,225,226,227,228,229,230,231,232] |
Aptamers | Small size and flexibility enabling excellent tumor penetration; smaller final size of the system obtained; lower electrostatic adsorption to nanocarriers compared to protein ligands; high binding affinity, high thermal and chemical stability; versatile binding capability; low immunogenicity and toxicity in vivo; large number of libraries available; versatile functionalization and chemical modification; easy and cost-effective production; minimal batch-to-batch variations | Short half-life, rapid clearance from circulation (that can be overcome with conjugation to NPs); susceptible to nuclease degradation without chemical modifications; limited applications and clinical studies compared to full mAbs and Ab fragments | Short single-stranded DNA or RNA molecules with specific 3D architectures, 6–25 kDa | 2.4 nM | [255,256,257,258,259,260,261,262,263,264,265,266] |
Targeting Ligand | NP Type | Main Observations | References |
---|---|---|---|
C225 | Multilayered polyelectrolyte capsules, optically encoded with fluorescent quantum dots | ~87% Ab coupling efficiency; random Ab orientation reduced steric hindrance while maintaining selective interaction with targets. | [269] |
GE11 peptide | SPIONs | Complete peptide conjugation confirmed via mass spectroscopy analysis of the filtrate; maximum cellular uptake was achieved in 24 h; internalization was proportional to EGFR expression of the cell line tested. | [137] |
EGF | Carboplatin-loaded alginate poly(amidoamine) (PAMAM) hybrid NPs | Success of EGF conjugation confirmed in 2D and 3D in vitro setting; final NP size after conjugation was smaller than 400 nm; conjugated EGF at the surface increased with respect to its concentration in the reaction media; EGF-conjugated platforms exerted the highest therapeutic potential in vivo. | [111] |
Anti-EGFR aptamers | Ganoderenic acid D-loaded PEGylated graphene oxide-based carrier | Simultaneous conjugation of aptamers and FITC via amino groups; successful anti-tumor effects of targeted platform were confirmed in vitro and in vivo. | [270] |
Anti-EGFR Afbs | Gadolinium-encapsulated carbonaceous dots | Higher uptake in EGFR-overexpressing cells and tumor xenografts was confirmed by fluorescence and T1-weighted MRI results; efficient clearance of targeted platform by the renal system was achieved. | [224] |
Anti-EGFR ScFv | Human serum albumin-coupled, FITC-labeled and DOX-loaded mesoporous silica NPs | In vitro and in vivo anti-tumor activity and safety of the targeted platform was verified; prolonged circulation, targeted accumulation, and enzyme/pH-responsive drug release properties were confirmed. | [191] |
Targeting Ligand | Application | Main Observations | References |
---|---|---|---|
EGF | Development of a new contrast agent for early stage tumors based on AuNPs and gadopentetic acid | Au@Gd-EGF exhibited significant MRI signal intensity for diagnostic applications, allowing for high specificity and sensitivity; the targeted nanocontrast agent showed good biocompatibility and low cytotoxicity in vitro. | [286] |
C225 | Systematic comprehensive characterization and stability assessment of a targeted nanocomplex with high potential for biomedical applications | After 24 months manufacturing, decoupling Ab from AuNPs was not observed, suggesting irreversible immobilization; efficient EGFR binding and induced tumor cell death due to apoptosis were confirmed. | [287] |
Anti-EGFR aptamer (U2) | Development of a novel brain-targeting complex for glioblastoma multiforme therapy | The U2-AuNPs inhibited the proliferation and invasion of EGFR-overexpressing cells; the targeted platform allowed to cross the blood–brain barrier and prolonged survival time of glioblastoma-bearing mice. | [266] |
Anti-EGFR aptamer + Anti-EGFR Ab | Development of multi-functionalized probe for detection of EGFR-positive cancer cells | Dual targeted platform showed higher target specificity to EGFR-positive cancer cells, compared to Apt- or Ab-functionalized probes; main benefits of the platform are its potential to facilitate the detection of binding to cell surface markers with low expression levels. | [265] |
Bioconjugation Chemistry | Mechanism | Advantages | Limitations | References |
---|---|---|---|---|
Carbodiimide chemistry | Easy to perform and accessible, generally no need for chemical modification, high stability, high conjugation efficiency | Sensitivity to pH, inability to control orientation, possible competition by extraneous carboxyl or amine groups | [111,137,191,224,269,270,271] | |
Schiff base reaction | Mild reaction conditions, possibility of oriented conjugation | Specific functional groups and modifications required, sensitivity to pH | [173,275,276,277] | |
Thiol-maleimide chemistry | Fast and efficient reactions, mild reaction conditions, higher selectivity compared to carbodiimide chemistry, possibility of reversible linkages | Inability to control orientation, introduction of linkers or modifications required, possibility to hinder biological activity of ligands after reduction, sensitivity of thioether linkages to endogenous reducing potentials | [116,158,211,231,283] | |
Dative chemistry | Direct conjugation, no modification or introduction of functional moieties required | Sensitivity to pH, oxidation or replacement by similar molecules, weaker bonds than covalent linkages | [265,266,286,287] | |
Click chemistry | High selectivity, mild reaction conditions, high yields, favorable reaction rates, irreversible chemical linkages, no complex purification required, biorthogonal reactions, possibility of oriented conjugation | Toxicity of Cu(I) catalyst in CuAAC | [157,227,294,296,298,299,300,301] | |
Interaction by adapter molecules | Strongest non-covalent interaction, oriented conjugation, modifications required, high stability | Non-specific binding mediated by avidin, possible aggregation and big sizes due to the presence of the bulky protein | [308,309,310] | |
Electrostatic interaction | No modification required, cost-effective synthesis and post-functionalization | Less robust and more prone to degradation than covalent linkages, sensitive to experimental conditions, non-oriented conjugation | [101,319,320,321,322] | |
Fc-binding receptors mediated conjugation | Oriented conjugation, no modifications required, mild reaction conditions | Weaker nature compared to covalent bonds, potential immune activation due to the presence of Fc regions | [323,325] |
Targeting Ligand | NP Type | Electrophoretic Method | References |
---|---|---|---|
Anti-EGFR Abs | AuNPs | SDS-PAGE | [168] |
Anti-EGFR Abs | PLGA NPs | SDS-PAGE | [338] |
Anti-EGFR aptamers | Chitosan NPs | Agarose gel electrophoresis | [337] |
Anti-EGFR aptamers | Liposomes | Agarose gel electrophoresis | [339] |
Targeting Ligand | NP Type | Result of Quantification | References |
---|---|---|---|
C225 | Chitosan/hyaluronic acid NPs | Bradford assay revealed a degree of conjugation of 81.5%. | [344] |
C225 | Sialic acid-coated chitosan NPs | Bradford assay revealed a degree of conjugation of 72.9% ± 3.5% for chitosan NPs, and of 63.2% ± 2.1% for sialic acid-coated chitosan NPs. The second is lower probably due to the presence of sialic acid residues along with C225. | [345] |
C225 | Silica-coated AuNPs | BCA assay performed on the supernatant revealed 91% ± 6% of Abs conjugated to the NP surface. | [346] |
GE11 | DOX-loaded extracellular vesicles | BCA assay was performed to measure the total protein content of EVs and used to add equivalent EVs to EGFR-overexpressing cell lines (uptake value to be compared with the uptake by EGFR-negative cell lines). | [347] |
Targeting Ligand | NP Type | Characterization Technique | Analyzed Components | References |
---|---|---|---|---|
Anti-EGFR Ab (Nm) | AuNPs | FTIR | Appearance of a small peak at 3300 cm−1, related to the region of amide A formed by the crosslinking between the Abs and the NHS linker causing a N-H stretch, was detected. The band at 1600–1700 cm−1 revealed the presence of amide-I band related to the amide C=O stretching vibrations. The band at 2500–2600 cm−1 indicated the presence of S-H in the conjugates coming from the thiol-gold bond. | [168] |
Anti-EGFR aptamer | ZIF-8 NPs | FTIR | Special adsorption of the sugar-phosphate skeleton of siRNA and aptamers related with the peaks from 1300 to 900 and 1320 to 1380 cm−1 was observed. | [321] |
GE11 | DOX-loaded polymeric conjugates | 1H NMR | Additional peaks corresponding to the GE11 peptide appeared at 6.98–6.63 ppm, revealing successful conjugation of the peptide to the NP surface. | [116] |
C225 | Chitosan NPs | XPS | Percentages of N 1s, O 1s and C 1s in the targeted system were 9.74%, 22.54% and 67.74%, respectively, whereas for the non-targeted counterpart, these were of 1.04%, 15.19% and 83.77%. The higher percentage nitrogen in the targeted platform indicated the presence of a large number of nitrogen atoms (N = 1732) in the Ab molecules. | [354] |
C225 | Chitosan/hyaluronic acid NPs | XPS | Atomic percentage of N exhibited a significant increase from 3.53% in the non-targeted system to 7.74% in the targeted system, together with the apparition of a sulfur peak (0.13%). The phosphorous peak due to the crosslinker used during the ionic gelation of NPs was significantly decreased in the case of the targeted system, further indication of NP functionalization. | [344] |
Characterization Technique | Type of Information | Purpose | Advantages | Limitations | References |
---|---|---|---|---|---|
Dynamic light scattering | Qualitative | Measurement of hydrodynamic size, polydispersity and surface charge | Quick and easy to perform, any types of NPs | Often not reliable or informative enough, no quantification possible | [256,258,328,329,330,331] |
Fluorescence experiments | Quantitative | Measurements of the density of ligands via indirect or direct fluorescence reading | Generally high sensitivity; precise quantification via comparison with calibration standards | Modification of ligand with fluorophore or use of fluorophore-tagged secondary ligand is required, thorough purification to remove excess of fluorophore-tagged ligand is needed | [173,332,333] |
Electrophoretic techniques | Qualitative | Separation and visualization of protein or DNA-based ligands depending on their migration rates | Visual method | Mainly used for protein and oligonucleotide ligands, quantification is generally difficult to perform | [168,337,338,339] |
Protein-based assays | Quantitative | Measurements of the density of protein ligands by absorbance readings | Sensitive methods, precise quantification possible, fast procedures | Only protein-based ligands can be investigated, sensitivity to reducing agents or detergents is observed | [344,345,346,347] |
Spectroscopy techniques | Qualitative | Determine the nature of surface functional groups, identify the elemental composition and investigate molecular structure of ligands | different types of NPs can be investigated | Quantification not possible (except in some techniques by using calibration standards), high densities and thorough purification are required in some techniques | [116,168,321,344,354] |
Thermogravimetric analysis | Qualitative /quantitative | Measure mass change depending on temperature to determine the surface coverage | Quantification is possible, simple procedure | Usable only to investigate surface of inorganic NPs, high amount of material is generally required for analysis | [357,358] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Spada, A.; Gerber-Lemaire, S. Surface Functionalization of Nanocarriers with Anti-EGFR Ligands for Cancer Active Targeting. Nanomaterials 2025, 15, 158. https://doi.org/10.3390/nano15030158
Spada A, Gerber-Lemaire S. Surface Functionalization of Nanocarriers with Anti-EGFR Ligands for Cancer Active Targeting. Nanomaterials. 2025; 15(3):158. https://doi.org/10.3390/nano15030158
Chicago/Turabian StyleSpada, Alessandra, and Sandrine Gerber-Lemaire. 2025. "Surface Functionalization of Nanocarriers with Anti-EGFR Ligands for Cancer Active Targeting" Nanomaterials 15, no. 3: 158. https://doi.org/10.3390/nano15030158
APA StyleSpada, A., & Gerber-Lemaire, S. (2025). Surface Functionalization of Nanocarriers with Anti-EGFR Ligands for Cancer Active Targeting. Nanomaterials, 15(3), 158. https://doi.org/10.3390/nano15030158