Shutter-Synchronized Molecular Beam Epitaxy for Wafer-Scale Homogeneous GaAs and Telecom Wavelength Quantum Emitter Growth
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Growth
2.2. Material Deposition Methods
2.3. Characterization
3. Local Droplet-Etched GaAs QDs
3.1. GaAs QDs: Sample Structure and Gradient Design
3.2. Influence of GaAs Fill Amount on the Emission Wavelength
3.3. Shutter-Synchronized GaAs QDs
4. Local Droplet-Etched InAs QDs
4.1. InAs QDs: Sample Structure and Gradient Design
4.2. Influence of InAs Fill Amount on the Emission Wavelength
4.3. Shutter-Synchronized LDE InAs QDs
5. Discussion
5.1. Gradient Deposition of the QD Filling Material
5.2. Influence of Different Parameters on Homogeneity
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Sample | |||||||||
---|---|---|---|---|---|---|---|---|---|
Diameter (mm) | 30 | 45 | 60 | 30 | 45 | 60 | 30 | 45 | 60 |
Emission wavelength (nm) | 772.6 ± 0.9 | 771.3 ± 1.7 | 768 ± 5 | 788.4 ± 0.5 | 788.3 ± 0.6 | 787.5 ± 1.3 | 801.8 ± 0.1 | 802.3 ± 0.2 | 801.1 ± 1.0 |
Ensemble-PL_FWHM (meV) | 32.7 ± 0.6 | 33.0 ± 0.9 | 35.0 ± 3.0 | 17.3 ± 0.3 | 17.3 ± 0.4 | 17.4 ± 0.5 | 12.86 ± 0.16 | 12.66 ± 0.27 | 12.6 ± 0.3 |
Δλ (nm) | 4.4 | 7.5 | 21.1 | 2.0 | 2.7 | 5.7 | 0.6 | 1.2 | 4.1 |
Proportion of QDs (±5 nm) | 100 | 100 | 66.1 | 100 | 100 | 100 | 100 | 100 | 100 |
Proportion of QDs (±2 nm) | 97.4 | 74.1 | 24.7 | 100 | 100 | 89.8 | 100 | 100 | 93.3 |
Sample | ||||
---|---|---|---|---|
Diameter (mm) | 0 | 30 | 45 | 60 |
Emission wavelength (nm) | ~1315 | 1315.3 ± 1.3 | 1317 ± 3 | 1323 ± 7 |
Ensemble-PL_FWHM (meV) | ~30 | 31.3 ± 1.6 | 31.7 ± 1.9 | 30.6 ± 2.6 |
Δλ (nm) | - | 8.0 | 14.4 | 28.9 |
Peak wavelength (±5 nm) | - | 100 | 92.1 | 35.6 |
Proportion of QDs (±2 nm) | - | 74.4 | 45.2 | 13.19 |
References
- Kimble, H.J. The quantum internet. Nature 2008, 453, 1023–1030. [Google Scholar] [CrossRef]
- Pirandola, S.; Bardhan, B.R.; Gehring, T.; Weedbrook, C.; Lloyd, S. Advances in photonic quantum sensing. Nat. Photon. 2018, 12, 724–733. [Google Scholar] [CrossRef]
- Knill, E.; Laflamme, R.; Milburn, G.J. A scheme for efficient quantum computation with linear optics. Nature 2001, 409, 46–52. [Google Scholar] [CrossRef]
- Sarma, D.D.; Kamat, P.V. 2023 Nobel Prize in Chemistry: A Mega Recognition for Nanosized Quantum Dots. ACS Energy Lett. 2023, 8, 5149–5151. [Google Scholar] [CrossRef]
- Arakawa, Y.; Holmes, M.J. Progress in quantum-dot single photon sources for quantum information technologies: A broad spectrum overview. Appl. Phys. Rev. 2020, 7, 021309. [Google Scholar] [CrossRef]
- Haffouz, S.; Zeuner, K.D.; Dalacu, D.; Poole, P.J.; Lapointe, J.; Poitras, D.; Mnaymneh, K.; Wu, X.; Couillard, M.; Korkusinski, M.; et al. Bright Single InAsP Quantum Dots at Telecom Wavelengths in Position-Controlled InP Nanowires: The Role of the Photonic Waveguide. Nano Lett. 2018, 18, 3047–3052. [Google Scholar] [CrossRef]
- Müller, T.; Skiba-Szymanska, J.; Krysa, A.B.; Huwer, J.; Felle, M.; Anderson, M.; Stevenson, R.M.; Heffernan, J.; Ritchie, D.A.; Shields, A.J. A quantum light-emitting diode for the standard telecom window around 1,550 nm. Nat. Commun. 2018, 9, 862. [Google Scholar] [CrossRef] [PubMed]
- Oshinowo, J.; Nishioka, M.; Ishida, S.; Arakawa, Y. Highly uniform InGaAs/GaAs quantum dots (~15 nm) by metalorganic chemical vapor deposition. Appl. Phys. Lett. 1994, 65, 1421–1423. [Google Scholar] [CrossRef]
- Paul, M.; Olbrich, F.; Höschele, J.; Schreier, S.; Kettler, J.; Portalupi, S.L.; Jetter, M.; Michler, P. Single-photon emission at 1.55 μm from MOVPE-grown InAs quantum dots on InGaAs/GaAs metamorphic buffers. Appl. Phys. Lett. 2017, 111, 033102. [Google Scholar] [CrossRef]
- Skiba-Szymanska, J.; Stevenson, R.M.; Varnava, C.; Felle, M.; Huwer, J.; Müller, T.; Bennett, A.J.; Lee, J.P.; Farrer, I.; Krysa, A.B.; et al. Universal Growth Scheme for Quantum Dots with Low Fine-Structure Splitting at Various Emission Wavelengths. Phys. Rev. Appl. 2017, 8, 014013. [Google Scholar] [CrossRef]
- Senellart, P.; Solomon, G.; White, A. High-performance semiconductor quantum-dot single-photon sources. Nat. Nanotechnol. 2017, 12, 1026–1039. [Google Scholar] [CrossRef] [PubMed]
- Michler, P.; Kiraz, A.; Becher, C.; Schoenfeld, W.V.; Petroff, P.M.; Zhang, L.; Hu, E.; Imamoglu, A. A quantum dot single-photon turnstile device. Science 2000, 290, 2282–2285. [Google Scholar] [CrossRef] [PubMed]
- Santori, C.; Fattal, D.; Vucković, J.; Solomon, G.S.; Yamamoto, Y. Indistinguishable photons from a single-photon device. Nature 2002, 419, 594–597. [Google Scholar] [CrossRef] [PubMed]
- Tomm, N.; Javadi, A.; Antoniadis, N.O.; Najer, D.; Löbl, M.C.; Korsch, A.R.; Schott, R.; Valentin, S.R.; Wieck, A.D.; Ludwig, A.; et al. A bright and fast source of coherent single photons. Nat. Nanotechnol. 2021, 16, 399–403. [Google Scholar] [CrossRef] [PubMed]
- Ding, X.; Guo, Y.-P.; Xu, M.-C.; Liu, R.-Z.; Zou, G.-Y.; Zhao, J.-Y.; Ge, Z.-X.; Zhang, Q.-H.; Liu, H.-L.; Wang, L.-J.; et al. High-Efficiency Single-Photon Source Above the Loss-Tolerant Threshold for Efficient Linear Optical Quantum Computing. 2023. Available online: http://arxiv.org/pdf/2311.08347 (accessed on 6 December 2024).
- Chung, Y.J.; Villegas Rosales, K.A.; Baldwin, K.W.; Madathil, P.T.; West, K.W.; Shayegan, M.; Pfeiffer, L.N. Ultra-high-quality two-dimensional electron systems. Nat. Mater. 2021, 20, 632–637. [Google Scholar] [CrossRef] [PubMed]
- Ludwig, A.; Prechtel, J.H.; Kuhlmann, A.V.; Houel, J.; Valentin, S.R.; Warburton, R.J.; Wieck, A.D. Ultra-low charge and spin noise in self-assembled quantum dots. J. Cryst. Growth 2017, 477, 193–196. [Google Scholar] [CrossRef]
- Kuhlmann, A.V.; Prechtel, J.H.; Houel, J.; Ludwig, A.; Reuter, D.; Wieck, A.D.; Warburton, R.J. Transform-limited single photons from a single quantum dot. Nat. Commun. 2015, 6, 8204. [Google Scholar] [CrossRef]
- Zhai, L.; Löbl, M.C.; Nguyen, G.N.; Ritzmann, J.; Javadi, A.; Spinnler, C.; Wieck, A.D.; Ludwig, A.; Warburton, R.J. Low-noise GaAs quantum dots for quantum photonics. Nat. Commun. 2020, 11, 4745. [Google Scholar] [CrossRef] [PubMed]
- Zhai, L.; Nguyen, G.N.; Spinnler, C.; Ritzmann, J.; Löbl, M.C.; Wieck, A.D.; Ludwig, A.; Javadi, A.; Warburton, R.J. Quantum interference of identical photons from remote GaAs quantum dots. Nat. Nanotechnol. 2022, 17, 829–833. [Google Scholar] [CrossRef] [PubMed]
- Atatüre, M.; Dreiser, J.; Badolato, A.; Imamoglu, A. Observation of Faraday rotation from a single confined spin. Nat. Phys. 2007, 3, 101–106. [Google Scholar] [CrossRef]
- Cogan, D.; Su, Z.-E.; Kenneth, O.; Gershoni, D. Deterministic generation of indistinguishable photons in a cluster state. Nat. Photon. 2023, 17, 324–329. [Google Scholar] [CrossRef]
- Meng, Y.; Chan, M.L.; Nielsen, R.B.; Appel, M.H.; Liu, Z.; Wang, Y.; Bart, N.; Wieck, A.D.; Ludwig, A.; Midolo, L.; et al. Deterministic photon source of genuine three-qubit entanglement. Nat. Commun. 2024, 15, 7774. [Google Scholar] [CrossRef]
- Chan, M.L.; Bell, T.J.; Pettersson, L.A.; Chen, S.X.; Yard, P.; Sørensen, A.S.; Paesani, S. Tailoring Fusion-Based Photonic Quantum Computing Schemes to Quantum Emitters. 2024. Available online: http://arxiv.org/pdf/2410.06784 (accessed on 6 December 2024).
- Vural, H.; Portalupi, S.L.; Michler, P. Perspective of self-assembled InGaAs quantum-dots for multi-source quantum implementations. Appl. Phys. Lett. 2020, 117, 030501. [Google Scholar] [CrossRef]
- Bayer, M.; Forchel, A. Temperature dependence of the exciton homogeneous linewidth in In0.60Ga0.40As/GaAs self-assembled quantum dots. Phys. Rev. B 2002, 65, 041308. [Google Scholar] [CrossRef]
- Warburton, R.J.; Schaflein, C.; Haft, D.; Bickel, F.; Lorke, A.; Karrai, K.; Garcia, J.M.; Schoenfeld, W.; Petroff, P.M. Optical emission from a charge-tunable quantum ring. Nature 2000, 405, 926–929. [Google Scholar] [CrossRef] [PubMed]
- Seidl, S.; Kroner, M.; Högele, A.; Karrai, K.; Warburton, R.J.; Badolato, A.; Petroff, P.M. Effect of uniaxial stress on excitons in a self-assembled quantum dot. Appl. Phys. Lett. 2006, 88, 203113. [Google Scholar] [CrossRef]
- Bayer, M.; Ortner, G.; Stern, O.; Kuther, A.; Gorbunov, A.A.; Forchel, A.; Hawrylak, P.; Fafard, S.; Hinzer, K.; Reinecke, T.L.; et al. Fine structure of neutral and charged excitons in self-assembled In(Ga)As/(Al)GaAs quantum dots. Phys. Rev. B 2002, 65, 195315. [Google Scholar] [CrossRef]
- Rastelli, A.; Ulhaq, A.; Kiravittaya, S.; Wang, L.; Zrenner, A.; Schmidt, O.G. In situ laser microprocessing of single self-assembled quantum dots and optical microcavities. Appl. Phys. Lett. 2007, 90, 073120. [Google Scholar] [CrossRef]
- Bennett, A.J.; Patel, R.B.; Skiba-Szymanska, J.; Nicoll, C.A.; Farrer, I.; Ritchie, D.A.; Shields, A.J. Giant Stark effect in the emission of single semiconductor quantum dots. Appl. Phys. Lett. 2010, 97, 031104. [Google Scholar] [CrossRef]
- Grim, J.Q.; Bracker, A.S.; Zalalutdinov, M.; Carter, S.G.; Kozen, A.C.; Kim, M.; Kim, C.S.; Mlack, J.T.; Yakes, M.; Lee, B.; et al. Scalable in operando strain tuning in nanophotonic waveguides enabling three-quantum-dot superradiance. Nat. Mater. 2019, 18, 963–969. [Google Scholar] [CrossRef] [PubMed]
- Papon, C.; Wang, Y.; Uppu, R.; Scholz, S.; Wieck, A.D.; Ludwig, A.; Lodahl, P.; Midolo, L. Independent Operation of Two Waveguide-Integrated Quantum Emitters. Phys. Rev. Appl. 2023, 19, L061003. [Google Scholar] [CrossRef]
- Tiranov, A.; Angelopoulou, V.; van Diepen, C.J.; Schrinski, B.; Sandberg, O.A.D.; Wang, Y.; Midolo, L.; Scholz, S.; Wieck, A.D.; Ludwig, A.; et al. Collective super- and subradiant dynamics between distant optical quantum emitters. Science 2023, 379, 389–393. [Google Scholar] [CrossRef] [PubMed]
- Heyn, C.; Stemmann, A.; Köppen, T.; Strelow, C.; Kipp, T.; Grave, M.; Mendach, S.; Hansen, W. Highly uniform and strain-free GaAs quantum dots fabricated by filling of self-assembled nanoholes. Appl. Phys. Lett. 2009, 94, 183113. [Google Scholar] [CrossRef]
- Alloing, B.; Zinoni, C.; Zwiller, V.; Li, L.H.; Monat, C.; Gobet, M.; Buchs, G.; Fiore, A.; Pelucchi, E.; Kapon, E. Growth and characterization of single quantum dots emitting at 1300 nm. Appl. Phys. Lett. 2005, 86, 101908. [Google Scholar] [CrossRef]
- Nishi, K.; Saito, H.; Sugou, S.; Lee, J.-S. A narrow photoluminescence linewidth of 21 meV at 1.35 μm from strain-reduced InAs quantum dots covered by In0.2Ga0.8As grown on GaAs substrates. Appl. Phys. Lett. 1999, 74, 1111–1113. [Google Scholar] [CrossRef]
- Ustinov, V.M.; Maleev, N.A.; Zhukov, A.E.; Kovsh, A.R.; Egorov, A.Y.; Lunev, A.V.; Volovik, B.V.; Krestnikov, I.L.; Musikhin, Y.G.; Bert, N.A.; et al. InAs/InGaAs quantum dot structures on GaAs substrates emitting at 1.3 μm. Appl. Phys. Lett. 1999, 74, 2815–2817. [Google Scholar] [CrossRef]
- Im Han, S.; Wang, Y.-R.; Hopkinson, M. Ordered GaAs quantum dots by droplet epitaxy using in situ direct laser interference patterning. Appl. Phys. Lett. 2021, 118, 142101. [Google Scholar] [CrossRef]
- Zhang, J.; Chattaraj, S.; Huang, Q.; Jordao, L.; Lu, S.; Madhukar, A. On-chip scalable highly pure and indistinguishable single-photon sources in ordered arrays: Path to quantum optical circuits. Sci. Adv. 2022, 8, eabn9252. [Google Scholar] [CrossRef]
- Jöns, K.D.; Atkinson, P.; Müller, M.; Heldmaier, M.; Ulrich, S.M.; Schmidt, O.G.; Michler, P. Triggered indistinguishable single photons with narrow line widths from site-controlled quantum dots. Nano Lett. 2013, 13, 126–130. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.R.; Im Han, S.; Jin, C.-Y.; Hopkinson, M. Precise Arrays of Epitaxial Quantum Dots Nucleated by In Situ Laser Interference for Quantum Information Technology Applications. ACS Appl. Nano Mater. 2020, 3, 4739–4746. [Google Scholar] [CrossRef]
- McCabe, L.N.; Zide, J.M.O. Techniques for epitaxial site-selective growth of quantum dots. J. Vac. Sci. Technol. A Vac. Surf. Film. 2021, 39, 010802. [Google Scholar] [CrossRef]
- Mehta, M.; Reuter, D.; Melnikov, A.; Wieck, A.D.; Remhof, A. Focused ion beam implantation induced site-selective growth of InAs quantum dots. Appl. Phys. Lett. 2007, 91, 123108. [Google Scholar] [CrossRef]
- Schmidt, O. Lateral Aligment of Epitaxial Quantum Dots; Springer: Berlin/Heidelberg, Germany, 2007; ISBN 9783540469360. [Google Scholar]
- Leonard, D.; Pond, K.; Petroff, P.M. Critical layer thickness for self-assembled InAs islands on GaAs. Phys. Rev. B 1994, 50, 11687–11692. [Google Scholar] [CrossRef] [PubMed]
- Thomassen, S.F.; Worren Reenaas, T.; Fimland, B.O. InAs/GaAs quantum dot density variation across a quarter wafer when grown with substrate rotation. J. Cryst. Growth 2011, 323, 223–227. [Google Scholar] [CrossRef]
- Verma, A.K.; Bopp, F.; Finley, J.J.; Jonas, B.; Zrenner, A.; Reuter, D. Low areal densities of InAs quantum dots on GaAs(1 0 0) prepared by molecular beam epitaxy. J. Cryst. Growth 2022, 592, 126715. [Google Scholar] [CrossRef]
- Srocka, N.; Mrowiński, P.; Große, J.; von Helversen, M.; Heindel, T.; Rodt, S.; Reitzenstein, S. Deterministically fabricated quantum dot single-photon source emitting indistinguishable photons in the telecom O-band. Appl. Phys. Lett. 2020, 116, 231104. [Google Scholar] [CrossRef]
- Srocka, N.; Mrowiński, P.; Große, J.; Schmidt, M.; Rodt, S.; Reitzenstein, S. Deterministically fabricated strain-tunable quantum dot single-photon sources emitting in the telecom O-band. Appl. Phys. Lett. 2020, 117, 224001. [Google Scholar] [CrossRef]
- Pregnolato, T.; Chu, X.-L.; Schröder, T.; Schott, R.; Wieck, A.D.; Ludwig, A.; Lodahl, P.; Rotenberg, N. Deterministic positioning of nanophotonic waveguides around single self-assembled quantum dots. APL Photonics 2020, 5, 86101. [Google Scholar] [CrossRef]
- Nowak, A.K.; Portalupi, S.L.; Giesz, V.; Gazzano, O.; Dal Savio, C.; Braun, P.-F.; Karrai, K.; Arnold, C.; Lanco, L.; Sagnes, I.; et al. Deterministic and electrically tunable bright single-photon source. Nat. Commun. 2014, 5, 3240. [Google Scholar] [CrossRef]
- Uppu, R.; Pedersen, F.T.; Wang, Y.; Olesen, C.T.; Papon, C.; Zhou, X.; Midolo, L.; Scholz, S.; Wieck, A.D.; Ludwig, A.; et al. Scalable integrated single-photon source. Sci. Adv. 2020, 6, eabc8268. [Google Scholar] [CrossRef] [PubMed]
- Babin, H.-G.; Bart, N.; Schmidt, M.; Spitzer, N.; Wieck, A.D.; Ludwig, A. Full wafer property control of local droplet etched GaAs quantum dots. J. Cryst. Growth 2022, 591, 126713. [Google Scholar] [CrossRef]
- Spitzer, N.; Kersting, E.; Grell, M.; Kohminaei, D.; Schmidt, M.; Bart, N.; Wieck, A.D.; Ludwig, A. Telecom O-Band Quantum Dots Fabricated by Droplet Etching. Crystals 2024, 14, 1014. [Google Scholar] [CrossRef]
- Bart, N.; Dangel, C.; Zajac, P.; Spitzer, N.; Ritzmann, J.; Schmidt, M.; Babin, H.-G.; Schott, R.; Valentin, S.R.; Scholz, S.; et al. Wafer-scale epitaxial modulation of quantum dot density. Nat. Commun. 2022, 13, 1633. [Google Scholar] [CrossRef]
- Kruck, T.; Babin, H.G.; Wieck, A.D.; Ludwig, A. Critical Aluminum Etch Material Amount for Local Droplet-Etched Nanohole-Based GaAs Quantum Dots. Crystals 2024, 14, 714. [Google Scholar] [CrossRef]
- Kerbst, J.; Heyn, C.; Slobodskyy, T.; Hansen, W. Density limits of high temperature and multiple local droplet etching on AlAs. J. Cryst. Growth 2014, 389, 18–22. [Google Scholar] [CrossRef]
- Heyn, C.; Feddersen, S. Modeling of Al and Ga Droplet Nucleation during Droplet Epitaxy or Droplet Etching. Nanomaterials 2021, 11, 468. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Yan, J.-Y.; Babin, H.-G.; Wang, J.; Xu, X.; Lin, X.; Yu, Q.; Fang, W.; Liu, R.-Z.; Huo, Y.-H.; et al. Wavelength-tunable high-fidelity entangled photon sources enabled by dual Stark effects. Nat. Commun. 2024, 15, 5792. [Google Scholar] [CrossRef]
- Zocher, M.; Heyn, C.; Hansen, W. Droplet etching with indium—Intermixing and lattice mismatch. J. Cryst. Growth 2019, 512, 219–222. [Google Scholar] [CrossRef]
Sample | QD Growth Mode | As-BEP (µTorr) | Al-Etch (nm) | Al Cell | GaAs Fill (nm) |
---|---|---|---|---|---|
/15379 | Gradient | 0.46 | 0.3 | #2 | 1.00 |
/15384 | Gradient | 0.49 | 0.3 | #2 | 0.60 |
/15389 | Gradient | 0.51 | 0.3 | #2 | 0.44 |
/15530 | Shutter sync. | 0.34 | 0.3 | #2 | 0.60 |
/15541 | Shutter sync. | 0.35 | 0.4 | #2 | 0.60 |
/15544 | Shutter sync. | 0.27 | 0.4 | #1 | 0.60 |
Sample | |||
---|---|---|---|
GaAs filling (nm) | 1 | 0.6 | 0.44 |
Wavelength range (nm) | 805–770 | 785–740 | 765–710 |
Δλ (nm) | 35 | 45 | 55 |
Sample | QD Growth Mode | Ga-Etch (nm) | InAs Cycles |
---|---|---|---|
/15736 | Gradient | 0.84 | 12.25 |
/15744 | Shutter sync. | 0.84 | 12.25 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kersting, E.; Babin, H.-G.; Spitzer, N.; Yan, J.-Y.; Liu, F.; Wieck, A.D.; Ludwig, A. Shutter-Synchronized Molecular Beam Epitaxy for Wafer-Scale Homogeneous GaAs and Telecom Wavelength Quantum Emitter Growth. Nanomaterials 2025, 15, 157. https://doi.org/10.3390/nano15030157
Kersting E, Babin H-G, Spitzer N, Yan J-Y, Liu F, Wieck AD, Ludwig A. Shutter-Synchronized Molecular Beam Epitaxy for Wafer-Scale Homogeneous GaAs and Telecom Wavelength Quantum Emitter Growth. Nanomaterials. 2025; 15(3):157. https://doi.org/10.3390/nano15030157
Chicago/Turabian StyleKersting, Elias, Hans-Georg Babin, Nikolai Spitzer, Jun-Yong Yan, Feng Liu, Andreas D. Wieck, and Arne Ludwig. 2025. "Shutter-Synchronized Molecular Beam Epitaxy for Wafer-Scale Homogeneous GaAs and Telecom Wavelength Quantum Emitter Growth" Nanomaterials 15, no. 3: 157. https://doi.org/10.3390/nano15030157
APA StyleKersting, E., Babin, H.-G., Spitzer, N., Yan, J.-Y., Liu, F., Wieck, A. D., & Ludwig, A. (2025). Shutter-Synchronized Molecular Beam Epitaxy for Wafer-Scale Homogeneous GaAs and Telecom Wavelength Quantum Emitter Growth. Nanomaterials, 15(3), 157. https://doi.org/10.3390/nano15030157