Iota-Carrageenan/Chitosan Nanoparticles via Coacervation: Achieving Stability for Tiny Particles
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Purification of Precursor Polymers
2.3. Characterization of Precursor Polymers
2.4. Preparation of Polymeric Nanoparticles
2.5. Characterization of the Nanoparticles
Hydrodynamic Radius Measurements as a Function of pH
2.6. Statistical Analysis
3. Results and Discussion
3.1. Characterization: Polymer Precursors and Precipitates of Chitosan/ι-Carrageenan
3.1.1. Metallic Content Within the Commercial Polysaccharides
3.1.2. Molecular Weight of the Polysaccharides
3.1.3. Infrared Spectroscopy
3.1.4. Thermal Analysis
3.2. Characterization of the Nanoparticles Obtained in Suspension
3.2.1. Hydrodynamic Radii and Zeta Potential Measurements
3.2.2. Hydrodynamic Radii as a Function of pH
3.2.3. Scanning Electron Microscopy of the Nanoparticles
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Prasher, P.; Sharma, M.; Mehta, M.; Satija, S.; Aljabali, A.A.; Tambuwala, M.M.; Anand, K.; Sharma, N.; Dureja, H.; Jha, N.K.; et al. Current-status and Applications of Polysaccharides in Drug Delivery Systems. Colloid Interface Sci. Commun. 2021, 42, 100418. [Google Scholar] [CrossRef]
- Pacheco-Quito, E.-M.; Ruiz-Caro, R.; Veiga, M.-D. Carrageenan: Drug Delivery Systems and Other Biomedical Applications. Mar. Drugs 2020, 18, 583. [Google Scholar] [CrossRef] [PubMed]
- Quiñones, J.P.; Peniche, H.; Peniche, C. Chitosan Based Self-Assembled Nanoparticles in Drug Delivery. Polymers 2018, 10, 235. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.; Zhu, L.; Li, Y.; Zhang, X.; Xu, S.; Yang, G.; Delair, T. Chitosan-Based Colloidal Polyelectrolyte Complexes for Drug Delivery: A Review. Carbohydr. Polym. 2020, 238, 116126. [Google Scholar] [CrossRef] [PubMed]
- De Robertis, S.; Bonferoni, M.C.; Elviri, L.; Sandri, G.; Caramella, C.; Bettini, R. Advances in Oral Controlled Drug Delivery: The Role of Drug-Polymer and Interpolymer Non-Covalent Interactions. Expert Opin. Drug Deliv. 2015, 12, 441–453. [Google Scholar] [CrossRef]
- Timilsena, Y.P.; Akanbi, T.O.; Khalid, N.; Adhikari, B.; Barrow, C.J. Complex Coacervation: Principles, Mechanisms and Applications in Microencapsulation. Int. J. Biol. Macromol. 2019, 121, 1276–1286. [Google Scholar] [CrossRef]
- LogithKumar, R.; KeshavNarayan, A.; Dhivya, S.; Chawla, A.; Saravanan, S.; Selvamurugan, N. A Review of Chitosan and Its Derivatives in Bone Tissue Engineering. Carbohydr. Polym. 2016, 151, 172–188. [Google Scholar] [CrossRef]
- Naveed, M.; Phil, L.; Sohail, M.; Hasnat, M.; Baig, M.M.F.A.; Ihsan, A.U.; Shumzaid, M.; Kakar, M.U.; Mehmood Khan, T.; Akabar, M.; et al. Chitosan Oligosaccharide (COS): An Overview. Int. J. Biol. Macromol. 2019, 129, 827–843. [Google Scholar] [CrossRef]
- Tan, C.; Xie, J.; Zhang, X.; Cai, J.; Xia, S. Polysaccharide-Based Nanoparticles by Chitosan and Gum Arabic Polyelectrolyte Complexation as Carriers for Curcumin. Food Hydrocoll. 2016, 57, 236–245. [Google Scholar] [CrossRef]
- Maciel, V.; Yoshida, C.; Pereira, S.; Goycoolea, F.; Franco, T. Electrostatic Self-Assembled Chitosan-Pectin Nano- and Microparticles for Insulin Delivery. Molecules 2017, 22, 1707. [Google Scholar] [CrossRef] [PubMed]
- Yew, H.-C.; Misran, M. Preparation and Characterization of pH Dependent κ-Carrageenan-Chitosan Nanoparticle as Potential Slow Release Delivery Carrier. Iran. Polym. J. 2016, 25, 1037–1046. [Google Scholar] [CrossRef]
- Chen, Y.; Mohanraj, V.J.; Wang, F.; Benson, H.A. Designing chitosan-dextran-sulfate nanoparticles using charge ratios. AAPS PharmSciTech 2007, 8, 131–139. [Google Scholar] [CrossRef]
- Costalat, M.; David, L.; Delair, T. Reversible Controlled Assembly of Chitosan and Dextran Sulfate: A New Method for Nanoparticle Elaboration. Carbohydr. Polym. 2014, 102, 717–726. [Google Scholar] [CrossRef] [PubMed]
- Zamproni, L.N.; Teixeira, D.; Alliegro, A.A.; Maugéri, I.L.; des Rieux, A.; Porcionatto, M.A. Decreased Viability and Neurite Length in Neural Cells Treated with Chitosan-Dextran Sulfate Nanocomplexes. NeuroToxicology 2020, 76, 33–43. [Google Scholar] [CrossRef] [PubMed]
- Anitha, A.; Deepagan, V.G.; Divya Rani, V.V.; Menon, D.; Nair, S.V.; Jayakumar, R. Preparation, Characterization, in Vitro Drug Release and Biological Studies of Curcumin Loaded Dextran Sulphate–Chitosan Nanoparticles. Carbohydr. Polym. 2011, 84, 1158–1164. [Google Scholar] [CrossRef]
- Rees, D.A. Structure, Conformation, and Mechanism in the Formation of Polysaccharide Gels and Networks. In Advances in Carbohydrate Chemistry and Biochemistry; Wolfrom, M.L., Tipson, R.S., Horton, D., Eds.; Academic Press: Cambridge, MA, USA, 1969; Volume 24, pp. 267–332. [Google Scholar]
- El-Deeb, N.M.; Ibrahim, O.M.; Mohamed, M.A.; Farag, M.M.S.; Farrag, A.A.; El-Aassar, M.R. Alginate/κ-Carrageenan Oral Microcapsules Loaded with Agaricus Bisporus Polysaccharides MH751906 for Natural Killer Cells Mediated Colon Cancer Immunotherapy. Int. J. Biol. Macromol. 2022, 205, 385–395. [Google Scholar] [CrossRef]
- Hans, N.; Malik, A.; Naik, S. Antiviral Activity of Sulfated Polysaccharides from Marine Algae and Its Application in Combating COVID-19: Mini Review. Bioresour. Technol. Rep. 2021, 13, 100623. [Google Scholar] [CrossRef]
- Sokolova, E.V.; Byankina, A.O.; Kalitnik, A.A.; Kim, Y.H.; Bogdanovich, L.N.; Solov’eva, T.F.; Yermak, I.M. Influence of Red Algal Sulfated Polysaccharides on Blood Coagulation and Platelets Activation in Vitro. J. Biomed. Mater. Res. A 2014, 102, 1431–1438. [Google Scholar] [CrossRef] [PubMed]
- Gashti, M.P.; Stir, M.; Hulliger, J. Synthesis of Bone-like Micro-Porous Calcium Phosphate/Iota-Carrageenan Composites by Gel Diffusion. Colloids Surf. B Biointerfaces 2013, 110, 426–433. [Google Scholar] [CrossRef] [PubMed]
- Noralian, Z.; Gashti, M.P.; Moghaddam, M.R.; Tayyeb, H.; Erfanian, I. Ultrasonically Developed Silver/Iota-Carrageenan/Cotton Bionanocomposite as an Efficient Material for Biomedical Applications. Int. J. Biol. Macromol. 2021, 180, 439–457. [Google Scholar] [CrossRef]
- Kim, C.; Deratani, A.; Bonfils, F. Determination of the Refractive Index Increment of Natural and Synthetic Poly(Cis-1,4-Isoprene) Solutions and Its Effect on Structural Parameters. J. Liq. Chromatogr. Relat. Technol. 2010, 33, 37–45. [Google Scholar] [CrossRef]
- Gimpl, K.; Klement, J.; Keller, S. Characterising Protein/Detergent Complexes by Triple-Detection Size-Exclusion Chromatography. Biol. Proced. Online 2016, 18, 4. [Google Scholar] [CrossRef] [PubMed]
- Schärtl, W. Light Scattering from Polymer Solutions and Nanoparticle Dispersions; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2007; ISBN 978-3-540-71951-9. [Google Scholar]
- Jiang, F.; Liu, Y.; Xiao, Q.; Chen, F.; Weng, H.; Chen, J.; Zhang, Y.; Xiao, A. Eco-Friendly Extraction, Structure, and Gel Properties of ι-Carrageenan Extracted Using Ca(OH)2. Mar. Drugs 2022, 20, 419. [Google Scholar] [CrossRef] [PubMed]
- Janaswamy, S.; Chandrasekaran, R. Effect of Calcium Ions on the Organization of Iota-Carrageenan Helices: An X-Ray Investigation. Carbohydr. Res. 2002, 337, 523–535. [Google Scholar] [CrossRef] [PubMed]
- Younes, I.; Rinaudo, M. Chitin and Chitosan Preparation from Marine Sources. Structure, Properties and Applications. Mar. Drugs 2015, 13, 1133–1174. [Google Scholar] [CrossRef] [PubMed]
- Rasti, H.; Parivar, K.; Baharara, J.; Iranshahi, M.; Namvar, F. Chitin from the Mollusc Chiton: Extraction, Characterization and Chitosan Preparation. Iran. J. Pharm. Res. 2017, 16, 366–379. [Google Scholar] [PubMed]
- Pakizeh, M.; Moradi, A.; Ghassemi, T. Chemical Extraction and Modification of Chitin and Chitosan from Shrimp Shells. Eur. Polym. J. 2021, 159, 110709. [Google Scholar] [CrossRef]
- Pyrzynska, K. Preconcentration and Removal of Pb(II) Ions from Aqueous Solutions Using Graphene-Based Nanomaterials. Materials 2023, 16, 1078. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, S.G.; Dos Santos, A.M.; Silvestre, A.L.P.; Meneguin, A.B.; Ferreira, L.M.B.; Chorilli, M.; Gremião, M.P.D. New Insights into Physicochemical Aspects Involved in the Formation of Polyelectrolyte Complexes Based on Chitosan and Dextran Sulfate. Carbohydr. Polym. 2021, 271, 118436. [Google Scholar] [CrossRef]
- Bezerra, E.D.O.T.; Berton, S.B.R.; De Oliveira, A.C.; Souza, P.R.; Vecchi, C.F.; Bruschi, M.L.; Vilsinski, B.H.; Martins, A.F. The Cooling of Blends in Water Supports Durable, Thermo-Responsive, and Porous Gelatin-Polyphenolic Tannin Assemblies with Antimicrobial Activities. Mater. Today Commun. 2021, 26, 101883. [Google Scholar] [CrossRef]
- Pa, J.-H.; Yu, T.L. Light Scattering Study of Chitosan in Acetic Acid Aqueous Solutions. Macromol. Chem. Phys. 2001, 202, 985–991. [Google Scholar] [CrossRef]
- Sreekumar, S.; Goycoolea, F.M.; Moerschbacher, B.M.; Rivera-Rodriguez, G.R. Parameters Influencing the Size of Chitosan-TPP Nano- and Microparticles. Sci. Rep. 2018, 8, 4695. [Google Scholar] [CrossRef] [PubMed]
- Valle, J.A.B.; Valle, R.d.C.S.C.; Bierhalz, A.C.K.; Bezerra, F.M.; Hernandez, A.L.; Lis Arias, M.J. Chitosan Microcapsules: Methods of the Production and Use in the Textile Finishing. J. Appl. Polym. Sci. 2021, 138, 50482. [Google Scholar] [CrossRef]
- Moura, C.M.D.; Moura, J.M.D.; Soares, N.M.; Pinto, L.A.D.A. Evaluation of Molar Weight and Deacetylation Degree of Chitosan during Chitin Deacetylation Reaction: Used to Produce Biofilm. Chem. Eng. Process. Process Intensif. 2011, 50, 351–355. [Google Scholar] [CrossRef]
- Abad, L.V.; Nasimova, I.R.; Aranilla, C.T.; Shibayama, M. Light Scattering Studies of Irradiated κ- and ι-Carrageenan. Radiat. Phys. Chem. 2005, 73, 29–37. [Google Scholar] [CrossRef]
- Necas, J.; Bartosikova, L. Carrageenan: A Review. Vet. Med. 2013, 58, 187–205. [Google Scholar] [CrossRef]
- Bahari, A.; Moelants, K.; Wallecan, J.; Mangiante, G.; Mazoyer, J.; Hendrickx, M.; Grauwet, T. Understanding the Effect of Time, Temperature and Salts on Carrageenan Extraction from Chondrus Cris. Algal Res. 2021, 58, 102371. [Google Scholar] [CrossRef]
- Diharmi, A.; Rusnawati; Irasari, N. Characteristic of Carrageenan Eucheuma Cottonii Collected from the Coast of Tanjung Medang Village and Jaga Island, Riau. IOP Conf. Ser. Earth Environ. Sci. 2020, 404, 012049. [Google Scholar] [CrossRef]
- Flórez-Fernández, N.; Falqué, E.; Domínguez, H.; Torres, M.D. Green Extraction of Carrageenans from Mastocarpus Stellatus. Polymers 2022, 14, 554. [Google Scholar] [CrossRef]
- Azanza-Corrales, R.; Sa-a, P. The Farmed Eucheuma Species (Gigartinales, Rhodophyta) in Danajon Reef, Philippines: Carrageenan Properties. Hydrobiologia 1990, 204, 521–525. [Google Scholar] [CrossRef]
- Trono, G.C.; Lluisma, A.O. Differences in Biomass Production and Carrageenan Yields among Four Strains of Farmed Carrageenophytes in Northern Bohol, Philippines. Hydrobiologia 1992, 247, 223–227. [Google Scholar] [CrossRef]
- Hayashi, L.; de Paula, E.J.; Chow, F. Growth Rate and Carrageenan Analyses in Four Strains of Kappaphycus Alvarezii (Rhodophyta, Gigartinales) Farmed in the Subtropical Waters of São Paulo State, Brazil. J. Appl. Phycol. 2007, 19, 393–399. [Google Scholar] [CrossRef]
- Koyama, R. The Second Virial Coefficient of Polymer Solutions. J. Polym. Sci. 1959, 35, 247–258. [Google Scholar] [CrossRef]
- Martins, A.F.; Facchi, S.P.; Follmann, H.D.M.; Gerola, A.P.; Rubira, A.F.; Muniz, E.C. Shielding Effect of ‘Surface Ion Pairs’ on Physicochemical and Bactericidal Properties of N,N,N-Trimethyl Chitosan Salts. Carbohydr. Res. 2015, 402, 252–260. [Google Scholar] [CrossRef] [PubMed]
- Chang, A.K.T.; Frias, R.R.; Alvarez, L.V.; Bigol, U.G.; Guzman, J.P.M.D. Comparative Antibacterial Activity of Commercial Chitosan and Chitosan Extracted from Auricularia Sp. Biocatal. Agric. Biotechnol. 2019, 17, 189–195. [Google Scholar] [CrossRef]
- Nunes, C.S.; Rufato, K.B.; Souza, P.R.; De Almeida, E.A.M.S.; Da Silva, M.J.V.; Scariot, D.B.; Nakamura, C.V.; Rosa, F.A.; Martins, A.F.; Muniz, E.C. Chitosan/Chondroitin Sulfate Hydrogels Prepared in [Hmim][HSO4] Ionic Liquid. Carbohydr. Polym. 2017, 170, 99–106. [Google Scholar] [CrossRef] [PubMed]
- De Oliveira, A.C.; Sabino, R.M.; Souza, P.R.; Muniz, E.C.; Popat, K.C.; Kipper, M.J.; Zola, R.S.; Martins, A.F. Chitosan/Gellan Gum Ratio Content into Blends Modulates the Scaffolding Capacity of Hydrogels on Bone Mesenchymal Stem Cells. Mater. Sci. Eng. C 2020, 106, 110258. [Google Scholar] [CrossRef] [PubMed]
- Chitra, R.; Sathya, P.; Selvasekarapandian, S.; Monisha, S.; Moniha, V.; Meyvel, S. Synthesis and Characterization of Iota-Carrageenan Solid Biopolymer Electrolytes for Electrochemical Applications. Ionics 2019, 25, 2147–2157. [Google Scholar] [CrossRef]
- Ghani, N.A.A.; Othaman, R.; Ahmad, A.; Anuar, F.H.; Hassan, N.H. Impact of Purification on Iota Carrageenan as Solid Polymer Electrolyte. Arab. J. Chem. 2019, 12, 370–376. [Google Scholar] [CrossRef]
- Devi, N.; Maji, T.K. Microencapsulation of Isoniazid in Genipin-Crosslinked Gelatin-A-κ-Carrageenan Polyelectrolyte Complex. Drug Dev. Ind. Pharm. 2010, 36, 56–63. [Google Scholar] [CrossRef]
- Tapia, C.; Escobar, Z.; Costa, E.; Sapag-Hagar, J.; Valenzuela, F.; Basualto, C.; Nella Gai, M.; Yazdani-Pedram, M. Comparative Studies on Polyelectrolyte Complexes and Mixtures of Chitosan–Alginate and Chitosan–Carrageenan as Prolonged Diltiazem Clorhydrate Release Systems. Eur. J. Pharm. Biopharm. 2004, 57, 65–75. [Google Scholar] [CrossRef] [PubMed]
- Rabelo, R.S.; Tavares, G.M.; Prata, A.S.; Hubinger, M.D. Complexation of Chitosan with Gum Arabic, Sodium Alginate and κ-Carrageenan: Effects of pH, Polymer Ratio and Salt Concentration. Carbohydr. Polym. 2019, 223, 115120. [Google Scholar] [CrossRef]
- Deng, L.; Qi, H.; Yao, C.; Feng, M.; Dong, A. Investigation on the Properties of Methoxy Poly(Ethylene Glycol)/Chitosan Graft Co-Polymers. J. Biomater. Sci. Polym. Ed. 2007, 18, 1575–1589. [Google Scholar] [CrossRef]
- Michel, A.-S.; Mestdagh, M.M.; Axelos, M.A.V. Physico-Chemical Properties of Carrageenan Gels in Presence of Various Cations. Int. J. Biol. Macromol. 1997, 21, 195–200. [Google Scholar] [CrossRef] [PubMed]
- Du, J.; Dai, J.; Liu, J.-L.; Dankovich, T. Novel pH-Sensitive Polyelectrolyte Carboxymethyl Konjac Glucomannan-Chitosan Beads as Drug Carriers. React. Funct. Polym. 2006, 66, 1055–1061. [Google Scholar] [CrossRef]
- Aranaz, I.; Alcántara, A.R.; Civera, M.C.; Arias, C.; Elorza, B.; Heras Caballero, A.; Acosta, N. Chitosan: An Overview of Its Properties and Applications. Polymers 2021, 13, 3256. [Google Scholar] [CrossRef]
- Triana-Guzmán, V.L.; Ruiz-Cruz, Y.; Romero-Peñaloza, E.L.; Zuluaga-Corrales, H.F.; Chaur-Valencia, M.N. New Chitosan-Imine Derivatives: From Green Chemistry to Removal of Heavy Metals from Water. Rev. Fac. Ing. Univ. Antioq. 2018, 89, 34–43. [Google Scholar] [CrossRef]
- Martins, J.G.; de Oliveira, A.C.; Garcia, P.S.; Kipper, M.J.; Martins, A.F. Durable pectin/chitosan membranes with self-assembling, water resistance and enhanced mechanical properties. Carbohydr. Polym. 2018, 188, 136–142. [Google Scholar] [CrossRef]
- Li, C.; Hein, S.; Wang, K. Chitosan-Carrageenan Polyelectrolyte Complex for the Delivery of Protein Drugs. ISRN Biomater. 2013, 2013, 629807. [Google Scholar] [CrossRef]
- Deka, C.; Deka, D.; Bora, M.M.; Jha, D.K.; Kakati, D.K. Synthesis of Peppermint Oil-Loaded Chitosan/Alginate Polyelectrolyte Complexes and Study of Their Antibacterial Activity. J. Drug Deliv. Sci. Technol. 2016, 35, 314–322. [Google Scholar] [CrossRef]
- Khalid, A.; Ahmed, N.; Qindeel, M.; Asad, M.I.; Khan, G.M.; Rehman, A. Development of Novel Biopolymer-Based Nanoparticles Loaded Cream for Potential Treatment of Topical Fungal Infections. Drug Dev. Ind. Pharm. 2021, 47, 1090–1099. [Google Scholar] [CrossRef] [PubMed]
- Kramarenko, E.Y.; Khokhlov, A.R.; Reineker, P. Stoichiometric Polyelectrolyte Complexes of Ionic Block Copolymers and Oppositely Charged Polyions. J. Chem. Phys. 2006, 125, 194902. [Google Scholar] [CrossRef] [PubMed]
- Danaei, M.; Dehghankhold, M.; Ataei, S.; Hasanzadeh Davarani, F.; Javanmard, R.; Dokhani, A.; Khorasani, S.; Mozafari, M. Impact of Particle Size and Polydispersity Index on the Clinical Applications of Lipidic Nanocarrier Systems. Pharmaceutics 2018, 10, 57. [Google Scholar] [CrossRef]
- Blocher, W.C.; Perry, S.L. Complex Coacervate-based Materials for Biomedicine. WIREs Nanomed. Nanobiotechnol. 2017, 9, e1442. [Google Scholar] [CrossRef]
- Chen, W.; Wang, L.; Chen, J.; Fan, S. Characterization of Polyelectrolyte Complexes between Chondroitin Sulfate and Chitosan in the Solid State. J. Biomed. Mater. Res. 2005, 75A, 128–137. [Google Scholar] [CrossRef]
- Wathoni, N.; Meylina, L.; Rusdin, A.; Mohammed, A.F.A.; Tirtamie, D.; Herdiana, Y.; Motoyama, K.; Panatarani, C.; Joni, I.M.; Lesmana, R.; et al. The Potential Cytotoxic Activity Enhancement of α-Mangostin in Chitosan-Kappa Carrageenan-Loaded Nanoparticle against MCF-7 Cell Line. Polymers 2021, 13, 1681. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Li, Y.; Hou, Y. Effects of hydroxyls on the agregation behavior of various alkali lignins in an ionic liquid, 1-ethyl-3-methylimidazolium acetate. J. Mol. Liq. 2020, 297, 111749. [Google Scholar] [CrossRef]
- Maciel, J.S.; Silva, D.A.; Paula, H.C.B.; de Paula, R.C.M. Chitosan/Carboxymethyl Cashew Gum Polyelectrolyte Complex: Synthesis and Thermal Stability. Eur. Polym. J. 2005, 41, 2726–2733. [Google Scholar] [CrossRef]
- Ferreira, L.M.B.; dos Santos, A.M.; Boni, F.I.; dos Santos, K.C.; Robusti, L.M.G.; de Souza, M.P.C.; Ferreira, N.N.; Carvalho, S.G.; Cardoso, V.M.O.; Chorilli, M.; et al. Design of Chitosan-Based Particle Systems: A Review of the Physicochemical Foundations for Tailored Properties. Carbohydr. Polym. 2020, 250, 116968. [Google Scholar] [CrossRef] [PubMed]
- Yilmaz, T.; Maldonado, L.; Turasan, H.; Kokini, J. Thermodynamic Mechanism of Particulation of Sodium Alginate and Chitosan Polyelectrolyte Complexes as a Function of Charge Ratio and Order of Addition. J. Food Eng. 2019, 254, 42–50. [Google Scholar] [CrossRef]
- Polexe, R.C.; Delair, T. Elaboration of Stable and Antibody Functionalized Positively Charged Colloids by Polyelectrolyte Complexation between Chitosan and Hyaluronic Acid. Molecules 2013, 18, 8563–8578. [Google Scholar] [CrossRef] [PubMed]
- Sæther, H.V.; Holme, H.K.; Maurstad, G.; Smidsrød, O.; Stokke, B.T. Polyelectrolyte Complex Formation Using Alginate and Chitosan. Carbohydr. Polym. 2008, 74, 813–821. [Google Scholar] [CrossRef]
- Bhattacharjee, S. DLS and Zeta Potential—What They Are and What They Are Not? J. Control. Release 2016, 235, 337–351. [Google Scholar] [CrossRef] [PubMed]
- Tarı, Ö.; Pekcan, Ö. Swelling of Iota-Carrageenan Gels Prepared with Various CaCl2 Content: A Fluorescence Study. e-Polymers 2008, 8, 1. [Google Scholar] [CrossRef]
- Boni, F.I.; Cury, B.S.F.; Ferreira, N.N.; Teixeira, D.A.; Gremião, M.P.D. Computational and Experimental Approaches for Chitosan-Based Nano PECs Design: Insights on a Deeper Comprehension of Nanostructure Formation. Carbohydr. Polym. 2021, 254, 117444. [Google Scholar] [CrossRef] [PubMed]
Assays | pH | DCA * (mg/mL) | DCH (mg/mL) | PA/PC (v/v) | PA/PC (w/w) |
---|---|---|---|---|---|
1 | 4.4 | 0.9 | 0.3 | 2 | 85.7/14.3 |
2 | 3.6 | 0.3 | 0.3 | 8 | 88.8/11.2 |
3 | 4.4 | 0.3 | 0.3 | 8 | 88.8/11.2 |
4 | 4.4 | 0.9 | 0.3 | 8 | 96/4 |
5 | 3.6 | 0.9 | 0.3 | 8 | 96/4 |
6 | 4.4 | 0.3 | 0.3 | 2 | 66.6/33.4 |
7 | 4.0 | 0.6 | 0.3 | 5 | 90.9/9.1 |
8 | 3.6 | 0.9 | 0.3 | 2 | 85.7/14.3 |
9 | 3.6 | 0.3 | 0.3 | 2 | 66.6/33.4 |
Assays | pH | DCH * (mg/mL) | DCA (mg/mL) | PC/PA (v/v) | PC/PA (w/w) |
---|---|---|---|---|---|
10 | 4.4 | 0.9 | 0.3 | 2 | 85.7/14.3 |
11 | 3.6 | 0.3 | 0.3 | 8 | 88.8/11.2 |
12 | 4.4 | 0.3 | 0.3 | 8 | 88.8/11.2 |
13 | 4.4 | 0.9 | 0.3 | 8 | 96/4 |
14 | 3.6 | 0.9 | 0.3 | 8 | 96/4 |
15 | 4.0 | 0.6 | 0.3 | 5 | 90.9/9.1 |
16 | 4.4 | 0.3 | 0.3 | 2 | 66.6/33.4 |
17 | 3.6 | 0.9 | 0.3 | 2 | 85.7/14.3 |
18 | 3.6 | 0.3 | 0.3 | 2 | 66.6/33.4 |
Polysaccharide | Na+ (mg/g) | Ca2+ (mg/g) | Mg2+ (mg/g) | (g/mol) | A2 (mol·mL/g2) |
---|---|---|---|---|---|
Unpurified ι-carrageenan ** | 2.69 | 158.22 | 0.566 | 105 | 10−5 |
Purified ι-carrageenan * | 2.23 | 24.85 | 0.500 | 106 | 10−4 |
Unpurified chitosan ** | 2.44 | 25.47 | 1.75 | 107 | 10−6 |
Purified chitosan * | 2.47 | 9.09 | 0.64 | 107 | 10−6 |
25 °C | 37 °C | ||||||||
---|---|---|---|---|---|---|---|---|---|
Assays | pH | DCA (mg/mL) | PA/PC * | HR (nm) | ζ (mV) | PDI (%) | HR (nm) | ζ (mV) | PDI (%) |
1 | 4.4 | 0.9 | 2 | 4547 e ± 2634 | 26 a,b,c ± 2 | 29 b,c ± 4 | 2307 d ± 150 | 25 a,b ± 3 | 39 a ± 2 |
2 | 3.6 | 0.3 | 8 | 132 b ± 1 | 2 d ± 1 | 22 a,b ± 2 | 137 a ± 3 | 10 b,c ± 7 | 21 a ± 1 |
3 | 4.4 | 0.3 | 8 | 710 d ± 12 | 23 a,b,c ± 1 | 29 b,c ± 2 | 842 c ± 247 | 9 b,c ± 9 | 30 a ± 3 |
4 | 4.4 | 0.9 | 8 | 265 a ± 6 | 16 c ± 13 | 19 a,b ± 3 | 277 a,b ± 3 | 22 a,b ± 9 | 23 a ± 2 |
5 | 3.6 | 0.9 | 8 | 135 b ± 1 | 25 a,b,c ± 4 | 17 a ± 1 | 138 a ± 2 | 10 b,c ± 3 | 22 a ± 1 |
6 | 4.4 | 0.3 | 2 | 9811 f ± 2298 | 2.0 d ± 1 | 34 c ± 11 | 4297 d ± 749 | 3 c ± 4 | 35 b ± 12 |
7 | 4.0 | 0.6 | 5 | 278 a ± 5 | 31 a,b ± 3 | 24 a,b,c ± 2 | 290 a,b ± 41 | 29 a ± 1 | 24 a ± 2 |
8 | 3.6 | 0.9 | 2 | 131 b ± 2 | 21 a,b,c ± 2 | 14 a ± 3 | 135 a ± 4 | 17 a,b,c ± 7 | 18 a ± 2 |
9 | 3.6 | 0.3 | 2 | 511 c ± 17 | 18 b,c ± 2 | 24 a,b,c ± 10 | 479 b ± 17 | 16 a,b,c ± 9 | 28 a ± 1 |
25 °C | 37 °C | ||||||||
---|---|---|---|---|---|---|---|---|---|
Assays | pH | DCA (mg/mL) | PA/PC * | HR (nm) | ζ (mV) | PDI (%) | HR (nm) | ζ (mV) | PDI (%) |
10 | 4.4 | 0.9 | 2 | 509 c ± 1 | +39 b ± 1 | 27 a ± 1 | 497 a,b,c ± 25 | +46 c ± 1 | 26 a ± 1 |
11 | 3.6 | 0.3 | 8 | 328 b ± 22 | +17 d ± 3 | 23 a ± 1 | 333 b,d,e ± 29 | +3 a ± 3 | 28 a ± 1 |
12 | 4.4 | 0.3 | 8 | 396 a,b, ± 20 | +48 b ± 7 | 21 a ± 1 | 359 a,b,d,e ± 23 | +30 b,c ± 9 | 29 a ± 1 |
13 | 4.4 | 0.9 | 8 | 521 c ± 32 | +47 b ± 7 | 27 a ± 2 | 523 a,c ± 36 | +31 b,c ± 17 | 29 a ± 3 |
14 | 3.6 | 0.9 | 8 | 578 c,d ± 22 | +3 a ± 0,6 | 30 a ± 3 | 577 c ± 18 | +1.0 a ± 0,5 | 26 a ± 4 |
15 | 4.0 | 0.6 | 5 | 394 a,b ± 26 | +16 c.d ± 2 | 26 a ± 2 | 330 d,e ± 8 | +22 a,b ± 8 | 24 a ± 1 |
16 | 4.4 | 0.3 | 2 | 437 a ± 6 | 0 a | 25 a ± 3 | 500 a,c ± 80 | +2 a ± 1 | 24 a ± 3 |
17 | 3.6 | 0.9 | 2 | 389 a,b ± 22 | +12 a,c,d ± 5 | 26 a ± 2 | 382 ª,b,d,e ± 8 | +14 a,b ± 9 | 26 a ± 2 |
18 | 3.6 | 0.3 | 2 | 252 e ± 1 | +45 b ± 8 | 24 a ± 1 | 246 d ± 2 | +35 b,c ± 8 | 27 a ± 1 |
Assays | Wet Size (HR nm) * | Dry Size (nm) ** |
---|---|---|
2 | 132 ± 1 | 215 ± 61 |
4 | 265 ± 6 | 149 ± 53 |
5 | 135 ± 1 | 44 ± 17 |
7 | 278 ± 5 | 45 ± 11 |
9 | 511 ± 17 | 95 ± 26 |
11 | 328 ± 22 | 6.5 × 103 ± 1.5 × 103 |
12 | 396 ± 20 | 620 ± 172 |
15 | 394 ± 26 | 13.5 × 103 ± 2.7 × 103 |
18 | 252 ± 1 | 366 ± 93 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Klein, R.S.; de Almeida, D.A.; de Oliveira, A.C.; Bonafé, E.G.; Monteiro, J.P.; Sabino, R.M.; Martins, A.F. Iota-Carrageenan/Chitosan Nanoparticles via Coacervation: Achieving Stability for Tiny Particles. Nanomaterials 2025, 15, 161. https://doi.org/10.3390/nano15030161
Klein RS, de Almeida DA, de Oliveira AC, Bonafé EG, Monteiro JP, Sabino RM, Martins AF. Iota-Carrageenan/Chitosan Nanoparticles via Coacervation: Achieving Stability for Tiny Particles. Nanomaterials. 2025; 15(3):161. https://doi.org/10.3390/nano15030161
Chicago/Turabian StyleKlein, Rosecler S., Débora A. de Almeida, Ariel C. de Oliveira, Elton G. Bonafé, Johny P. Monteiro, Roberta M. Sabino, and Alessandro F. Martins. 2025. "Iota-Carrageenan/Chitosan Nanoparticles via Coacervation: Achieving Stability for Tiny Particles" Nanomaterials 15, no. 3: 161. https://doi.org/10.3390/nano15030161
APA StyleKlein, R. S., de Almeida, D. A., de Oliveira, A. C., Bonafé, E. G., Monteiro, J. P., Sabino, R. M., & Martins, A. F. (2025). Iota-Carrageenan/Chitosan Nanoparticles via Coacervation: Achieving Stability for Tiny Particles. Nanomaterials, 15(3), 161. https://doi.org/10.3390/nano15030161