Engineering Nonvolatile Polarization in 2D α-In2Se3/α-Ga2Se3 Ferroelectric Junctions
Abstract
:1. Introduction
2. Calculation Methods
3. Results and Discussion
3.1. Polarity Configuration and Structural Stability
3.2. Band Structures and Density of States
3.3. Electrostatic Potential and Charge Transfer
3.4. Strain Modulation on α-In2Se3/α-Ga2Se3 Polar Heterostructures
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, H.; Liu, Z.R.; Yoong, H.Y.; Paudel, T.R.; Xiao, J.X.; Guo, R.; Lin, W.N.; Yang, P.; Wang, J.; Chow, G.M.; et al. Direct observation of room-temperature out-of-plane ferroelectricity and tunneling electroresistance at the two-dimensional limit. Nat. Commun. 2018, 9, 3319. [Google Scholar] [CrossRef] [PubMed]
- Morozovska, A.N.; Eliseev, E.A.; Glinchuk, M.D. Size effects and depolarization field influence on the phase diagrams of cylindrical ferroelectric nanoparticles. Phys. B-Condens. Matter 2006, 387, 358–366. [Google Scholar] [CrossRef]
- Fong, D.D.; Stephenson, G.B.; Streiffer, S.K.; Eastman, J.A.; Auciello, O.; Fuoss, P.H.; Thompson, C. Ferroelectricity in Ultrathin Perovskite Films. Science 2004, 304, 1650–1653. [Google Scholar] [CrossRef]
- Liu, F.; You, L.; Seyler, K.L.; Li, X.; Yu, P.; Lin, J.; Wang, X.; Zhou, J.; Wang, H.; He, H.; et al. Room-temperature ferroelectricity in CuInP2S6 ultrathin flakes. Nat. Commun. 2016, 7, 12357. [Google Scholar] [CrossRef] [PubMed]
- Pang, K.; Xu, X.; Wei, Y.; Ying, T.; Li, W.; Yang, J.; Li, X.; Jiang, Y.; Zhang, G.; Tian, W. Integrating ferromagnetism and ferroelectricity in an iron chalcogenide monolayer: A first-principles study. Nanoscale 2022, 14, 14231–14239. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.; Wang, Y.; Xiao, J.; Liu, M.; Xiong, S.; Wong, Z.J.; Ye, Z.; Ye, Y.; Yin, X.; Zhang, X. Observation of piezoelectricity in free-standing monolayer MoS2. Nat. Nanotechnol. 2015, 10, 151–155. [Google Scholar] [CrossRef]
- Ding, W.; Zhu, J.; Wang, Z.; Gao, Y.; Xiao, D.; Gu, Y.; Zhang, Z.; Zhu, W. Prediction of intrinsic two-dimensional ferroelectrics in In2Se3 and other III2-VI3 van der Waals materials. Nat. Commun. 2017, 8, 14956. [Google Scholar] [CrossRef]
- Li, L.; Wu, M. Binary Compound Bilayer and Multilayer with Vertical Polarizations: Two-Dimensional Ferroelectrics, Multiferroics, and Nanogenerators. ACS Nano 2017, 11, 6382–6388. [Google Scholar] [CrossRef] [PubMed]
- Wan, S.; Li, Y.; Li, W.; Mao, X.; Wang, C.; Chen, C.; Dong, J.; Nie, A.; Xiang, J.; Liu, Z.; et al. Nonvolatile Ferroelectric Memory Effect in Ultrathin α-In2Se3. Adv. Funct. Mater. 2019, 29, 1808606. [Google Scholar] [CrossRef]
- Si, M.; Liao, P.-Y.; Qiu, G.; Duan, Y.; Ye, P.D. Ferroelectric Field-Effect Transistors Based on MoS2 and CuInP2S6 Two-Dimensional van der Waals Heterostructure. ACS Nano 2018, 12, 6700–6705. [Google Scholar] [CrossRef] [PubMed]
- Lu, H.; Lipatov, A.; Ryu, S.; Kim, D.J.; Lee, H.; Zhuravlev, M.Y.; Eom, C.B.; Tsymbal, E.Y.; Sinitskii, A.; Gruverman, A. Ferroelectric tunnel junctions with graphene electrodes. Nat. Commun. 2014, 5, 5518. [Google Scholar] [CrossRef]
- Lu, J.; Yao, J.; Yan, J.; Gao, W.; Huang, L.; Zheng, Z.; Zhang, M.; Li, J. Strain engineering coupled with optical regulation towards a high-sensitivity In2S3 photodetector. Mater. Horiz. 2020, 7, 1427–1435. [Google Scholar] [CrossRef]
- Gallego-Parra, S.; Vilaplana, R.; Gomis, O.; Rodríguez-Hernández, P.; Muñoz, A.; González, J.A.; Sans, J.A.; Popescu, C.; Manjón, F.J. High-Pressure Synthesis of β- and α-In2Se3-Like Structures in Ga2S3. Chem. Mater. 2022, 34, 6068–6086. [Google Scholar] [CrossRef]
- Meng, S.; Wang, J.; Shi, H.; Sun, X.; Gao, B. Distinct ultrafast carrier dynamics of α-In2Se3 and β-In2Se3: Contributions from band filling and bandgap renormalization. Phys. Chem. Chem. Phys. 2021, 23, 24313–24318. [Google Scholar] [CrossRef]
- Han, G.; Chen, Z.-G.; Drennan, J.; Zou, J. Indium Selenides: Structural Characteristics, Synthesis and Their Thermoelectric Performances. Small 2014, 10, 2747–2765. [Google Scholar] [CrossRef]
- Chaiken, A.; Nauka, K.; Gibson, G.A.; Lee, H.; Yang, C.C.; Wu, J.; Ager, J.W.; Yu, K.M.; Walukiewicz, W. Structural and electronic properties of amorphous and polycrystalline In2Se3 films. J. Appl. Phys. 2003, 94, 2390–2397. [Google Scholar] [CrossRef]
- Li, W.; Sabino, F.P.; Crasto de Lima, F.; Wang, T.; Miwa, R.H.; Janotti, A. Large disparity between optical and fundamental band gaps in layered. Phys. Rev. B 2018, 98, 165134. [Google Scholar] [CrossRef]
- Zhou, Y.; Wu, D.; Zhu, Y.; Cho, Y.; He, Q.; Yang, X.; Herrera, K.; Chu, Z.; Han, Y.; Downer, M.C.; et al. Out-of-Plane Piezoelectricity and Ferroelectricity in Layered α-In2Se3 Nanoflakes. Nano Lett. 2017, 17, 5508–5513. [Google Scholar] [CrossRef]
- Cui, C.; Hu, W.-J.; Yan, X.; Addiego, C.; Gao, W.; Wang, Y.; Wang, Z.; Li, L.; Cheng, Y.; Li, P.; et al. Intercorrelated In-Plane and Out-of-Plane Ferroelectricity in Ultrathin Two-Dimensional Layered Semiconductor In2Se3. Nano Lett. 2018, 18, 1253–1258. [Google Scholar] [CrossRef]
- Zhao, J.Z.; Chen, L.C.; Xu, B.; Zheng, B.B.; Fan, J.; Xu, H. Strain-tunable out-of-plane polarization in two-dimensional materials. Phys. Rev. B 2020, 101, 121407. [Google Scholar] [CrossRef]
- Nukala, P.; Ahmadi, M.; Wei, Y.; de Graaf, S.; Stylianidis, E.; Chakrabortty, T.; Matzen, S.; Zandbergen, H.W.; Björling, A.; Mannix, D.; et al. Reversible oxygen migration and phase transitions in hafnia-based ferroelectric devices. Science 2021, 372, 630–635. [Google Scholar] [CrossRef] [PubMed]
- Xue, F.; Zhang, J.; Hu, W.; Hsu, W.-T.; Han, A.; Leung, S.-F.; Huang, J.-K.; Wan, Y.; Liu, S.; Zhang, J.; et al. Multidirection Piezoelectricity in Mono- and Multilayered Hexagonal α-In2Se3. ACS Nano 2018, 12, 4976–4983. [Google Scholar] [CrossRef] [PubMed]
- Feng, W.; Gao, F.; Hu, Y.; Dai, M.; Li, H.; Wang, L.; Hu, P. High-performance and flexible photodetectors based on chemical vapor deposition grown two-dimensional In2Se3 nanosheets. Nanotechnology 2018, 29, 445205. [Google Scholar] [CrossRef]
- Kong, D.; Tian, F.; Li, P.; Xu, Y.; Wei, H.; Zheng, X.; Peng, M. Manipulating Ferroelectric α-In2Se3/GaN Dipole Interactions by Polarization Engineering. ACS Appl. Electron. Mater. 2024, 6, 6747–6757. [Google Scholar] [CrossRef]
- Si, M.; Zhang, Z.; Chang, S.-C.; Haratipour, N.; Zheng, D.; Li, J.; Avci, U.; Ye, P. Asymmetric Metal/α-In2Se3/Si Crossbar Ferroelectric Semiconductor Junction. ACS Nano 2021, 15, 5689–5695. [Google Scholar] [CrossRef] [PubMed]
- Shi, H.; Li, M.; Shaygan Nia, A.; Wang, M.; Park, S.; Zhang, Z.; Lohe, M.R.; Yang, S.; Feng, X. Ultrafast Electrochemical Synthesis of Defect-Free In2Se3 Flakes for Large-Area Optoelectronics. Adv. Mater. 2020, 32, 1907244. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Lu, K.; Wang, Y.; Wang, H.; Chen, Q. Mechanical and electronic properties of α−M2X3 (M = Ga, In; X = S, Se) monolayers. Phys. Rev. B 2022, 105, 235303. [Google Scholar] [CrossRef]
- Xue, W.; Jiang, Q.; Wang, F.; He, R.; Pang, R.; Yang, H.; Wang, P.; Yang, R.; Zhong, Z.; Zhai, T.; et al. Discovery of Robust Ferroelectricity in 2D Defective Semiconductor α-Ga2Se3. Small 2022, 18, 2105599. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Mao, Y. Controllable electrical contact characteristics of graphene/Ga2X3 (X = S, Se) ferroelectric heterojunctions. Appl. Phys. Lett. 2024, 125, 043102. [Google Scholar] [CrossRef]
- Hu, L.; Huang, X. Peculiar electronic, strong in-plane and out-of-plane second harmonic generation and piezoelectric properties of atom-thick α-M2X3 (M = Ga, In; X = S, Se): Role of spontaneous electric dipole orientations. RSC Adv. 2017, 7, 55034–55043. [Google Scholar] [CrossRef]
- Wang, V.; Xu, N.; Liu, J.-C.; Tang, G.; Geng, W.-T. VASPKIT: A user-friendly interface facilitating high-throughput computing and analysis using VASP code. Comput. Phys. Commun. 2021, 267, 108033. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Ruzsinszky, A.; Perdew, J.P. Strongly Constrained and Appropriately Normed Semilocal Density Functional. Phys. Rev. Lett. 2015, 115, 036402. [Google Scholar] [CrossRef]
- Borlido, P.; Aull, T.; Huran, A.W.; Tran, F.; Marques, M.A.L.; Botti, S. Large-Scale Benchmark of Exchange-Correlation Functionals for the Determination of Electronic Band Gaps of Solids. J. Chem. Theory Comput. 2019, 15, 5069–5079. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Remsing, R.C.; Zhang, Y.; Sun, Z.; Ruzsinszky, A.; Peng, H.; Yang, Z.; Paul, A.; Waghmare, U.; Wu, X.; et al. Accurate first-principles structures and energies of diversely bonded systems from an efficient density functional. Nat. Chem. 2016, 8, 831–836. [Google Scholar] [CrossRef] [PubMed]
- Nepal, N.K.; Ruzsinszky, A.; Bates, J.E. Rocksalt or cesium chloride: Investigating the relative stability of the cesium halide structures with random phase approximation based methods. Phys. Rev. B 2018, 97, 115140. [Google Scholar] [CrossRef]
- Buda, I.G.; Lane, C.; Barbiellini, B.; Ruzsinszky, A.; Sun, J.; Bansil, A. Characterization of Thin Film Materials using SCAN meta-GGA, an Accurate Nonempirical Density Functional. Sci. Rep. 2017, 7, 44766. [Google Scholar] [CrossRef]
- Blöchl, P.E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979. [Google Scholar] [CrossRef]
- Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775. [Google Scholar] [CrossRef]
- Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104. [Google Scholar] [CrossRef] [PubMed]
- Ayadi, T.; Debbichi, L.; Badawi, M.; Said, M.; Rocca, D.; Lebègue, S. An ab initio study of the electronic properties of the ferroelectric heterostructure In2Se3/Bi2Se3. Appl. Surf. Sci. 2021, 538, 148066. [Google Scholar] [CrossRef]
- Xiong, W.; Xia, C.; Zhao, X.; Wang, T.; Jia, Y. Effects of strain and electric field on electronic structures and Schottky barrier in graphene and SnS hybrid heterostructures. Carbon 2016, 109, 737–746. [Google Scholar] [CrossRef]
- Li, X.; Zhai, B.; Song, X.; Yan, Y.; Li, J.; Xia, C. Two-dimensional Janus-In2STe/InSe heterostructure with direct gap and staggered band alignment. Appl. Surf. Sci. 2020, 509, 145317. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, P.; Kong, D.; Yang, J.; Cui, S.; Chen, Q.; Liu, Y.; He, Z.; Liu, F.; Xu, Y.; Wei, H.; et al. Engineering Nonvolatile Polarization in 2D α-In2Se3/α-Ga2Se3 Ferroelectric Junctions. Nanomaterials 2025, 15, 163. https://doi.org/10.3390/nano15030163
Li P, Kong D, Yang J, Cui S, Chen Q, Liu Y, He Z, Liu F, Xu Y, Wei H, et al. Engineering Nonvolatile Polarization in 2D α-In2Se3/α-Ga2Se3 Ferroelectric Junctions. Nanomaterials. 2025; 15(3):163. https://doi.org/10.3390/nano15030163
Chicago/Turabian StyleLi, Peipei, Delin Kong, Jin Yang, Shuyu Cui, Qi Chen, Yue Liu, Ziheng He, Feng Liu, Yingying Xu, Huiyun Wei, and et al. 2025. "Engineering Nonvolatile Polarization in 2D α-In2Se3/α-Ga2Se3 Ferroelectric Junctions" Nanomaterials 15, no. 3: 163. https://doi.org/10.3390/nano15030163
APA StyleLi, P., Kong, D., Yang, J., Cui, S., Chen, Q., Liu, Y., He, Z., Liu, F., Xu, Y., Wei, H., Zheng, X., & Peng, M. (2025). Engineering Nonvolatile Polarization in 2D α-In2Se3/α-Ga2Se3 Ferroelectric Junctions. Nanomaterials, 15(3), 163. https://doi.org/10.3390/nano15030163