A Colorimetric and Fluorescent Dual-Mode Sensor Based on a Smartphone-Assisted Laccase-like Nanoenzyme for the Detection of Tetracycline Antibiotics
Abstract
:1. Introduce
2. Materials and Methods
2.1. Synthesis of Cu-NH2-BDC and Cu-BL
2.2. Evaluation of Laccase-like Catalytic Activity
2.3. Catalytic Kinetics
2.4. Determination of Reactive Oxygen Species (ROS)
2.5. Evaluation of Catalytic Stability
2.6. Colorimetric Detection of TCs
2.7. Fluorescence Detection of TCs
3. Results
3.1. Catalyst Characterization
3.2. Evaluation of Laccase-like Catalytic Performance
3.3. Colorimetric Detection of TCs Performance of TCs Detection with Colorimetry
3.4. Fluorescence Detection of TCs Performance of TCs Detection with Fluorometry
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Van Boeckel, T.P.; Gandra, S.; Ashok, A.; Caudron, Q.; Grenfell, B.T.; A Levin, S.; Laxminarayan, R. Global Antibiotic Consumption 2000 to 2010: An Analysis of National Pharmaceutical Sales Data. Lancet Infect. Dis. 2014, 14, 742–750, Corrected in Lancet Infect. Dis. 2017, 17, 897. [Google Scholar] [CrossRef] [PubMed]
- Naik, L.; Sharma, R.; Mann, B.; Lata, K.; Rajput, Y.S.; Surendra Nath, B. Rapid Screening Test for Detection of Oxytetracycline Residues in Milk Using Lateral Flow Assay. Food Chem. 2017, 219, 85–92. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Ning, D.; Li, W.J.; Du, X.M.; Wang, Q.; Li, Y.; Ruan, W.J. Metal-Organic Framework-Based Fluorescent Sensing of Tetracycline-Type Antibiotics Applicable to Environmental and Food Analysis. Analyst 2019, 144, 1916–1922. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Qiao, J.; Liu, W.; Qi, L. Boosting the Peroxidase-like Activity of Gold Nanoclusters for the Colorimetric Detection of Oxytetracycline in Rat Serum. Analyst 2021, 146, 5061–5066. [Google Scholar] [CrossRef]
- Gong, X.; Li, X.; Qing, T.; Zhang, P.; Feng, B. Amplified Colorimetric Detection of Tetracycline Based on an Enzyme-Linked Aptamer Assay with Multivalent HRP-Mimicking DNAzyme. Analyst 2019, 144, 1948–1954. [Google Scholar] [CrossRef] [PubMed]
- Jiang, L.; Zhai, W.; Wang, J.; Li, G.; Zhou, Z.; Li, B.; Zhuo, H. Antibiotics and antibiotic resistance genes in the water sources of the Wuhan stretch of the Yangtze River: Occurrence, distribution, and ecological risks. Environ. Res. 2023, 239, 117295. [Google Scholar] [CrossRef] [PubMed]
- Khaled, O.; Ryad, L.; Eissa, F. Determination of tetracycline residues in potatoes and soil by LC-MS/MS: Method development, validation, and risk assessment. Food Chem. 2024, 461, 140841. [Google Scholar] [CrossRef]
- Al-Afy, N.; Sereshti, H.; Hijazi, A. Determination of three tetracyclines in bovine milk using magnetic solid phase extraction in tandem with dispersive liquid-liquid microextraction coupled with HPLC. J. Chromatogr. B 2018, 1092, 480–488. [Google Scholar] [CrossRef] [PubMed]
- Saridal, K.; Ulusoy, H.İ. A simple methodology based on cloud point extraction prior to HPLC-PDA analysis for tetracycline residues in food samples. Microchem. J. 2019, 150, 104170. [Google Scholar] [CrossRef]
- Jalalian, S.H.; Karimabadi, N.; Ramezani, M.; Abnous, K.; Taghdisi, S.M. Electrochemical and optical aptamer-based sensors for detection of tetracyclines. Trends Food Sci. Technol. 2018, 73, 45–57. [Google Scholar] [CrossRef]
- Ibarra, I.S.; Rodriguez, J.A.; Miranda, J.M. Magnetic solid phase extraction based on phenyl silica adsorbent for the determination of tetracyclines in milk samples by capillary electrophoresis. J. Chromatogr. A 2011, 1218, 2196–2202. [Google Scholar] [CrossRef]
- Adrian, J. Preparation of antibodies and development of an enzyme-linked immunosorbent assay (ELISA) for the determination of doxycycline antibiotic in milk samples. J. Agric. Food Chem. 2012, 60, 3837–3846. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Ma, C.; Gu, J.; Wu, Y.; Zhu, C.; Li, L.; Gao, H.; Zhang, Y.; Shang, Y.; Wang, C.; et al. A sensitive surface-enhanced Raman spectroscopy method for detecting tetracycline in milk. Appl. Spectrosc. 2021, 75, 589–595. [Google Scholar] [CrossRef] [PubMed]
- Gao, L.; Zhuang, J.; Nie, L.; Zhang, J.; Zhang, Y.; Gu, N.; Wang, T.; Feng, J.; Yang, D.; Perrett, S.; et al. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat. Nanotechnol. 2007, 2, 577–583. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Sun, D.-W.; Pu, H.; Wei, Q.; Luo, L.; Wang, J. A colorimetric paper sensor based on the domino reaction of acetylcholinesterase and degradable γ-mnooh nanozyme for sensitive detection of organophosphorus pesticides. Sens. Actuators B Chem. 2019, 290, 573–580. [Google Scholar] [CrossRef]
- Jin, R.; Kong, D.; Yan, X. Integrating target-responsive hydrogels with smartphone for on-site ppb-level quantitation of organophosphate pesticides. ACS Appl. Mater. Interfaces 2019, 11, 27605–27614. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.; Huang, L.; Zhu, X.; Chen, J.; Chao, D.; Li, M.; Wu, S.; Dong, S. Reversible inhibition of the oxidase-like activity of Fe single-atom nanozymes for drug detection. Chem. Sci. 2022, 13, 4566–4572. [Google Scholar] [CrossRef]
- Han, F. Single-atom nanozymes: Emerging talent for sensitive detection of heavy metals. Colloids Surf. B Biointerfaces 2024, 242, 114093. [Google Scholar] [CrossRef]
- Li, R.; Fan, H.; Zhou, H.; Chen, Y.; Yu, Q.; Hu, W.; Liu, G.L.; Huang, L. Nanozyme-Catalyzed metasurface plasmon sensor-based portable ultrasensitive optical quantification platform for cancer biomarker screening. Adv. Sci. 2023, 10, e2301658. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.; Jia, J.; Wang, Z.; Wang, W. MXene/Carbon Dots Nanozyme Composites for Glutathione Detection and Tumor Therapy. Nanomaterials 2024, 14, 1090. [Google Scholar] [CrossRef]
- Zhao, K.; Zhao, Y.; Wang, Y.; Han, B.; Lian, M. Progress in antibacterial applications of nanozymes. Front. Chem. 2024, 12, 1478273. [Google Scholar] [CrossRef] [PubMed]
- Shi, T.; Cui, Y.; Yuan, H.; Qi, R.; Yu, Y. Burgeoning Single-Atom Nanozymes for Efficient Bacterial Elimination. Nanomaterials 2023, 13, 2760. [Google Scholar] [CrossRef] [PubMed]
- Qiao, H.; Yang, H.; Han, Y.; Liu, Y.; Zhang, Y.; Zhang, X. Excellent laccase-like activity of melamine modified Cu-NH2-BDC and selective sensing analyses toward phenols and amines. Nano Res. 2024, 17, 9887–9897. [Google Scholar] [CrossRef]
- Wang, J. Construction of a bioinspired laccase-mimicking nanozyme for the degradation and detection of phenolic pollutants. Appl. Catal. B Environ. 2019, 254, 452–462. [Google Scholar] [CrossRef]
- Li, A. Bioinspired laccase-mimicking catalyst for on-site monitoring of thiram in paper-based colorimetric platform. Biosens. Bioelectron. 2022, 207, 114–199. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Zhou, H.; Wu, X.; Song, Y.; Huang, Y.; Yang, X.; Chen, X. A novel colorimetric aptasensor for sensitive tetracycline detection based on the peroxidase-like activity of Fe3O4@ Cu nanoparticles and “sandwich” oligonucleotide hybridization. Microchim. Acta 2022, 189, 86. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.; Li, J.; Song, J.; Guo, H.; Bai, S.; Lu, C.; Wang, X. Novel colorimetric detection of oxytetracycline in foods by copper nanozyme. Food Chem. 2024, 430, 137040. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Zhang, H.; Sun, H.; Yang, Y.; Zhang, D.; Li, X.; Zhang, Y. Sensitive dual-signal detection and effective removal of tetracycline antibiotics in honey based on a hollow triple-metal organic framework nanozymes. Food Chem. 2024, 442, 138383. [Google Scholar] [CrossRef]
- Fu, Q.; Liang, S.; Zhang, S.; Zhou, C.; Lv, Y.; Su, X. Boron-doped g-C3N4 supporting Cu nanozyme for colorimetric-fluorescent-smartphone detection of α-glucosidase. Anal. Chim. Acta 2024, 1311, 342715. [Google Scholar] [CrossRef] [PubMed]
- Cong, S.; Jiang, Z.; Zhang, R.; Lv, H.; Guo, J.; Zhang, L.; Lu, X. Polymer carbon nanodots: A novel electrochemiluminophore for dual mode detection of ferric ions. Anal. Chem. 2022, 94, 6695–6702. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Chai, H.; Yuan, Z.; Zhang, Z.; Zhao, Y.; Yu, K.; Zhang, G. Zeolitic imidazolate framework-encapsulated zinc porphyrin photoresponsive nanozyme for colorimetric/fluorescent dual-mode sensing of glyphosate. Talanta 2024, 276, 126253. [Google Scholar] [CrossRef] [PubMed]
- Pamei, M.; Achumi, A.G.; Kahmei, R.; Sarkar, A.; Puzari, A. Functionalized copper metal-organic framework with peroxidase-mimetic activity as an adsorbent for efficient removal of noxious organic dye from aqueous solution. Microporous Mesoporous Mater. 2022, 340, 112031. [Google Scholar] [CrossRef]
- Pamei, M.; Kumar, S.; Achumi, A.G.; Puzari, A. Supercapacitive amino-functionalized cobalt and copper metal-organic frameworks with varying surface morphologies for energy storage. J. Electroanal. Chem. 2022, 924, 116885. [Google Scholar] [CrossRef]
- Liu, X.; An, P.; Han, Y.; Meng, H.; Zhang, X. MOF-818(cu)-derived bi-nanozymes of laccase and catecholase mimics and colorimetric sensing to epinephrine. Microchem. J. 2024, 201, 110559. [Google Scholar] [CrossRef]
- Liang, H.; Lin, F.; Zhang, Z.; Liu, B.; Jiang, S.; Yuan, Q.; Liu, J. Multicopper Laccase Mimicking Nanozymes with Nucleotides as Ligands. ACS Appl. Mater. Interfaces 2017, 9, 1352–1360. [Google Scholar] [CrossRef]
- Yang, J. Metal-organic frameworks with inherent recognition sites for selective phosphate sensing through their coordination-induced fluorescence enhancement effect. J. Mater. Chem. A 2015, 3, 7445–7452. [Google Scholar] [CrossRef]
- Ciotta, E. Positive curvature in stern-volmer plot described by a generalized model for static quenching. J. Lumin. 2019, 206, 518–522. [Google Scholar] [CrossRef]
- Saha, D. Quenching of tryptophan fluorescence by colloidal Cu2S nanoparticles through static and dynamic modes under different solution PH. Chem. Phys. 2020, 530, 110644. [Google Scholar] [CrossRef]
- Shen, S.L.; Zhang, X.F.; Ge, Y.Q.; Zhu, Y.; Cao, X.Q. A novel ratiometric fluorescent probe for the detection of HOCl based on FRET strategy. Sens. Actuators B Chem. 2018, 254, 736–741. [Google Scholar] [CrossRef]
- Casado, J.E. SMART carbon dots as chemosensor for control of water contamination in organic media. Sens. Actuators B 2021, 329, 129262. [Google Scholar] [CrossRef]
- Tan, X.; Zhang, P.; Ye, C.; Min, Y.; Li, Q.; Wang, Y. Signal-on photoluminescent detection of dopamine with carbon dots-MnO2 nanosheets platform based on inner filter effect. Dye. Pigment. 2020, 180, 108515. [Google Scholar] [CrossRef]
- Liu, S.; Zhou, J.; Yuan, X.; Xiong, J.; Zong, M.H.; Wu, X.; Lou, W.Y. A dual-mode sensing platform based on metal-organic framework for colorimetric and ratiometric fluorescent detection of organophosphorus pesticide. Food Chem. 2024, 432, 137272. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, H.; Wang, Z.; Shi, Q.; Shi, W.; Lv, Y.; Liu, S. A Colorimetric and Fluorescent Dual-Mode Sensor Based on a Smartphone-Assisted Laccase-like Nanoenzyme for the Detection of Tetracycline Antibiotics. Nanomaterials 2025, 15, 162. https://doi.org/10.3390/nano15030162
Chen H, Wang Z, Shi Q, Shi W, Lv Y, Liu S. A Colorimetric and Fluorescent Dual-Mode Sensor Based on a Smartphone-Assisted Laccase-like Nanoenzyme for the Detection of Tetracycline Antibiotics. Nanomaterials. 2025; 15(3):162. https://doi.org/10.3390/nano15030162
Chicago/Turabian StyleChen, Hongyue, Zining Wang, Qi Shi, Weiguo Shi, Yuguang Lv, and Shuang Liu. 2025. "A Colorimetric and Fluorescent Dual-Mode Sensor Based on a Smartphone-Assisted Laccase-like Nanoenzyme for the Detection of Tetracycline Antibiotics" Nanomaterials 15, no. 3: 162. https://doi.org/10.3390/nano15030162
APA StyleChen, H., Wang, Z., Shi, Q., Shi, W., Lv, Y., & Liu, S. (2025). A Colorimetric and Fluorescent Dual-Mode Sensor Based on a Smartphone-Assisted Laccase-like Nanoenzyme for the Detection of Tetracycline Antibiotics. Nanomaterials, 15(3), 162. https://doi.org/10.3390/nano15030162