Spontaneous Emission Mediated by Moiré Hyperbolic Metasurfaces
Abstract
:1. Introduction
2. Theoretical Model
3. Results and Discussions
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Purcell, E.M.; Torrey, H.C.; Pound, R.V. Resonance Absorption by Nuclear Magnetic Moments in a Solid. Phys. Rev. 1946, 69, 37. [Google Scholar] [CrossRef]
- Szilard, D.; Kort-Kamp, W.J.M.; Rosa, F.S.S.; Pinheiro, F.A.; Farina, C. Hysteresis in the spontaneous emission induced by VO2 phase change. J. Opt. Soc. Am. B 2019, 36, C46. [Google Scholar] [CrossRef]
- Yablonovitch, E. Inhibited Spontaneous Emission in Solid-State Physics and Electronics. Phys. Rev. Lett. 1987, 58, 2059. [Google Scholar] [CrossRef] [PubMed]
- Lodahl, P.; Floris, V.D.A.; Nikolaev, I. Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals. Nature 2004, 430, 654. [Google Scholar] [CrossRef]
- Fujita, M.; Takahashi, S.; Tanaka, Y. Simultaneous Inhibition and Redistribution of Spontaneous Light Emission in Photonic Crystals. Science 2005, 308, 1296. [Google Scholar] [CrossRef]
- Pelton, M. Modified spontaneous emission in nanophotonic structures. Nat. Photon. 2015, 9, 427. [Google Scholar] [CrossRef]
- Shahbazyan, T.V. Spontaneous decay of a quantum emitter near a plasmonic nanostructure. Phys. Rev. B 2018, 98, 115401. [Google Scholar] [CrossRef]
- Nikitin, A.Y.; Guinea, F.; Vidal, F.J.G. Fields radiated by a nanoemitter in a graphene sheet. Phys. Rev. B 2011, 84, 195446. [Google Scholar] [CrossRef]
- Huidobro, P.A.; Nikitin, A.Y.; Ballestero, C.G. Superradiance mediated by graphene surface plasmons. Phys. Rev. B 2012, 85, 155438. [Google Scholar] [CrossRef]
- Sun, L.; Zhang, G.; Zhang, S. Enhanced spontaneous emission of quantum emitter in monolayer and double layer black phosphorus. Opt. Express 2017, 25, 14270. [Google Scholar] [CrossRef]
- Mu, H.; Wang, T.; Zhang, D.; Liu, W.; Yu, T.; Liao, Q. Mechanical modulation of spontaneous emission of nearby nanostructured black phosphorus. Opt. Express 2021, 29, 1037. [Google Scholar] [CrossRef] [PubMed]
- Sikder, B.; Nayem, S.H.; Uddin, S.Z. Deep ultraviolet spontaneous emission enhanced by layer dependent black phosphorus plasmonics. Opt. Express 2022, 30, 47152. [Google Scholar] [CrossRef] [PubMed]
- Poddubny, A.N.; Belov, P.A.; Kivshar, Y.S. Spontaneous radiation of a finite-size dipole emitter in hyperbolic media. Phys. Rev. A 2011, 84, 023807. [Google Scholar] [CrossRef]
- Lorsh, I.V.; Shadrivov, I.V.; Belov, P.A.; Kivshar, Y.S. Novel hyperbolic metamaterials based on multilayer graphene structures. Appl. Phys. Lett. 2011, 99, 151115. [Google Scholar]
- Kim, J.; Drachev, V.P.; Jacob, Z. Improving the radiative decay rate for dye molecules with hyperbolic metamaterials. Opt. Express 2012, 20, 8100. [Google Scholar] [CrossRef]
- Li, L.; Zhou, Z.; Min, C. Few-layer metamaterials for spontaneous emission enhancement. Opt. Lett. 2021, 46, 190. [Google Scholar] [CrossRef]
- Chamoli, S.K.; Elkabbash, M.; Zhang, J. Dynamic control of spontaneous emission rate using tunable hyperbolic metamaterials. Opt. Lett. 2020, 45, 1671. [Google Scholar] [CrossRef]
- Wu, F.; Lu, G.; Guo, Z.; Jiang, H.; Xue, C.; Zheng, M.; Chen, C.; Du, G.; Chen, H. Redshift gaps in one-dimensional photonic crystals containing hyperbolic metamaterials. Phys. Rev. Appl. 2018, 10, 064022. [Google Scholar] [CrossRef]
- Guo, Z.; Long, Y.; Jiang, H.; Ren, J.; Chen, H. Anomalous unidirectional excitation of high-k hyperbolic modes using all-electric metasources. Adv. Photonics 2021, 3, 036001. [Google Scholar] [CrossRef]
- Lunnemann, P.; Koenderink, A.F. The local density of optical states of a metasurface. Sci. Rep. 2016, 6, 20655. [Google Scholar] [CrossRef]
- Vaskin, A.; Mashhadi, S.; Steinert, M. Manipulation of Magnetic Dipole Emission from Eu3+ with Mie-Resonant Dielectric Metasurfaces. Nano Lett. 2019, 19, 1015. [Google Scholar] [CrossRef] [PubMed]
- Vaskin, A.; Kolkowski, R.; Koenderink, A.F. Light-emitting metasurfaces. Nanophotonics 2019, 8, 1151. [Google Scholar] [CrossRef]
- Fang, W.; Yang, Y. Directional dipole radiations and long-range quantum entanglement mediated by hyperbolic metasurfaces. Opt. Express 2020, 28, 32955. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Fatemi, V.; Demir, A. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature 2018, 556, 80. [Google Scholar] [CrossRef]
- Cao, Y.; Fatemi, V.; Fang, S. Unconventional superconductivity in magic-angle graphene superlattices. Nature 2018, 556, 43. [Google Scholar] [CrossRef]
- Chen, J.; Lin, X.; Chen, M.; Low, T.; Chen, H.; Dai, S. A perspective of twisted photonic structures. Appl. Phys. Lett. 2021, 119, 240501. [Google Scholar] [CrossRef]
- Du, L.; Molas, M.R.; Huang, Z.; Zhang, G.; Wang, F.; Sun, Z. Moiré photonics and optoelectronics. Science 2023, 379, eadg0014. [Google Scholar] [CrossRef]
- Li, Z.; Gu, Q. Topological hyperbolic metamaterials. Nanophotonics 2024, 13, 825. [Google Scholar] [CrossRef]
- Ni, G.X.; Wang, H.; Wu, J.S.; Fei, Z.; Goldflam, M.D.; Keilmann, F.; Özyilmaz, B.; Castro Neto, A.H.; Xie, X.M.; Fogler, M.M.; et al. Plasmons in graphene moiré superlattices. Nature Mater. 2015, 14, 1217. [Google Scholar] [CrossRef]
- Yang, S.H.; Zhang, Y.; Yuan, M.Q. Anisotropic radiative heat transfer between nanoparticles mediated by a twisted bilayer graphene grating. Phys. Rev. B 2021, 104, 125417. [Google Scholar] [CrossRef]
- Zhou, C.L.; Wu, X.H.; Zhang, Y. Polariton topological transition effects on radiative heat transfer. Phys. Rev. B 2021, 103, 155404. [Google Scholar] [CrossRef]
- Apinyan, V.; Kopeć, T.K. Excitonic effects in twisted bilayer graphene. Phys. E Low-Dimens. Syst. Nanostruct. 2020, 115, 113682. [Google Scholar] [CrossRef]
- Nagler, P.; Plechinger, G.; Ballottin, M.V. Interlayer exciton dynamics in a dichalcogenide monolayer heterostructure. 2D Mater. 2017, 4, 025112. [Google Scholar] [CrossRef]
- Kort-Kamp, W.J.M.; Culchac, F.J.; Rosa, F.S.S.; Farina, C.; Capaz, R.B.; Pinheiro, F.A. Harnessing the photonic local density of states in graphene moiré superlattices. Phys. Rev. B 2021, 103, 155423. [Google Scholar] [CrossRef]
- Diaz, J.S.G.; Tymchenko, M.; Alù, A. Hyperbolic Plasmons and Topological Transitions Over Uniaxial Metasurfaces. Phys. Rev. Lett. 2015, 114, 233901. [Google Scholar] [CrossRef]
- Hu, G.; Krasnok, A.; Mazor, Y.; Qiu, C.; Alù, A. Moiré Hyperbolic Metasurfaces. Nano Lett. 2020, 20, 3217. [Google Scholar] [CrossRef]
- Falkovsky, L.A. Optical properties of graphene. J. Phys. Conf. Ser. 2008, 129, 012004. [Google Scholar] [CrossRef]
- Diaz, J.S.G.; Tymchenko, M.; Alù, A. Hyperbolic metasurfaces: Surface plasmons, light-matter interactions, and physical implementation using graphene strips. Opt. Mater. Express 2015, 5, 2313. [Google Scholar] [CrossRef]
- Kotov, O.V.; Lozovik, Y.E. Hyperbolic hybrid waves and optical topological transitions in few-layer anisotropic metasurfaces. Phys. Rev. B 2019, 100, 165424. [Google Scholar] [CrossRef]
- Zhan, T.; Shi, X.; Dai, Y. Transfer matrix method for optics in graphene layers. J. Phys. Condens. Matter 2013, 25, 215301. [Google Scholar] [CrossRef]
- Zhou, C.L.; Wu, X.H.; Zhang, Y.; Xie, M.; Yi, H.L. Radiative modulator based on moiré hybridization with elliptic plasmons. Appl. Phys. Lett. 2021, 118, 173103. [Google Scholar] [CrossRef]
- Yeh, P. Electromagnetic propagation in birefringent layered media. J. Opt. Soc. A. 1979, 69, 742. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Yang, Z.; Wang, T.; Yang, J.; Yu, T.; Liao, Q. Spontaneous Emission Mediated by Moiré Hyperbolic Metasurfaces. Nanomaterials 2025, 15, 228. https://doi.org/10.3390/nano15030228
Liu Y, Yang Z, Wang T, Yang J, Yu T, Liao Q. Spontaneous Emission Mediated by Moiré Hyperbolic Metasurfaces. Nanomaterials. 2025; 15(3):228. https://doi.org/10.3390/nano15030228
Chicago/Turabian StyleLiu, Yuying, Zhanrong Yang, Tongbiao Wang, Jianrong Yang, Tianbao Yu, and Qinghua Liao. 2025. "Spontaneous Emission Mediated by Moiré Hyperbolic Metasurfaces" Nanomaterials 15, no. 3: 228. https://doi.org/10.3390/nano15030228
APA StyleLiu, Y., Yang, Z., Wang, T., Yang, J., Yu, T., & Liao, Q. (2025). Spontaneous Emission Mediated by Moiré Hyperbolic Metasurfaces. Nanomaterials, 15(3), 228. https://doi.org/10.3390/nano15030228