Impact of Ni Doping on the Microstructure and Mechanical Properties of TiB2 Films
Abstract
:1. Introduction
2. Materials and Methods
2.1. Film Deposition
2.2. Film Characterization
3. Results and Discussion
3.1. Effect of Ni on the Phase Structure
3.2. Effect of Ni on Mechanical Properties
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Holleck, H. Design of nanostructured thin films for tribological applications. In Proceedings of the TMS Conference Proceedings on Surface Engineering: Science and Technology I. Minerals, Metals, and Materials Society, Warrendale, PA, USA, 28 February–4 March 1999. [Google Scholar]
- Cieniek, Ł.; Chudzik-Poliszak, E.; Moskalewicz, T.; Kopia, A.; Smolik, J. Effect of chromium doping on the substructure and mechanical properties of anti-wear TiB2 coatings. Arch. Civ. Mech. Eng. 2023, 23, 80. [Google Scholar] [CrossRef]
- Yang, T.; Wang, Z.; Tan, S.; Guo, F. Mechanical properties and growth mechanism of TiB2-TiC/Fe composite coating fabricated in situ by laser cladding. Appl. Compos. Mater. 2020, 27, 877–893. [Google Scholar] [CrossRef]
- Saeed, M.; Alexander, B.; Boyd, R.D.; Ali, D.; Schoemaecker, M.C.; Lionel, R. Impact of density on the behavior of suspension plasma sprayed TiB2 coatings in the presence of molten aluminum. J. Therm. Spray Technol. 2022, 31, 1499–1507. [Google Scholar] [CrossRef]
- Krasikov, A.V.; Markov, M.A.; Staritsyn, M.V.; Fedoseev, M.L.; Tkachev, D.A.; Bykova, A.D. Electrodeposition of Nickel-based composite electrochemical coatings using bulk-reinforced Al-TiB2 powders. Refract. Ind. Ceram. 2023, 64, 444–448. [Google Scholar] [CrossRef]
- Shimada, S.; Takahashi, M.; Kiyono, H.; Tsujino, J. Coatings and microstructures of monolithic TiB2 films and double composite TiCN/TiB2 films from alkoxide solutions by thermal plasma CVD. Thin Solid Films 2008, 516, 6616–6621. [Google Scholar] [CrossRef]
- Fox-Rabinovich, G.S.; Gershman, I.S.; Veldhuis, S. Thin-film PVD coating metamaterials exhibiting similarities to natural processes under extreme tribological conditions. Nanomaterials 2020, 10, 1720. [Google Scholar] [CrossRef] [PubMed]
- Duarte, A.; Coelho, B.; Vila, M.; Fernandes, A.J.S.; Silva, R.F.; Oliverira, F.; Costa, F.M. Deposition of TiB2 onto X40 CrMoV 5-1-1 steel substrates by DC magnetron sputtering. Vacuum 2007, 81, 1519–1523. [Google Scholar] [CrossRef]
- Bakhit, B.; Palisaitis, J.; Thörnberg, J.; Rosen, J.; Persson, P.O.Å.; Hultman, L.; Petrov, I.; Greene, J.E.; Greczynski, G. Improving the high-temperature oxidation resistance of TiB2 thin films by alloying with Al. Acta Mater. 2020, 196, 677–689. [Google Scholar] [CrossRef]
- Nedfors, N.; Primetzhofer, D.; Zhirkov, I.; Palisaitis, J.; Persson, P.O.Å.; Greene, J.E.; Petrov, I.; Rosen, J. The influence of pressure and magnetic field on the deposition of epitaxial TiBx thin films from DC magnetron sputtering. Vacuum 2020, 177, 109355. [Google Scholar] [CrossRef]
- Mitterer, C. Borides in thin film technology. J. Solid State Chem. 1997, 133, 279–291. [Google Scholar] [CrossRef]
- Hellgren, N.; Thörnberg, J.; Zhirkov, I.; Sortica, M.A.; Petrov, I.; Greene, J.E.; Hultman, L.; Rosen, J. High-power impulse magnetron sputter deposition of TiBx thin films: Effects of pressure and growth temperature. Vacuum 2019, 169, 108884. [Google Scholar] [CrossRef]
- Palisaitis, J.; Dahlqvist, M.; Hall, A.J.; Thörnberg, J.; Persson, I.; Nedfors, N.; Hultman, L.; Greene, J.E.; Petrov, I.; Rosen, J.; et al. Where is the unpaired transition metal in substoichiometric diboride line compounds. Acta Mater. 2021, 204, 116510. [Google Scholar] [CrossRef]
- Kunc, F.; Musil, J.; Mayrhofer, P.H.; Mitterer, C. Low-stress superhard Ti-B films prepared by magnetron sputtering. Surf. Coat. Technol. 2003, 174–175, 744–753. [Google Scholar] [CrossRef]
- Berger, M.; Karlsson, L.; Larsson, M.; Hogmark, S. Low stress TiB2 coatings with improved tribological properties. Thin Solid Film. 2001, 401, 179–186. [Google Scholar] [CrossRef]
- Ding, J.C.; Zhang, T.F.; Yun, J.M.; Kim, K.H.; Wang, Q.M. Effect of Cu addition on the microsturcuture and properties of TiB2 films deposited by a hybrid system combining high power impulse magnetron sputtering and pulsed dc magnetron sputtering. Surf. Coat. Technol. 2018, 344, 441–448. [Google Scholar] [CrossRef]
- Sharma, R.; Singh, A.K.; Arora, A.; Pati, S.; De, P.S. Effect of friction stir processing on corrosion of Al-TiB2 based composite in 3.5wt.% sodium chloride solution. Trans. Nonferrous Met. Soc. China 2019, 29, 1383–1392. [Google Scholar] [CrossRef]
- Lin, W.S.; Chen, J.; Zhou, J. Structure and Tribological Characterization of TiB2/TiBN Multilayer Coatings Deposited by Magnetron Sputtering; Springer: Berlin/Herdelberg, Germany, 2009. [Google Scholar] [CrossRef]
- Lee, K.W.; Chung, Y.-W.; Korach, C.; Keer, L.M. Tribological and dry machining evaluation of superhard TiB2/TiC multilayer coatings deposited on Si(001), M2 steel, and C3 WC cutting tool inserts using magnetron sputtering. Surf. Coat. Technol. 2005, 194, 184–189. [Google Scholar] [CrossRef]
- Ma, B.; Sun, B.; Shang, H.; Li, R.; Cao, H.; Fernandes, F. Microstructure evolution and mechanical behavior of magnetron sputtering AlN-Al nanostructured composite film. Ceram. Int. 2024, 50, 6017–6024. [Google Scholar] [CrossRef]
- Wolfe, D.E.; Singh, J.; Narasimhan, K. Synthesis and characterization of multilayered TiC/TiB2 coatings deposited by ion beam assisted, electron beam-physical vapor deposition (EB-PVD). Surf. Coat. Techology 2003, 165, 8–25. [Google Scholar] [CrossRef]
- Grigor’ev, O.N.; Koroteev, A.V.; Klimenko, A.V.; Mayboroda, E.E.; Prilutskii, É.V.; Bega, N.D. Fabrication and properties of multilayer ceramics in the SiC-TiB2 system. Refract. Ind. Ceram. 2000, 41, 390–395. [Google Scholar] [CrossRef]
- Stueber, M.; Holleck, H.; Leiste, H.; Seemann, K.; Ulrich, S.; Ziebert, C. Concepts for the design of advanced nanoscale PVD multilayer protective thin films. J. Alloys Compd. 2009, 483, 321–333. [Google Scholar] [CrossRef]
- Abdollah, B.; Junko, U.; Ridvan, Y.; Hamidreza, G.; Issariyapat, A.; Bakar, T.A.A.; Kondoh, K. Deformation mechanism and enhanced properties of Cu-TiB2 composites evaluated by the in-situ tensile test and microstructure characterization. J. Alloys Compd. 2020, 847, 156555. [Google Scholar] [CrossRef]
- Wang, H.; Wang, B.; Li, S.; Xue, Q.; Huang, F. Tougheing magnetron sputtered TiB2 coatings by Ni addition. Surf. Coat. Technol. 2013, 232, 767–774. [Google Scholar] [CrossRef]
- Kang, Y.S.; Kang, S.H.; Kim, D.J. Effect of addition of Cr on the sintering of TiB2 ceramics. J. Mater. Sci. 2005, 40, 4153–4155. [Google Scholar] [CrossRef]
- Contreras, E.; Galindez, Y.; Gómez, M.A. Microstructure, mechanical and tribological properties of TiBC coatings by DC magnetron sputtering onto AISI M2 steel using independent TiB2 and graphite targets. Surf. Coat. Technol. 2018, 350, 298–306. [Google Scholar] [CrossRef]
- Chudzik-Poliszak, E.; Cieniek, Ł.; Moskalewicz, T.; Kowalski, K.; Kopia, A.; Smolik, J. Influence of W addition on microstructure and resistance to brittle cracking of TiB2 coatings deposited by DCMS. Materials 2021, 14, 4664. [Google Scholar] [CrossRef] [PubMed]
- Qiu, F.; Duan, X.; Dong, B.; Yang, H.; Lu, J.; Li, X. Effects of Cr and Zr addition on microstructures, compressive properties, and abrasive wear behaviors of in situ TiB2/Cu cermets. Materials 2018, 11, 1464. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Zhu, J.; Zhang, G.; Hu, Y. Laser powder bed fusion of nano-TiB2 reinforced FeCoNiCr high-entropy alloy with enhanced strength and firm corrosion resistance. J. Alloys Compd. 2022, 297, 167110. [Google Scholar] [CrossRef]
- Nedfors, N.; Mráz, S.; Palisaitis, J.; Persson, P.O.; Lind, H.; Kolozsvari, S.; Schneider, J.M.; Rosen, J. Influence of the Al concentration in Ti-Al-B coatings on microstructure and mechanical properties using combinatorial sputtering from a segmented TiB2/AlB2 target. Surf. Coat. Technol. 2019, 364, 89–98. [Google Scholar] [CrossRef]
- Xian, L.; Li, L.; Fan, H.; Xian, G.; Zhao, H. Effect of doping Al, Ni, and Zr on the properties of TiB2 coatings: A first-principle study. Mater. Today Commun. 2022, 33, 104844. [Google Scholar] [CrossRef]
- Nakajima, H.; Koiwa, M.; Minonish, Y.; Ono, S. Diffusion of cobalt in single crystal α-Titanium. Trans. Jpn. Inst. Met. 1983, 24, 655–660. [Google Scholar] [CrossRef]
- Mattias, B.; Coronel, E.; Olsson, E. Microstructure of d.c. magnetron sputtered TiB2 coatings. Surf. Coat. Technol. 2004, 185, 240–244. [Google Scholar] [CrossRef]
- Smolik, J.; Kacprzyńska-Golacka, J.; Sowa, S.; Piasek, A. The analysis of resistance to brittle cracking of tungsten doped TiB2 coatings obtained by magnetron sputtering. Coatings 2020, 10, 807. [Google Scholar] [CrossRef]
- Cai, X.; Xu, Y.; Zhong, L.; Liu, M. Fracture toughness of WC-Fe cermet in W-WC-Fe composite by nanoindentation. J. Alloys Compd. 2017, 728, 788–796. [Google Scholar] [CrossRef]
- Hellgren, N.; Greczynski, G.; Sortica, M.A.; Petrov, I.; Hultman, L.; Rosen, J. X-ray photoelectron spectroscopy analysis of TiBx (1.3 ≤ x ≤ 3.0) thin films. J. Vac. Sci. Technol. A 2021, 39, 023403. [Google Scholar] [CrossRef]
- Veprek, S.; Niederhofer, A.; Moto, K.; Bolom, T.; Männling, H.-D.; Nesladek, P.; Dollinger, G.; Bergmaier, A. Composition, nanostructure and origin of the ultrahardness in nc-TiN/a-Si3N4/a- and nc-TiSi2 nanocomposites with Hv = 80 to ≥105GPa. Surf. Coat. Technol. 2000, 133–134, 152–159. [Google Scholar] [CrossRef]
- Leyland, A.; Mattews, A. On the significance of the H/E ratio in wear control: A nanocomposite coating approach to optimised tribological behaviour. Wear 2000, 246, 1–11. [Google Scholar] [CrossRef]
- Beake, B.D. The influence of the H/E ratio on wear resistance of coating systems- insights from small-scale testing. Surf. Coat. Technol. 2022, 442, 128272. [Google Scholar] [CrossRef]
- Benzarti, Z.; Khalfallah, A.; Bougrioua, Z.; Evaristo, M.; Cavaleiro, A. Understanding the influence of physical properties on the mechanical characteristics of Mg-doped GaN thin films. Mater. Chem. Phys. 2023, 307, 128182. [Google Scholar] [CrossRef]
- Musil, J. Hard nanocomposite coatings: Thermal stability, oxidation resistance and toughness. Surf. Coat. Technol. 2012, 207, 50–65. [Google Scholar] [CrossRef]
- Zhang, S.; Yan, M.; Yang, Y.; Zhang, Y.; Yan, F.; Li, H. Excellent mechanical, tribological and anti-corrosive performance of novel Ti-DLC nanocomposite thin films prepared via magnetron sputtering method. Carbon 2019, 151, 136–147. [Google Scholar] [CrossRef]
- Milman, Y.V.; Galanov, B.A.; Chugunova, S.I. Plasticity characteristic obtained through hardness measurement. Acta Metall. Et Mater. 1993, 41, 2523–2532. [Google Scholar] [CrossRef]
- Boughrara, N.; Benzarti, Z.; Khalfallah, A.; Evaristo, M.; Cavaleiro, A. Comparative study on the nanomechanical behavior and physical properties influenced by the epitaxial growth mechanisms of GaN thin films. Appl. Surf. Sci. 2022, 579, 152188. [Google Scholar] [CrossRef]
- Musil, J.; Jirout, M. Toughness of hard nanostructured ceramic thin films. Surf. Coat. Technol. 2007, 201, 5148–5152. [Google Scholar] [CrossRef]
- Holmberg, K.; Laukkanen, A.; Ronkainen, H.; Wallin, K.; Varjus, S. A model for stresses, crack generation and fracture toughness calculation in scratched TiN-coated steel surfaces. Wear 2003, 254, 278–291. [Google Scholar] [CrossRef]
- Pineau, A.; Benzerga, A.A.; Pardoen, T. Failure of metals I- brittle and ductile fracture. Acta Mater. 2016, 107, 424–483. [Google Scholar] [CrossRef]
The Power on Ni Target/W | At.% | Ni/Ti | ||
---|---|---|---|---|
Ni | Ti | B | ||
0 | - | 22.20 | 77.80 | - |
5 | 4.26 | 22.23 | 73.51 | 0.19 |
10 | 10.83 | 25.23 | 63.94 | 0.43 |
20 | 23.45 | 22.75 | 53.80 | 1.03 |
30 | 32.22 | 19.53 | 48.25 | 1.65 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Wang, X.; Shang, H.; Liu, X.; Qi, Y.; Qi, X.; Zhong, N. Impact of Ni Doping on the Microstructure and Mechanical Properties of TiB2 Films. Nanomaterials 2025, 15, 229. https://doi.org/10.3390/nano15030229
Wang Y, Wang X, Shang H, Liu X, Qi Y, Qi X, Zhong N. Impact of Ni Doping on the Microstructure and Mechanical Properties of TiB2 Films. Nanomaterials. 2025; 15(3):229. https://doi.org/10.3390/nano15030229
Chicago/Turabian StyleWang, Ying, Xu Wang, Hailong Shang, Xiaotong Liu, Yu Qi, Xiaoben Qi, and Ning Zhong. 2025. "Impact of Ni Doping on the Microstructure and Mechanical Properties of TiB2 Films" Nanomaterials 15, no. 3: 229. https://doi.org/10.3390/nano15030229
APA StyleWang, Y., Wang, X., Shang, H., Liu, X., Qi, Y., Qi, X., & Zhong, N. (2025). Impact of Ni Doping on the Microstructure and Mechanical Properties of TiB2 Films. Nanomaterials, 15(3), 229. https://doi.org/10.3390/nano15030229