Impact of Silver and Copper Oxide Nanoparticles on Anaerobic Digestion of Sludge and Bacterial Community Structure
Abstract
:1. Introduction
2. Materials and Methods
2.1. Silver and Copper Oxide Nanoparticles
2.2. Wastewater Sludge Samples
2.3. Experimental Design
2.4. Chemical Analyses
2.5. Biological Analyses
2.5.1. Live/Dead Bacterial Viability Staining Assay
2.5.2. DNA Extraction and Quantification
2.5.3. High-Throughput Sequencing/Bacterial Community Analyses
2.5.4. 16S rRNA Gene Sequencing
- H: Shannon-Wiener index
- N: total number of phyla
- pi: proportion of phylum i to all other phyla
- E: phyla evenness
- N: total number of phyla
- nki: count of OTU k in sample i
- nkj: count of OTU k in sample j
2.6. Statistical Analyses
3. Results and Discussion
3.1. Anaerobic Digestion Performance
3.2. Impact of AgNPs and CuONPs on Cell Viability
3.3. Impact of AgNPs and CuONPs on Bacterial Community Structure
3.4. Abundance and Diversity of Bacteria at the Phylum Level
3.5. Abundance and Diversity of Bacterial Genera
3.6. Key Bacterial Genera Involved in the Anaerobic Digestion Process
3.7. Metagenomic Analyses of Select Genera
3.8. Discussion of the Relationship Between Bacterial Function and Digestion Performance of the Reactors
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Battez, A.V.; González, R.; Blanco, D.; Asedegbega, E.; Osorio, A. Friction reduction properties of a CuO nanolubricant used as lubricant for a NiCrBSi coating. Wear 2010, 268, 325–328. [Google Scholar] [CrossRef]
- Babu, S.; Claville, M.O.; Ghebreyessus, K. Rapid synthesis of highly stable silver nanoparticles and its application for colourimetric sensing of cysteine. J. Exp. Nanosci. 2015, 10, 1242–1255. [Google Scholar] [CrossRef]
- US Research Nanomaterials Inc. 2017. Available online: https://www.us-nano.com/inc/sdetail/602 (accessed on 5 December 2017).
- Vasilie, G.; Kubo, A.-L.; Vija, H.; Kahru, A.; Bondar, D.; Karpichev, Y.; Bondarenko, O. Synergistic antibacterial effect of copper and silver nanoparticles and their mechanism of action. Sci. Rep. 2023, 13, 9202. [Google Scholar]
- Jo, H.J.; Choi, J.W.; Lee, S.H.; Hong, S.W. Acute toxicity of Ag and CuO nanoparticle suspensions against Daphnia magna: The importance of their dissolved fraction varying with preparation methods. J. Hazard. Mater. 2012, 227, 301–308. [Google Scholar] [CrossRef]
- Jang, S.-W.; Oh, M.-S.; Yang, S.I.; Cho, E.-M. Gene expression profiles of human neuroblastoma cells exposed to CuO nanoparticles and Cu ions. BioChip J. 2016, 10, 140–149. [Google Scholar] [CrossRef]
- Juling, S.; Niedzwiecka, A.; Böhmert, L.; Lichtenstein, D.; Selve, S.; Braeuning, A.; Thünemann, A.F.; Krause, E.; Lampen, A. Protein corona analysis of silver nanoparticles links to their cellular effects. J. Proteome Res. 2017, 16, 4020–4034. [Google Scholar] [CrossRef] [PubMed]
- Yilmaz, G.E.; Gokturk, I.; Ovezova, M.; Yilmaz, F.; Kilic, S.; Denizli, A. Antimicrobial Nanomaterials: A Review. Hygiene 2023, 3, 269–290. [Google Scholar] [CrossRef]
- Lee, Y.J.; Lee, D.J. Impact of adding metal nanoparticles on anaerobic digestion performance—A review. Bioresour. Technol. 2019, 292, 121926. [Google Scholar] [CrossRef] [PubMed]
- Gottschalk, F.; Tobias, S.; Roland, W.S.; Bernd, N. Modeled environmental concentrations of engineered nanomaterials (TiO2, ZnO, Ag, CNT, fullerenes) for different regions. Environ. Sci. Technol. 2009, 43, 9216–9222. [Google Scholar] [CrossRef]
- Keller, A.A.; McFerran, S.; Lazareva, A.; Suh, S. Global life cycle releases of engineered nanomaterials. J. Nanoparticle Res. 2013, 15, 1692. [Google Scholar] [CrossRef]
- Shafer, M.M.; Overdier, J.T.; Armstong, D.E. Removal, partitioning, and fate of silver and other metals in wastewater treatment plants and effluent-receiving streams. Environ. Toxicol. Chem. 1998, 17, 630–641. [Google Scholar] [CrossRef]
- Kaegi, R.; Voegelin, A.; Sinnet, B.; Zuleeg, S.; Hagendorfer, H.; Burkhardt, M.; Siegrist, H. Behavior of metallic silver nanoparticles in a pilot wastewater treatment plant. Environ. Sci. Technol. 2011, 45, 3902–3908. [Google Scholar] [CrossRef]
- Li, L.; Stoiber, M.; Wimmer, A.; Xu, Z.; Lindenblatt, C.; Helmreich, B.; Schuster, M. To what extent can full-scale wastewater treatment plant effluent influence the occurrence of silver based nanoparticles in surface waters? Environ. Sci. Technol. 2016, 50, 6327–6333. [Google Scholar] [CrossRef]
- Epelle, E.I.; Ukoye, P.U.; Roddy, S.; Gunes, B.; Okolie, J.A. Advances in the Applications of Nanomaterials for Wastewater Treatment. Environments 2022, 9, 141. [Google Scholar] [CrossRef]
- Liang, Z.; Das, A.; Hu, Z. Bacterial response to a shock load of nanosilver in an activated sludge treatment system. Water Res. 2010, 44, 5432–5438. [Google Scholar] [CrossRef]
- Sun, X.; Sheng, Z.; Liu, Y. Effects of silver nanoparticles on microbial community structure in activated sludge. Sci. Total Environ. 2013, 443, 828–835. [Google Scholar] [CrossRef] [PubMed]
- Qiu, G.; Wirianto, K.; Sun, Y.; Ting, Y.-P. Effect of silver nanoparticles on system performance and microbial community dynamics in a sequencing batch reactor. J. Clean. Prod. 2016, 130, 137–142. [Google Scholar] [CrossRef]
- Zhang, D.; Trzcinski, A.P.; Oh, H.-S.; Chew, E.; Tan, S.K.; Ng, W.J.; Liu, Y. Comparison and distribution of copper oxide nanoparticles and copper ions in activated sludge reactors. J. Environ. Sci. Health Part A 2017, 52, 507–514. [Google Scholar] [CrossRef] [PubMed]
- Luna-delRisco, M.; Orupõld, K.; Dubourguier, H.-C. Particle-size effect of CuO and ZnO on biogas and methane production during anaerobic digestion. J. Hazard. Mater. 2011, 189, 603–608. [Google Scholar] [CrossRef]
- Wang, D.; Chen, Y. Critical review of the influences of nanoparticles on biological wastewater treatment and sludge digestion. Crit. Rev. Biotechnol. 2016, 35, 816–828. [Google Scholar] [CrossRef] [PubMed]
- Rasool, K.; Lee, D.S. Inhibitory effects of silver nanoparticles on removal of organic pollutants and sulfate in an anaerobic biological wastewater treatment process. J. Nanosci. Nanotechnol. 2016, 16, 4456–4463. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Estrella, J.; Sierra-Alvarez, R.; Field, J.A. Toxicity assessment of inorganic nanoparticles to acetoclastic and hydrogenotrophic methanogenic activity in anaerobic granular sludge. J. Hazard. Mater. 2013, 260, 278–285. [Google Scholar] [CrossRef]
- Ünşar, E.; Çığgın, A.; Erdem, A.; Perendeci, N. Long and short term impacts of CuO, Ag and CeO2 nanoparticles on anaerobic digestion of municipal waste activated sludge. Environ. Sci. Process. Impacts 2016, 18, 277–288. [Google Scholar] [CrossRef]
- Wang, T.; Zhang, D.; Dai, L.; Chen, Y.; Dai, X. Effects of Metal Nanoparticles on Methane Production from Waste-Activated Sludge and Microorganism Community Shift in Anaerobic Granular Sludge. Sci. Rep. 2016, 6, 25857. [Google Scholar] [CrossRef] [PubMed]
- Jeyakumar, R.B.; Vincent, G.S. Recent Advances and Perspectives of Nanotechnology in Anaerobic Digestion: A New Paradigm towards Sludge Biodegradability. Sustainability 2022, 14, 7191. [Google Scholar] [CrossRef]
- Blaser, S.A.; Martin, S.; Matthew, M.; Konrad, H. Estimation of cumulative aquatic exposure and risk due to silver: Contribution of nano-functionalized plastics and textiles. Sci. Total Environ. 2008, 390, 396–409. [Google Scholar] [CrossRef] [PubMed]
- US EPA. Targeted National Sewage Sludge Survey Sampling and Analysis Technical Report; US Environmental Protection Agency Office of Water: Washington, DC, USA, 2009.
- CCME. Review of the Current Canadian Legislative Framework for Wastewater Biosolids; Canadian Council of Ministers of the Environment (CCMC): Winnipeg, MB, Canada, 2020. [Google Scholar]
- Gottschalk, F.; Sun, T.; Nowack, B. Environmental concentrations of engineered nanomaterials: Review of modeling and analytical studies. Environ. Pollut. 2013, 181, 287–300. [Google Scholar] [CrossRef]
- APHA; AWWA; WEF. Standard Methods for the Examination of Water and Wastewater, 23rd ed.; Rice, E., Baird, R., Eaton, A., Eds.; APHA, American Public Health Association; American Water Works Association, AWWA; Water Environment Federation, WEF: Washington, DC, USA, 2017. [Google Scholar]
- Kibbee, R.J.; Örmeci, B. Development of a sensitive and false-positive free PMA-qPCR viability assay to quantify VBNC Escherichia coli and evaluate disinfection performance in wastewater effluent. J. Microbiol. Methods 2017, 132, 139–147. [Google Scholar] [CrossRef]
- Magurran, A.E. Ecological Diversity and Its Measurement; Princeton University Press: Princeton, NJ, USA, 1988. [Google Scholar]
- Mulder, C.P.; Bazeley-White, E.; Dimitrakopoulos, P.G.; Hector, A.; Scherer-Lorenzen, M.; Schmid, B. Species evenness and productivity in experimental plant communities. Oikos 2004, 107, 50–63. [Google Scholar] [CrossRef]
- Edgar, R. Usearch V11, Euclidean Distance Metric. 2018. Retrieved from drive5 Bioinformatics Software and Services. Available online: https://drive5.com/usearch/manual/euclidean_distance.html (accessed on 22 February 2020).
- Currell, G.; Dowman, A. Essential Mathematics and Statistics for Science, Chichester; Wiley & Sons: Hoboken, NJ, USA, 2005. [Google Scholar]
- Hou, L.; Li, K.; Ding, Y.; Li, Y.; Chen, J.; Wu, X.; Li, X. Removal of silver nanoparticles in simulated wastewater treatment processes and its impact on COD and NH4 reduction. Chemosphere 2012, 87, 248–252. [Google Scholar] [CrossRef]
- Zhang, L.H.; Zeng, G.M.; Dong, H.R.; Chen, Y.N.; Zhang, J.C.; Yan, M.; Zhu, Y.; Yuan, Y.J.; Xie, Y.K.; Huang, Z.Z. The impact of silver nanoparticles on the co-composting of sewage and agricultural waste: Evolutions of organic matter and nitrogen. Bioresour. Technol. 2017, 230, 132–139. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Chen, Q.; Wall, J.; Hu, Z. Potential nanosilver impact on anaerobic digestion at moderate silver concentrations. Water Res. 2012, 46, 1176–1184. [Google Scholar] [CrossRef] [PubMed]
- Sakarya, K.; Akyol, Ç.; Demirel, B. The effect of short-term exposure of engineered nanoparticles on methane production during mesophilic anaerobic digestion of primary sludge. Water Air Soil Pollut. 2015, 226, 100. [Google Scholar] [CrossRef]
- Otero-González, L.; Field, J.A.; Sierra-Alvarez, R. Inhibition of anaerobic wastewater treatment after long-term exposure to low levels of CuO nanoparticles. Water Res. 2014, 58, 160–168. [Google Scholar] [CrossRef] [PubMed]
- Kaweeteerawat, C.; Ubol, P.N.; Sangmuang, S.; Aueviriyavit, S.; Maniratanachote, R. Mechanisms of antibiotic resistance in bacteria mediated by silver nanoparticles. J. Toxicol. Environ. Health Part A 2017, 80, 1276–1289. [Google Scholar] [CrossRef] [PubMed]
- Hachicho, N.; Hoffmann, P.; Ahlert, K.; Heipieper, H.J. Effect of silver nanoparticles and silver ions on growth and adaptive response mechanisms of Pseudomonas putida mt-2. FEMS Microbiol. Lett. 2014, 355, 71–77. [Google Scholar] [CrossRef]
- Huang, K.; Tang, J.; Zhang, X.-X.; Xu, K.; Ren, H. A comprehensive insight into tetracycline resistant bacteria and antibiotic resistance genes in activated sludge using next-generation sequencing. Int. J. Mol. Sci. 2014, 15, 10083–10100. [Google Scholar] [CrossRef]
- Li, D.; Qi, R.; Yang, M.; Zhang, Y.; Yu, T. Bacterial community characteristics under long-term antibiotic selection pressures. Water Res. 2011, 45, 6063–6073. [Google Scholar] [CrossRef]
- Czárán, T.L.; Hoekstra, R.F.; Pagie, L. Chemical warfare between microbes promotes biodiversity. Proc. Natl. Acad. Sci. USA 2002, 99, 786–790. [Google Scholar] [CrossRef]
- Huang, H.; Chen, Y.; Yang, S.; Zheng, X. CuO and ZnO nanoparticles drive the propagation of antibiotic resistance genes during sludge anaerobic digestion: Possible role of stimulated signal transduction. Environ. Sci. 2019, 6, 528–539. [Google Scholar] [CrossRef]
- Kirkegaard, R.H.; McIlroy, S.J.; Kristensen, J.M.; Nierychlo, M.; Karst, S.M.; Dueholm, M.S.; Albertsen, M.; Nielsen, P.H. Identifying the abundant and active microorganisms common to full scale anaerobic digesters. bioRxiv 2017, 104620. [Google Scholar] [CrossRef]
- Venkiteshwaran, K.; Bocher, B.; Maki, J.; Zitomer, D. Relating anaerobic digestion microbial community and process function: Supplementary issue: Water microbiology. Microbiol. Insights 2015, 8 (Suppl. S2), 37–44. [Google Scholar] [CrossRef]
- Guo, J.; Peng, Y.; Ni, B.-J.; Han, X.; Fan, L.; Yuan, Z. Dissecting microbial community structure and methane-producing pathways of a full-scale anaerobic reactor digesting activated sludge from wastewater treatment by metagenomic sequencing. Microb. Cell Factories 2015, 14, 33. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Quensen, J.; Mathieu, J.; Wang, Q.; Wang, J.; Li, M.; Tiedje, J.M.; Alvarez, P.J. Pyrosequencing reveals higher impact of silver nanoparticles than Ag+ on the microbial community structure of activated sludge. Water Res. 2014, 48, 317–325. [Google Scholar] [CrossRef] [PubMed]
- Doolette, C.L.; McLaughlin, M.J.; Kirby, J.K.; Batstone, D.J.; Harris, H.H.; Ge, H.; Cornelis, G. Transformation of PVP coated silver nanoparticles in a simulated wastewater treatment process and the effect on microbial communities. Chem. Cent. J. 2013, 7, 46. [Google Scholar] [CrossRef] [PubMed]
- Ariesyady, H.D.; Ito, T.; Okabe, S. Functional bacterial and archaeal community structures of major trophic groups in a full-scale anaerobic sludge digester. Water Res. 2007, 41, 1554–1568. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Peña, E.I.; Parameswaran, P.; Kang, D.W.; Canul-Chan, M.; Krajmalnik-Brown, R. Anaerobic digestion and co-digestion processes of vegetable and fruit residues: Process and microbial ecology. Bioresour. Technol. 2011, 102, 9447–9455. [Google Scholar] [CrossRef] [PubMed]
- Traversi, D.; Villa, S.; Lorenzi, E.; Degan, R.; Gilli, G. Application of a real-time qPCR method to measure the methanogen concentration during anaerobic digestion as an indicator of biogas production capacity. J. Environ. Manag. 2012, 111, 173–177. [Google Scholar] [CrossRef] [PubMed]
- Schulze, R.; Spring, S.; Amann, R.; Huber, I.; Ludwig, W.; Schleifer, K.-H.; Kämpfer, P. Genotypic diversity of Acidovorax strains isolated from activated sludge and description of Acidovorax defluvii sp, nov. Syst. Appl. Microbiol. 1999, 22, 205–214. [Google Scholar] [CrossRef] [PubMed]
- Vandamme, P.; Vancanneyt, M.; Pot, B.; Mels, L.; Hoste, B.; Dewettinck, D.; Vlaes, L.; Borre, C.V.D.; Higgins, R.; Hommez, J.; et al. Polyphasic taxonomic study of the emended genus Arcobacter with Arcobacter butzleri comb. nov. and Arcobacter skirrowii sp. nov., an aerotolerant bacterium isolated from veterinary specimens. Int. J. Syst. Evol. Microbiol. 1992, 42, 344–356. [Google Scholar] [CrossRef] [PubMed]
- Roalkvam, I.; Drønen, K.; Stokke, R.; Daae, F.L.; Dahle, H.; Steen, I.H. Physiological and genomic characterization of Arcobacter anaerophilus IR-1 reveals new metabolic features in Epsilonproteobacteria. Front. Microbiol. 2015, 6, 987. [Google Scholar] [CrossRef] [PubMed]
- McInerney, M.J.; Rohlin, L.; Mouttaki, H.; Kim, U.; Krupp, R.S.; Rios-Hernandez, L.; Sieber, J.; Struchtemeyer, C.G.; Bhattacharyya, A.; Campbell, J.W.; et al. The genome of Syntrophus aciditrophicus: Life at the thermodynamic limit of microbial growth. Proc. Natl. Acad. Sci. USA 2007, 104, 7600–7605. [Google Scholar] [CrossRef] [PubMed]
- Kim, B.; Park, C.-S.; Murayama, M.; Hochella, M.F., Jr. Discovery and characterization of silver sulfide nanoparticles in final sewage sludge products. Environ. Sci. Technol. 2010, 44, 7509–7514. [Google Scholar] [CrossRef] [PubMed]
- Levard, C.; Hotze, E.M.; Lowry, G.V.; Brown, G.E., Jr. Environmental transformations of silver nanoparticles: Impact on stability and toxicity. Environ. Sci. Technol. 2012, 46, 6900–6914. [Google Scholar] [CrossRef] [PubMed]
- Kaegi, R.; Voegelin, A.; Ort, C.; Sinnet, B.; Thalmann, B.; Krismer, J.; Hagendorfer, H.; Elumelu, M.; Mueller, E. Fate and transformation of silver nanoparticles in urban wastewater systems. Water Res. 2013, 47, 3866–3877. [Google Scholar] [CrossRef]
- Lombi, E.; Donner, E.; Taheri, S.; Tavakkoli, E.; Jämting, Å.K.; McClure, S.; Naidu, R.; Miller, B.W.; Scheckel, K.G.; Vasilev, K. Transformation of four silver/silver chloride nanoparticles during anaerobic treatment of wastewater and post-processing of sewage sludge. Environ. Pollut. 2013, 176, 193–197. [Google Scholar] [CrossRef]
- Gonzalez-Estrella, J.; Puyol, D.; Sierra-Alvarez, R.; Field, J.A. Role of biogenic sulfide in attenuating zinc oxide and copper nanoparticle toxicity to acetoclastic methanogenesis. J. Hazard. Mater. 2015, 283, 755–763. [Google Scholar] [CrossRef]
- Bondarenko, O.; Ivask, A.; Käkinen, A.; Kahru, A. Sub-toxic effects of CuO nanoparticles on bacteria: Kinetics, role of Cu ions and possible mechanisms of action. Environ. Pollut. 2012, 169, 81–89. [Google Scholar] [CrossRef]
- Xiu, Z.-M.; Zhang, Q.-B.; Puppala, H.L.; Colvin, V.L.; Alvarez, P.J. Negligible particle-specific antibacterial activity of silver nanoparticles. Nano Lett. 2012, 12, 4271–4275. [Google Scholar] [CrossRef]
- Klasen, H.J. A historical review of the use of silver in the treatment of burns, II. Renewed interest for silver. Burns 2000, 26, 131–138. [Google Scholar] [CrossRef] [PubMed]
- Lansdown, A.B. A review of the use of silver in wound care: Facts and fallacies. Br. J. Nurs. 2004, 13, S6–S19. [Google Scholar] [CrossRef] [PubMed]
- Asharani, P.V.; Sethu, S.; Vadukumpully, S.; Zhong, S.; Lim, C.T.; Hande, M.P.; Valiyaveettil, S. Investigations on the structural damage in human erythrocytes exposed to silver, gold, and platinum nanoparticles. Adv. Funct. Mater. 2010, 20, 1233–1242. [Google Scholar] [CrossRef]
- Ginige, M.P.; Keller, J.; Blackall, L.L. Investigation of an acetate-fed denitrifying microbial community by stable isotope probing, full-cycle rRNA analysis, and fluorescent in situ hybridization-microautoradiography. Appl. Environ. Microbiol. 2005, 71, 8683–8691. [Google Scholar] [CrossRef] [PubMed]
- Takeuchi, M.; Hamana, K.; Hiraishi, A. Proposal of the genus Sphingomonas sensu stricto and three new genera, Sphingobium, Novosphingobium and Sphingopyxis, on the basis of phylogenetic and chemotaxonomic analyses. Int. J. Syst. Evol. Microbiol. 2001, 51, 1405–1417. [Google Scholar] [CrossRef] [PubMed]
- Elshahed, M.S.; McInerney, M.J. Benzoate Fermentation by the Anaerobic Bacterium Syntrophus aciditrophicus in the Absence of Hydrogen-Using Microorganisms. Appl. Environ. Microbiol. 2001, 67, 5520–5525. [Google Scholar] [CrossRef] [PubMed]
- Breitenstein, A.; Wiegel, J.; Haertig, C.; Weiss, N.; Andreesen, J.R.; Lechner, U. Reclassification of Clostridium hydroxybenzoicum as Sedimentibacter hydroxybenzoicus gen. nov., comb. nov., and description of Sedimentibacter saalensis sp. nov. Int. J. Syst. Evol. Microbiol. 2002, 52, 801–807. [Google Scholar] [CrossRef]
- Garrity, G.; Brenner, D.K.; Staley, J.; Krieg, N. The Proteobacteria, Part C: The Alpha-, Beta-, Delta-, and Epsilonproteobacteria. In Bergey’s Manual of Systematic Bacteriology; Springer: New York, NY, USA, 2005; pp. 647–657. [Google Scholar]
- Iino, T.; Mori, K.; Tanaka, K.; Suzuki, K.-i.; Harayama, S. Oscillibacter valericigenes gen. nov., sp. nov., a valerate-producing anaerobic bacterium isolated from the alimentary canal of a Japanese corbicula clam. Int. J. Syst. Evol. Microbiol. 2007, 57, 1840–1845. [Google Scholar] [CrossRef]
- Fosses, A.; Maté, M.; Franche, N.; Liu, N.; Denis, Y.; Borne, R.; de Philip, P.; Fierobe, H.-P.; Perret, S. A seven-gene cluster in Ruminiclostridium cellulolyticum is essential for signalization, uptake and catabolism of the degradation products of cellulose hydrolysis. Biotechnol. Biofuels 2017, 10, 250. [Google Scholar] [CrossRef]
- Grabovich, M.; Gavrish, E.; Kuever, J.; Lysenko, A.M.; Podkopaeva, D.; Dubinina, G. Proposal of Giesbergeria voronezhensis gen. nov., sp. nov. and G. kuznetsovii sp. nov. and reclassification of [Aquaspirillum] anulus, [A.] sinuosum and [A.] giesbergeri as Giesbergeria anulus comb. nov., G. sinuosa comb. nov. and G. giesbergeri comb. nov. Int. J. Syst. Evol. Microbiol. 2006, 56, 569–576. [Google Scholar] [CrossRef] [PubMed]
- Wiegel, J.; Tanner, R.; Rainey, F. An Introduction to the Family Clostridiaceae; The Prokaryotes; Springer: New York, NY, USA, 2006; pp. 654–678. [Google Scholar]
- Pikuta, E.V.; Hoover, R.B.; Bej, A.K.; Marsic, D.; Whitman, W.B.; Krader, P.E.; Tang, J. Trichococcus patagoniensis sp. nov., a facultative anaerobe that grows at −5 °C, isolated from penguin guano in Chilean Patagonia. Int. J. Syst. Evol. Microbiol. 2006, 56, 2055–2062. [Google Scholar] [CrossRef]
- Li, A.; Chu, Y.; Wang, X.; Ren, L.; Yu, J.; Liu, X.; Yan, J.; Zhang, L.; Wu, S.; Li, S. A pyrosequencing-based metagenomic study of methane-producing microbial community in solid-state biogas reactor. Biotechnol. Biofuels 2013, 6, 3. [Google Scholar] [CrossRef] [PubMed]
- Nagai, F.; Morotomi, M.; Watanabe, Y.; Sakon, H.; Tanaka, R. Alistipes indistinctus sp. nov. and Odoribacter laneus sp. nov., common members of the human intestinal microbiota isolated from faeces. Int. J. Syst. Evol. Microbiol. 2010, 60, 1296–1302. [Google Scholar] [CrossRef]
- Finneran, K.T.; Johnsen, C.V.; Lovley, D.R. Rhodoferax ferrireducens sp. nov., a psychrotolerant, facultatively anaerobic bacterium that oxidizes acetate with the reduction of Fe (III). Int. J. Syst. Evol. Microbiol. 2003, 53, 669–673. [Google Scholar] [CrossRef] [PubMed]
- Abbott, S.L.; Cheung, W.K.; Janda, J.M. The genus Aeromonas: Biochemical characteristics, atypical reactions, and phenotypic identification schemes. J. Clin. Microbiol. 2003, 41, 2348–2357. [Google Scholar] [CrossRef]
- Aullo, T.; Ranchou-Peyruse, A.; Ollivier, B.; Magot, M. Desulfotomaculum spp. and related gram-positive sulfate-reducing bacteria in deep subsurface environments. Front. Microbiol. 2013, 4, 362. [Google Scholar] [CrossRef] [PubMed]
- Yutin, N.; Galperin, M.Y. A genomic update on clostridial phylogeny: Gram-negative spore formers and other misplaced clostridia. Environ. Microbiol. 2013, 15, 2631–2641. [Google Scholar] [CrossRef] [PubMed]
- Chung, B.S.; Ryu, S.H.; Park, M.; Jeon, Y.; Chung, Y.R.; Jeon, C.O. Hydrogenophaga caeni sp. nov., isolated from activated sludge. Int. J. Syst. Evol. Microbiol. 2007, 57, 1126–1130. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.-J.; Romanek, C.S.; Mills, G.L.; Davis, R.C.; Whitman, W.B.; Wiegel, J. Gracilibacter thermotolerans gen. nov., sp. nov., an anaerobic, thermotolerant bacterium from a constructed wetland receiving acid sulfate water. Int. J. Syst. Evol. Microbiol. 2006, 56, 2089–2093. [Google Scholar] [CrossRef] [PubMed]
- Morotomi, M.; Nagai, F.; Watanabe, Y. Description of Christensenella minuta gen. nov., sp. nov., isolated from human faeces, which forms a distinct branch in the order Clostridiales, and proposal of Christensenellaceae fam. nov. Int. J. Syst. Evol. Microbiol. 2012, 62, 144–149. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.A.; Zengler, K.; Edwards, E.A.; Mahadevan, R.; Stephanopoulos, G. Investigating Moorella thermoacetica metabolism with a genome-scale constraint-based metabolic model. Integr. Biol. 2015, 7, 869–882. [Google Scholar] [CrossRef] [PubMed]
- Euzéby, J.P. List of Bacterial Names with Standing in Nomenclature: A folder available on the Internet. J. Syst. Evol. Microbiol. 1997, 47, 590–592. [Google Scholar] [CrossRef]
- Takai, K.; Abe, M.; Miyazaki, M.; Koide, O.; Nunoura, T.; Imachi, H.; Inagaki, F.; Kobayashi, T. Sunxiuqinia faeciviva sp. nov., a facultatively anaerobic organoheterotroph of the Bacteroidetes isolated from deep subseafloor sediment. Int. J. Syst. Evol. Microbiol. 2013, 63, 1602–1609. [Google Scholar] [CrossRef] [PubMed]
- Thabet, O.B.; Fardeau, M.-L.; Suarez-Nuñez, C.; Hamdi, M.; Thomas, P.; Ollivier, B.; Alazard, D. Desulfovibrio marinus sp. nov., a moderately halophilic sulfate-reducing bacterium isolated from marine sediments in Tunisia. Int. J. Syst. Evol. Microbiol. 2007, 57, 2167–2170. [Google Scholar] [CrossRef] [PubMed]
- Hatamoto, M.; Imachi, H.; Fukayo, S.; Ohashi, A.; Harada, H. Syntrophomonas palmitatica sp. nov., an anaerobic, syntrophic, long-chain fatty-acid-oxidizing bacterium isolated from methanogenic sludge. Int. J. Syst. Evol. Microbiol. 2007, 57, 2137–2142. [Google Scholar] [CrossRef]
- Ben David, Y.; Dassa, B.; Borovok, I.; Lamed, R.; Koropatkin, N.M.; Martens, E.C.; White, B.A. Ruminococcal cellulosome systems from rumen to human. Environ. Microbiol. 2015, 17, 3407–3426. [Google Scholar] [CrossRef] [PubMed]
- Veldkamp, H. Isolation and characteristics of Treponema zuelzerae nov. spec., an anaerobic, free-living spirochete. Antonie Van Leeuwenhoek 1960, 26, 103–125. [Google Scholar] [CrossRef] [PubMed]
- Bouanane-Darenfed, A.; Hania, W.B.; Cayol, J.-L.; Ollivier, B.; Fardeau, M.-L. Reclassification of Acetomicrobium faecale as Caldicoprobacter faecalis comb. nov. Int. J. Syst. Evol. Microbiol. 2015, 65, 3286–3288. [Google Scholar] [CrossRef] [PubMed]
- Sakamoto, M.; Iino, T.; Ohkuma, M. Faecalimonas umbilicata gen. nov., sp. nov., isolated from human faeces, and reclassification of Eubacterium contortum, Eubacterium fissicatena and Clostridium oroticum as Faecalicatena contorta gen. nov., comb. nov., Faecalicatena fissicatena comb. nov. Int. J. Syst. Evol. Microbiol. 2017, 67, 1219–1227. [Google Scholar] [CrossRef]
- Caccavo, F.; Lonergan, D.J.; Lovley, D.R.; Davis, M.; Stolz, J.F.; McInerney, M.J. Geobacter sulfurreducens sp. nov., a hydrogen-and acetate-oxidizing dissimilatory metal-reducing microorganism. Appl. Environ. Microbiol. 1994, 60, 3752–3759. [Google Scholar] [CrossRef]
- Holmes, D.E.; Nevin, K.P.; Woodard, T.L.; Peacock, A.D.; Lovley, D.R. Prolixibacter bellariivorans gen. nov., sp. nov., a sugar-fermenting, psychrotolerant anaerobe of the phylum Bacteroidetes, isolated from a marine-sediment fuel cell. Int. J. Syst. Evol. Microbiol. 2007, 57, 701–707. [Google Scholar] [CrossRef] [PubMed]
- Ritalahti, K.M.; Justicia-Leon, S.D.; Cusick, K.D.; Ramos-Hernandez, N.; Rubin, M.; Dornbush, J.; Löffler, F.E. Sphaerochaeta globosa gen. nov., sp. nov. and Sphaerochaeta pleomorpha sp. nov., free-living, spherical spirochaetes. Int. J. Syst. Evol. Microbiol. 2012, 62, 210–216. [Google Scholar] [CrossRef] [PubMed]
- Gerritsen, J.; Hornung, B.; Staneva, I.; Ritarl, J.; Paulin, L.; Rijkers, G.; Schaap, P.J.; de Vos, W.M.; Smidt, H. Comparative genomics and functional analysis of the genus Romboutsia provides insight into adaptation to an intestinal lifestyle. In The Genus Romboutsia. Genomic and Functional Characterisation of Novel Bacteria Dedicated to Life in the Intestinal Tract; Wageningen University: Wageningen, The Netherlands, 2015; pp. 188–220. [Google Scholar]
- Sanchez-Andrea, I.; Sanz, J.L.; Stams, A.J. Microbacter margulisiae gen. nov., sp. nov., a propionigenic bacterium isolated from sediments of an acid rock drainage pond. Int. J. Syst. Evol. Microbiol. 2014, 64, 3936–3942. [Google Scholar] [CrossRef] [PubMed]
- Xue, Y.; Xu, Y.; Liu, Y.; Ma, Y.; Zhou, P. Thermoanaerobacter tengcongensis sp. nov., a novel anaerobic, saccharolytic, thermophilic bacterium isolated from a hot spring in Tengcong, China. Int. J. Syst. Evol. Microbiol. 2001, 51, 1335–1341. [Google Scholar] [CrossRef] [PubMed]
- Machi, H.S.; Ohashi, A.; Harada, H.; Hanada, S.; Kamagata, Y.; Sekiguchi, Y. Pelotomaculum propionicicum sp. nov., an anaerobic, mesophilic, obligately syntrophic, propionate-oxidizing bacterium. Int. J. Syst. Evol. Microbiol. 2007, 57, 1487–1492. [Google Scholar]
- Chen, S.; Liu, X.; Don, X. Syntrophobacter sulfatireducens sp. nov., a novel syntrophic, propionate-oxidizing bacterium isolated from UASB reactors. Int. J. Syst. Evol. Microbiol. 2005, 55, 1319–1324. [Google Scholar] [CrossRef] [PubMed]
- Balch, W.E.; Schoberth, S.; Tanner, R.S.; Wolfe, R.S. Acetobacterium, a new genus of hydrogen-oxidizing, carbon dioxide-reducing, anaerobic bacteria. Int. J. Syst. Evol. Microbiol. 1977, 27, 355–361. [Google Scholar] [CrossRef]
Characteristics | AgNPs | CuONPs |
---|---|---|
Diameter (TEM) | 23.1 ± 6.9 nm | 25–55 nm |
pH of the solution | 6.3 | 7–9 |
Morphology | Nearly spherical | Nearly spherical |
Solvent | Milli-Q water (Merck, Darmstadt, Germany) | Milli-Q water |
Particle surface coating | Polyvinylpyrrolidone (PVP) | None |
Parameters | |||
---|---|---|---|
Primary Sludge | Thickened Waste Activated Sludge (tWAS) | Anaerobically Digested Sludge | |
pH | 7.6 ± 0.1 | 7.0 ± 0.1 | 7.3 ± 0.02 |
Total solids (TS) (g/kg) | 42.7 ± 7.2 | 52.7 ± 1.6 | 19.0 ± 0.2 |
VS (g/kg) | 28.7 ± 3.5 | 38.6 ± 1.5 | 15.6 ± 0.1 |
Total chemical oxygen demand (tCOD) (g/kg) | 52.0 ± 8.3 | 73.9 ± 2.1 | 19.8 ± 1.1 |
Soluble chemical oxygen demand (sCOD) (g/kg) | 2.0 ± 1.1 | 8.2 ± 0.1 | 8.4 ± 0.2 |
Reactors | NP Concentration (mg NPs/g TS of Sludge) | Sludge Feed | Reactor Volume (mL) | Reactor Temperature (°C) | Duration of Experiments (days) |
---|---|---|---|---|---|
Control | Zero | Thickened waste activated sludge (40%) + primary sludge (40%) + thickened anaerobically digested sludge (20%) | 85 | 34 ± 1 | 37 |
Reactor A (AgNPs) | 2 | ||||
Reactor B (AgNPs) | 10 | ||||
Reactor C (AgNPs) | 30 | ||||
Reactor D (CuONPs) | 2 | ||||
Reactor E (CuONPs) | 10 | ||||
Reactor F (CuONPs) | 30 |
Reactor | Final Biogas Volume Generated (mL) | tCOD Reduction % | sCOD Reduction % | VS Reduction % |
---|---|---|---|---|
Control | 800.5 ± 3 | 56.4 ± 4.2 | 71.1 ± 5.2 | 50.0 ± 3.8 |
Reactor A (2 mg AgNPs/g TS) | 704.0 ± 4 | 50.8 ± 2.7 | 70.3 ± 7.1 | 50.1 ± 1.3 |
Reactor B (10 mg AgNPs/g TS) | 689.0 ± 5 | 43.9 ± 2.2 | 70.0 ± 5.5 | 46.2 ± 2.1 |
Reactor C (30 mg AgNPs/g TS) | 580.5 ± 3 | 51.3 ± 1.7 | 70.0 ± 3.4 | 49.8 ± 1.8 |
Reactor D (2 mg CuONPs/g TS) | 769.0 ± 2 | 53.1 ± 2.1 | 59.0 ± 6.4 | 43.6 ± 2.4 |
Reactor E (10 mg CuONPs/g TS) | 768.0 ± 3 | 52.1 ± 3.1 | 59.5 ± 7.1 | 41.2 ± 4.1 |
Reactor F (30 mg CuONPs/g TS) | 562.5 ± 2 | 50.8 ± 3.2 | 61.9 ± 6.1 | 41.9 ± 3.4 |
Reactor | Nanoparticles Concentration (mg NPs/g TS of Sludge) | Overall Number of Sequences | Classified (%) | Total Number of Observed Phyla | Average Process Accuracy (%) | Shannon-Wiener Index (Phyla) |
---|---|---|---|---|---|---|
Control | None | 148,735 | 83 | 24 | 83 | 1.15 |
Reactor A (AgNPs) | 2 | 147,632 | 76 | 27 | 82 | 1.12 |
Reactor B (AgNPs) | 10 | 149,972 | 87 | 27 | 83 | 1.16 |
Reactor C (AgNPs) | 30 | 143,490 | 87 | 27 | 83 | 1.14 |
Reactor D (CuONPs) | 2 | 141,444 | 89 | 27 | 83 | 1.14 |
Reactor E (CuONPs) | 10 | 136,469 | 86 | 29 | 83 | 1.17 |
Reactor F (CuONPs) | 30 | 148,759 | 85 | 23 | 83 | 1.17 |
Bacterial Phylum/Genera | Control (%) | Reactor A (%) | Reactor B (%) | Reactor C (%) | Reactor D (%) | Reactor E (%) | Reactor F (%) |
---|---|---|---|---|---|---|---|
Proteobacteria/Novosphingobium. Bacteroidetes/Bacteroides and Sunxiuqinia. | 11.1 | 9.1 | 9.4 | 5.4 | 10.2 | 9.0 | 8.2 |
Firmicutes/Trichococcus, Lachnoclostridium, Gracilibacter, Christensenella, Acidaminococcus, Desulfovibrio, Treponema, and Caldicoprobacter. Bacteroidetes/Alistipes, Prolixibacter, and Microbacter | 12.5 | 11.8 | 13.2 | 12.5 | 12.8 | 16.0 | 14.6 |
Proteobacteria/Syntrophus. Firmicutes/Desulfotomaculum, Moorella, Syntrophomonas, Pelotomaculum, and Acetobacterium. | 10.7 | 9.6 | 10.6 | 8.2 | 9.8 | 8.3 | 9.6 |
Proteobacteria/Acidovorax, Arcobacter, Thauera, Simplicispira, Rhodoferax, and Aeromonas. Firmicutes/Oscillibacter, Ruminiclostridium, and Faecalicatena. Spirochaetes/Sphaerochaeta. | 52.1 | 56.0 | 52.7 | 60.5 | 55.5 | 55.8 | 55.2 |
Firmicutes/Sedimentibacter, Ruminococcus, and Thermoanaerobacter. | 7.9 | 8.1 | 8.7 | 8.9 | 6.3 | 6.1 | 7.3 |
Firmicutes/Clostridium, Romboutsia, and Syntrophobacter. | 3.9 | 3.5 | 3.5 | 2.6 | 3.5 | 2.7 | 3.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdulsada, Z.K.; Kibbee, R.; Princz, J.; Örmeci, B. Impact of Silver and Copper Oxide Nanoparticles on Anaerobic Digestion of Sludge and Bacterial Community Structure. Nanomaterials 2025, 15, 236. https://doi.org/10.3390/nano15030236
Abdulsada ZK, Kibbee R, Princz J, Örmeci B. Impact of Silver and Copper Oxide Nanoparticles on Anaerobic Digestion of Sludge and Bacterial Community Structure. Nanomaterials. 2025; 15(3):236. https://doi.org/10.3390/nano15030236
Chicago/Turabian StyleAbdulsada, Zainab K., Richard Kibbee, Juliska Princz, and Banu Örmeci. 2025. "Impact of Silver and Copper Oxide Nanoparticles on Anaerobic Digestion of Sludge and Bacterial Community Structure" Nanomaterials 15, no. 3: 236. https://doi.org/10.3390/nano15030236
APA StyleAbdulsada, Z. K., Kibbee, R., Princz, J., & Örmeci, B. (2025). Impact of Silver and Copper Oxide Nanoparticles on Anaerobic Digestion of Sludge and Bacterial Community Structure. Nanomaterials, 15(3), 236. https://doi.org/10.3390/nano15030236