Nanostructuring of Palladium with Low-Temperature Helium Plasma
Abstract
:1. Introduction
2. Experimental Section
3. Results and Discussion
3.1. Palladium Nanostructuring as a Function of Temperature
3.2. Palladium Nanostructuring versus Palladium Thickness
3.3. Catalysis with Nanostructured Palladium
4. Discussion and Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Wright, G.M.; Brunner, D.; Baldwin, M.J.; Bystrov, K.; Doerner, R.P.; Labombard, B.; Lipschultz, B.; De Temmerman, G.; Terry, J.L.; Whyte, D.G.; et al. Comparison of tungsten nano-tendrils grown in Alcator C-Mod and linear plasma devices. J. Nuc. Mat. 2013, 438, S84–S89. [Google Scholar] [CrossRef]
- Baldwin, M.J.; Doerner, R.P. Formation of helium induced nanostructure “fuzz” on various tungsten grains. J. Nuc. Mat. 2010, 404, 165–173. [Google Scholar] [CrossRef]
- Pitts, R.A.; Carpentier, S.; Escourbiac, F.; Hirai, T.; Komarov, V.; Lisgo, S.; Kukushkin, A.S.; Loarte, A.; Merola, M.; Sashala Naik, A.; et al. A full tungsten divertor for ITER: Physics issues and design status. J. Nuc. Mat. 2013, 438, S48–S56. [Google Scholar] [CrossRef]
- Takamura, S.; Ohno, N.; Nishijima, D.; Kajita, S. Formation of nanostructured tungsten with arborescent shape due to helium plasma irradiation. Plas. Fus. Res. 2006, 1. [Google Scholar] [CrossRef]
- De Temmerman, G.; Bystrov, K.; Zielinski, J.J.; Balden, M.; Matern, G.; Arnas, C.; Marot, L. Nanostructuring of molybdenum and tungsten surfaces by low-energy helium ions. J. Vac. Sci. Technol. A 2012, 30, 041306. [Google Scholar] [CrossRef]
- Baldwin, M.J.; Doerner, R.P. Helium induced nanoscopic morphology on tungsten under fusion relevant plasma conditions. Nucl. Fus. 2008, 48, 3. [Google Scholar] [CrossRef]
- Kajita, S.; Ono, N.; Yokochi, T.; Yoshida, N.; Yoshihara, R.; Takamura, S.; Hatae, T. Optical properties of nanostructured tungsten in near infrared range. Plas. Phys. Contr. Fus. 2012, 54, 10. [Google Scholar] [CrossRef]
- Tanyeli, I.; Marot, L.; Mathys, D.; van de Sanden, M.C.M.; De Temmerman, G. Surface modifications induced by high fluxes of low energy helium ions. Sci. Reports. 2015, 5. [Google Scholar] [CrossRef] [PubMed]
- Tobe, R.; Sekiguchi, A.; Sasaki, M.; Okada, O.; Hosokawa, N. Plasma-enhanced CVD of TiN and Ti using low-pressure and high-density helicon plasma. Thin Solid Films 1996, 281–282, 155–158. [Google Scholar] [CrossRef]
- Ruzic, D.N. Electric Probes for Low Temperature Plasmas, 1st ed.; American Vacuum Society Education Committee: New York, NY, USA, 1994. [Google Scholar]
- Fiflis, P.; Curreli, D.; Ruzic, D.N. Direct Time-Resolved Observation of Tungsten Nanostructured Growth Due to Helium Plasma Exposure. Nucl. Fus. 2015, 55, 3. [Google Scholar] [CrossRef]
- Brooks, J.N.; Allain, J.P.; Doerner, R.P.; Hassanein, A.; Nygren, R.; Rognlien, T.D.; Whyte, D.G. Plasma–surface interaction issues of an all-metal ITER. Nucl. Fus. 2009, 49, 035007. [Google Scholar] [CrossRef]
- Ueda, Y.; Peng, H.Y.; Lee, H.T.; Ohno, N.; Kajita, S.; Yoshida, N.; Doerner, R.; De Temmerman, G.; Alimov, V.; Wright, G. Helium effects on tungsten surface morphology and deuterium retention. J. Nuc. Matl. 2013, 442, S267–S272. [Google Scholar] [CrossRef]
- Horiuti, I.; Polanyi, M. Exchange Reactions of Hydrogen on Metallic Catalysts. T. Faraday Soc. 1934, 30, 1164–1172. [Google Scholar] [CrossRef]
- Puskás, R.; Sápi, A.; Kukovecz, A.; Kónya, Z. Comparison of Nanoscaled Palladium Catalysts Supported on Various Carbon Allotropes. Top. Catal. 2012, 55, 865–872. [Google Scholar] [CrossRef]
- Lischka, M.; Groβ, A. Hydrogen on palladium: A model system for the interaction of atoms and molecules with metal surfaces. Recent Dev. Vac. Sci. Technol. 2003, 37, 111–132. [Google Scholar]
- McKenna, S.; Spyracopoulos, L.; Moraes, T.; Pastushok, L.; Ptak, C.; Xiao, W.; Ellison, M.J. Noncovalent Interaction between Ubiquitin and the Human DNA Repair Protein Mms2 Is Required for Ubc13-mediated Polyubiquitination. J. Bio. Chem. 2001, 276, 40120–40126. [Google Scholar] [CrossRef] [PubMed]
- Miura, K.; Ohgiya, S.; Hoshino, T.; Nemoto, N.; Suetake, T.; Miura, A.; Spracopoulos, L.; Kondo, H.; Tsuda, S. NMR Analysis of Type III Antifreeze Protein Intramolecular Dimer. J. Bio. Chem. 2001, 276, 1304–1310. [Google Scholar] [CrossRef] [PubMed]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fiflis, P.; Christenson, M.P.; Connolly, N.; Ruzic, D.N. Nanostructuring of Palladium with Low-Temperature Helium Plasma. Nanomaterials 2015, 5, 2007-2018. https://doi.org/10.3390/nano5042007
Fiflis P, Christenson MP, Connolly N, Ruzic DN. Nanostructuring of Palladium with Low-Temperature Helium Plasma. Nanomaterials. 2015; 5(4):2007-2018. https://doi.org/10.3390/nano5042007
Chicago/Turabian StyleFiflis, P., M.P. Christenson, N. Connolly, and D.N. Ruzic. 2015. "Nanostructuring of Palladium with Low-Temperature Helium Plasma" Nanomaterials 5, no. 4: 2007-2018. https://doi.org/10.3390/nano5042007
APA StyleFiflis, P., Christenson, M. P., Connolly, N., & Ruzic, D. N. (2015). Nanostructuring of Palladium with Low-Temperature Helium Plasma. Nanomaterials, 5(4), 2007-2018. https://doi.org/10.3390/nano5042007