Polymer Nanocomposite Film with Metal Rich Surface Prepared by In Situ Single-Step Formation of Palladium Nanoparticles: An Interesting Way to Combine Specific Functional Properties
Abstract
:1. Introduction
2. Results
2.1. Morphology and Structure of the Films
2.2. Gas Transport Properties
3. Discussion
4. Materials and Methods
4.1. Chemicals
4.2. Preparation of the Metal Rich Surface Nanocomposites
4.3. Characterization
5. Conclusions
Author Contributions
Conflicts of Interest
References
- Thomas, V.; Namdeo, M.; Mohan, Y.M.; Bajpai, S.K.; Bajpai, M. Review on polymer, hydrogel and microgel metal nanocomposites: A facile nanotechnological approach. J. Macromol. Sci. Part A 2008, 45, 107–119. [Google Scholar] [CrossRef]
- Radhakrishnan, T.P. Polymer-metal nanocomposite thin films: In situ fabrication and applications. Solid States Phys. 2012, 1447, 21–23. [Google Scholar]
- Coiai, S.; Passaglia, E.; Pucci, A.; Ruggeri, G. Nanocomposites based on thermoplastic polymers and functional nanofiller for sensor applications. Materials 2015, 8, 3377–3427. [Google Scholar] [CrossRef]
- Palza, H. Antimicrobial polymers with metal nanoparticles. Int. J. Mol. Sci. 2015, 16, 2099–2116. [Google Scholar] [CrossRef] [PubMed]
- Petrucci, G.; Oberhauser, W.; Bartoli, M.; Giachi, G.; Frediani, M.; Passglia, E.; Capozzoli, L.; Rosi, L. Pd-nanoparticles supported onto functionalized poly(lactic acid)-based stereocomplexes for partial alkyne hydrogenation. Appl. Catal. A 2014, 469, 132–138. [Google Scholar] [CrossRef]
- Reheem, A.M.A.; Maksoud, M.I.A.A.; Ashour, A.H. Surface modification and metallization of polycarbonate using low energy ion beam. Radiat. Phys. Chem. 2016, 125, 171–175. [Google Scholar] [CrossRef]
- Vasina, A.; Slepicka, P.; Kasparkova, I.; Kolska, Z.; Blahova, O.; Svorcik, V. Interaction of Polypropylene with Sputtered and Evaporated Au Nanolayers. Polym. Eng. Sci. 2013, 53, 2270–2275. [Google Scholar] [CrossRef]
- Charifou, R.; Espuche, E.; Gouanve, F.; Dubost, L.; Monaco, B. SiOx and SiOxCzHw mono- and multi-layer deposits for improved polymer oxygen and water vapor barrier properties. J. Membr. Sci. 2016, 500, 245–254. [Google Scholar] [CrossRef]
- Rubira, A.F.; Rancourt, J.D.; Caplan, M.L.; St Clair, A.K.; Taylor, L.T. Metal Containing Polymeric Materials: Polyimides Doped with Silver(I), Factors Affecting Production of Reflecting Films; Pittman, U.C., Carraher, C.E., Culbertson, B.M., Zeldin, M., Sheets, J.E., Eds.; Plenum: New York, NY, USA, 1996; pp. 356–357. [Google Scholar]
- Mustatea, G.; Vidal, L.; Calinescu, I.; Dobre, A.; Ionescu, M.; Balan, L. A photochemical approach designed to improve the coating of nanoscale silver films onto food plastic wrappings intended to control bacterial hazards. J. Nanopart. Res. 2015, 17, 46. [Google Scholar] [CrossRef]
- Southward, R.E.; Thompson, D.S.; Thompson, D.W.; St Clair, A.K. Fabrication of highly reflective composite polyimide films via in situ reduction of matrix constrained silver(I). Chem. Mater. 1997, 9, 1691–1699. [Google Scholar] [CrossRef]
- Clemenson, S.; Leonard, D.; Sage, D.; David, L.; Espuche, E. Metal nanocomposite films prepared In Suite from PVA and silver nitrate. Study of the nanostructuration process and morphology as a function of the In Suite routes. J. Pol. Sci. Part A 2008, 46, 2062–2071. [Google Scholar] [CrossRef]
- Espuche, E.; David, L.; Rochas, C.; Afeld, J.L.; Compton, J.M.; Thompson, D.W.; Kranbuehl, D.E. In situ generation of nanoparticulate Lanthanum(III) oxide-polyimide films: Characterization of nanoparticle formation and resulting polymer properties. Polymer 2005, 46, 6657–6665. [Google Scholar] [CrossRef]
- Crank, J.; Park, G.S. Methods of measurement. In Diffusion in Polymers; Crank, J., Park, G.S., Eds.; Academic Press: New York, NY, USA, 1968. [Google Scholar]
- Tanaka, K.; Kita, H.; Okano, M.; Okamoto, K. Permeability and permselectivity of gases in fluorinated and non-fluorinated polyimides. Polymer 1992, 33, 585–592. [Google Scholar] [CrossRef]
- Nielsen, L.E. Models for the permeability of filled polymer systems. J. Macromol. Sci. 1967, A1, 929–942. [Google Scholar] [CrossRef]
- Barrer, R.M. Diffusion and permeation in heterogeneous media. In Diffusion in Polymers; Crank, J., Park, G.S., Eds.; Academic Press: New York, NY, USA, 1968. [Google Scholar]
- Trögger, L.; Hinnefeld, H.; Nunes, S.; Oehring, M.; Fritsch, D. Structural characterization of catalytically active metal nanoclusters in poly(amide imide) films with high metal loading. J. Phys. Chem. B 1997, 101, 1279–1291. [Google Scholar] [CrossRef]
- Clemenson, S.; Espuche, E.; David, L.; Leonard, D. Nanocomposite membranes of polyetherimide nanostructured with palladium particles: Processing route, morphology and functional properties. J. Membr. Sci. 2010, 361, 167–175. [Google Scholar] [CrossRef]
- Shimotori, T.; Cussler, E.L.; Arnold, W.A. Diffusion of mobile products in reactive barrier membranes. J. Membr. Sci. 2007, 291, 111–119. [Google Scholar] [CrossRef]
Gas | Permeability Coefficient (10−16 mol·m·m−2·s−1·Pa−1) | Apparent Diffusion Coefficient (10−14 m2·s−1) |
---|---|---|
He | 15.00 | / 1 |
H2 | 11.75 | / 1 |
O2 | 0.50 | 22.7 |
CO2 | 1.87 | 4.7 |
Gas | Location of the Metallized Surface | Relative Permeability | Relative Diffusion |
---|---|---|---|
He | Upstream | 0.62 ± 0.06 | / 1 |
Downstream | 0.59 ± 0.06 | / 1 | |
O2 | Upstream | 0.47 ± 0.05 | 0.55 ± 0.06 |
Downstream | 0.49 ± 0.05 | 0.55 ± 0.06 | |
CO2 | Upstream | 0.46 ± 0.05 | 0.53 ± 0.05 |
Downstream | 0.47 ± 0.05 | 0.54 ± 0.05 |
Poly(Amic Acid) Polymer | Palladium Precursor |
---|---|
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thompson, D.; Kranbuehl, D.; Espuche, E. Polymer Nanocomposite Film with Metal Rich Surface Prepared by In Situ Single-Step Formation of Palladium Nanoparticles: An Interesting Way to Combine Specific Functional Properties. Nanomaterials 2016, 6, 188. https://doi.org/10.3390/nano6100188
Thompson D, Kranbuehl D, Espuche E. Polymer Nanocomposite Film with Metal Rich Surface Prepared by In Situ Single-Step Formation of Palladium Nanoparticles: An Interesting Way to Combine Specific Functional Properties. Nanomaterials. 2016; 6(10):188. https://doi.org/10.3390/nano6100188
Chicago/Turabian StyleThompson, David, David Kranbuehl, and Eliane Espuche. 2016. "Polymer Nanocomposite Film with Metal Rich Surface Prepared by In Situ Single-Step Formation of Palladium Nanoparticles: An Interesting Way to Combine Specific Functional Properties" Nanomaterials 6, no. 10: 188. https://doi.org/10.3390/nano6100188
APA StyleThompson, D., Kranbuehl, D., & Espuche, E. (2016). Polymer Nanocomposite Film with Metal Rich Surface Prepared by In Situ Single-Step Formation of Palladium Nanoparticles: An Interesting Way to Combine Specific Functional Properties. Nanomaterials, 6(10), 188. https://doi.org/10.3390/nano6100188