A Targeted Nanoprobe Based on Carbon Nanotubes-Natural Biopolymer Chitosan Composites
Abstract
:1. Introduction
2. Results and Discussion
2.1. Preparation of PPa/FITC-SWCNT-FA
2.2. Morphology Characterization and UV-Vis Analysis
2.3. Targeting Specificity Imaging
2.4. Fluorescence Imaging-Guided Photodynamic Therapy
3. Materials and Methods
3.1. Materials
3.2. Apparatus and Instruments
3.3. Preparation of Functional SWCNTs
3.4. Cell Culture
3.5. Morphology Characterization and UV-Vis Analysis
3.6. Confocal Microscopy
3.7. Cell Cytotoxicity Assay Using Cell Counting Kit-8 (CCK8)
4. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
SWCNTs | Single-walled carbon nanotubes |
CHIT | Chitosan |
FA | Folic acid |
FITC | Fluorescein isothiocyanate |
PPa | Pyropheophorbide a |
PDT | Photodynamic therapy |
EDC | 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride |
NHS | N-hydroxysuccinimide |
TEM | Transmission electron microscope |
DMEM | Dulbecco’s modified Eagle’s medium |
DMSO | Dimethylsulfoxide |
CCK8 | Cell Counting Kit-8 |
References
- Lucky, S.S.; Soo, K.C.; Zhang, Y. Nanoparticles in photodynamic therapy. Chem. Rev. 2015, 115, 1990–2042. [Google Scholar] [CrossRef] [PubMed]
- Bovis, M.J.; Woodhams, J.H.; Loizidou, M.; Scheglmann, D.; Bown, S.G.; Macrobert, A.J. Improved in vivo delivery of m-THPC via pegylated liposomes for use in photodynamic therapy. J. Control. Release 2012, 157, 196–205. [Google Scholar] [CrossRef] [PubMed]
- Dolmans, D.E.J.G.J.; Fukumura, D.; Jain, R.K. Photodynamic therapy for cancer. Nat. Rev. Cancer 2003, 3, 380–387. [Google Scholar] [CrossRef] [PubMed]
- Agostinis, P.; Berg, K.; Cengel, K.A.; Foster, T.H.; Girotti, A.W.; Gollnick, S.O.; Hahn, S.M.; Hamblin, M.R.; Juzeniene, A.; Kessel, D.; et al. Photodynamic therapy of cancer: An update. CA A Cancer J. Clin. 2001, 61, 250–281. [Google Scholar] [CrossRef] [PubMed]
- Davids, L.M.; Kleemann, B. Combating melanoma: The use of photodynamic therapy as a novel, adjuvant therapeutic tool. Cancer Treat. Rev. 2011, 37, 465–475. [Google Scholar] [CrossRef] [PubMed]
- Cheng, L.; Wang, C.; Feng, L.Z.; Yang, K.; Liu, Z. Functional nanomaterials for phototherapies of cancer. Chem. Rev. 2014, 114, 10869–10939. [Google Scholar] [CrossRef] [PubMed]
- Allison, R.R.; Sibata, C.H. Oncologic photodynamic therapy photosensitizers: A clinical review. Photodiagnosis Photodyn. Ther. 2010, 7, 61–75. [Google Scholar] [CrossRef] [PubMed]
- Master, A.; Livingston, M.; Gupt, A. Photodynamic nanomedicine in the treatment of solid tumors: Perspectives and challenges. J. Control. Release 2013, 168, 88–102. [Google Scholar] [CrossRef] [PubMed]
- Shi, Z.Z.; Ren, W.Z.; Gong, A.; Zhao, X.M.; Zou, Y.; Brown, E.M.; Chen, X.; Wu, A. Stability enhanced polyelectrolyte-coated gold nanorod photosensitizer complexes for high/low power density photodynamic therapy. Biomaterials 2014, 35, 7058–7067. [Google Scholar] [CrossRef] [PubMed]
- Liao, Z.X.; Li, Y.C.; Lu, H.M.; Sung, H.W. A genetically-encoded Killer Red protein as an intrinsically generated photosensitizer for photodynamic therapy. Biomaterials 2014, 35, 500–508. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.; Pogue, B.W.; Hasan, T. Liposomal delivery of photosensitizing agents. Expert Opin. Drug Deliv. 2005, 2, 477–487. [Google Scholar] [CrossRef] [PubMed]
- Liang, X.; Li, X.; Yue, X.; Dai, Z. Conjugation of porphyrin to nanohybrid cerasomes for photodynamic diagnosis and therapy of cancer. Angew. Chem. 2011, 123, 11826–11831. [Google Scholar] [CrossRef]
- Huang, P.; Lin, J.; Wang, S.; Zhou, Z.; Li, Z.; Wang, Z.; Zhang, C.L.; Yue, X.Y.; Niu, G.; Yang, M.; et al. Photosensitizer-conjugated silica-coated gold nanoclusters for fluorescence imaging-guided photodynamic therapy. Biomaterials 2013, 34, 4643–4654. [Google Scholar] [CrossRef] [PubMed]
- Kearney, M.C.; Brown, S.; Mc Crudden, M.T.C.; Brady, A.J.; Donnelly, R.F. Potential of microneedles in enhancing delivery of photosensitising agents for photodynamic therapy. Photodiagnosis Photodyn. Ther. 2014, 11, 459–466. [Google Scholar] [CrossRef] [PubMed]
- Eshghi, H.; Sazgarnia, A.; Rahimizadeha, M.; Attarana, N.; Bakavoli, M.; Soudmand, S. Protoporphyrin IX-gold nanoparticle conjugates as an efficient photosensitizer in cervical cancer therapy. Photodiagnosis Photodyn. Ther. 2013, 10, 304–312. [Google Scholar] [CrossRef] [PubMed]
- Nakashima, N.; Shiraki, T. Specific molecular interaction and recognition at single-walled carbon nanotube surfaces. Langmuir 2016. [Google Scholar] [CrossRef] [PubMed]
- Hou, S.; Ou, Z.M.; Chen, Q.; Wu, B. Amperometric acetylcholine biosensor based on self-assembly of gold nanoparticles and acetylcholinesterase on the sol–gel/multi-walled carbon nanotubes/choline oxidase composite-modified platinum electrode. Biosens. Bioelectron. 2012, 33, 44–49. [Google Scholar] [CrossRef] [PubMed]
- Wong, B.S.; Yoong, S.L.; Jagusiak, A.; Panczyk, T.; Ho, H.K.; Ang, W.H.; Pastorin, G. Carbon nanotubes for delivery of small molecule drugs. Adv. Drug Deliv. Rev. 2013, 65, 1964–2015. [Google Scholar] [CrossRef] [PubMed]
- Wu, B.; Hou, S.; Miao, Z.; Zhang, C.; Ji, Y. Layer-by-layer self-assembling gold nanorods and glucose oxidase onto carbon nanotubes functionalized sol-gel matrix for an amperometric glucose biosensor. Nanomaterials 2015, 5, 1544–1555. [Google Scholar] [CrossRef]
- Li, H.; Fan, X.; Chen, X. Near-infrared light activation of proteins inside living cells enabled by carbon nanotube-mediated intracellular delivery. ACS Appl. Mater. Interfaces 2016, 8, 4500–4507. [Google Scholar] [CrossRef] [PubMed]
- Saito, N.; Haniu, H.; Usui, Y.; Aoki, K.; Hara, K.; Takanashi, S.; Shimizu, M.; Narita, N.; Okamoto, M.; Kobayashi, S.; et al. Safe clinical use of carbon nanotubes as innovative biomaterials. Chem. Rev. 2014, 114, 6040–6079. [Google Scholar] [CrossRef] [PubMed]
- Das, S.K.; Sandanayaka, A.S.D.; Subbaiyan, N.K.; Zandler, M.E.; Ito, O.; D’Souza, F. Functionalization of diameter-sorted semiconductive SWCNTs with photosensitizing porphyrins: Syntheses and photoinduced electron transfer. Chem.-Eur. J. 2012, 18, 11388–11398. [Google Scholar] [CrossRef] [PubMed]
- Erbas, S.; Gorgulu, A.; Kocakusakogullari, M.; Akkaya, E. Non-covalent functionalized SWNTs as delivery agents for novel bodipy-based potential PDT sensitizers. Chem. Commun. 2009, 33, 4956–4958. [Google Scholar] [CrossRef] [PubMed]
- Ou, Z.M.; Wu, B.Y. A novel nanoprobe based on single-walled carbon nanotubes/photosensitizer for cancer cell imaging and therapy. J. Nanosci. Nanotechnol. 2013, 13, 1212–1216. [Google Scholar] [CrossRef] [PubMed]
- Feng, X.H.; Zhang, S.K.; Wu, H.; Lou, X. A novel folic acid-conjugated TiO2-SiO2 photosensitizer for cancer targeting in photodynamic therapy. Colloid. Surf. B 2015, 125, 197–205. [Google Scholar] [CrossRef] [PubMed]
- Jenkins, D.W.; Hudson, S.M. Review of vinyl graft copolymerization featuring recent advances toward controlled radical-based reactions and illustrated with chitin/chitosan trunk polymers. Chem. Rev. 2001, 101, 3425–3274. [Google Scholar] [CrossRef]
- Elsaid, N.; Jackson, T.L.; Elsaid, Z.; Alqathama, A.; Somavarapu, S. PLGA Microparticles entrapping chitosan-based nanoparticles for the ocular delivery of ranibizumab. Mol. Pharm. 2016, 13, 2923–2940. [Google Scholar] [CrossRef] [PubMed]
- Wu, B.Y.; Ou, O.Z.; Xing, D. Functional single-walled carbon nanotubes/chitosan conjugate for tumor cells targeting. Proc. SPIE 2009, 7519. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, S.P.; Wang, Y.T.; Wang, X.H.; Wang, Q.; Chen, M. Advances in self-assembled chitosan nanomaterials for drug delivery. Biotechnol. Adv. 2014, 32, 1301–1316. [Google Scholar] [CrossRef] [PubMed]
- Ding, Y.L.; Shen, S.Z.; Sund, H.D.; Sun, K.N.; Liu, F.; Qi, Y.; Yan, J. Design and construction of polymerized-chitosan coated Fe3O4 magnetic nanoparticles and its application for hydrophobic drug delivery. Mater. Sci. Eng. C 2015, 48, 487–498. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Koo, H.; Lee, D.E.; Min, S.; Lee, S.; Chen, X.; Choi, Y.; Leary, J.F.; Park, K.; Jeong, S.Y.; et al. Tumor-homing photosensitizer-conjugated glycol chitosan nanoparticles for synchronous photodynamic imaging and therapy based on cellular on/off system. Biomaterials 2011, 32, 4021–4029. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Cai, H.; Liu, Z.; Yao, P. Effective enhancement of hypoglycemic effect of insulin by liver-targeted nanoparticles containing cholic acid-modified chitosan derivative. Mol. Pharm. 2016, 13, 2433–2442. [Google Scholar] [CrossRef] [PubMed]
- Low, P.S.; Kularatne, S.A. Folate-targeted therapeutic and imaging agents for cancer. Curr. Opin. Chem. Biol. 2009, 13, 256–262. [Google Scholar] [CrossRef] [PubMed]
- Lu, T.C.; Sun, J.; Chen, X.X.; Zhang, P.B.; Jing, X. Folate-conjugated micelles and their folate-receptor-mediated endocytosis. Macromol. Biosci. 2009, 9, 1059–1068. [Google Scholar] [CrossRef] [PubMed]
- Prabhu, V.; Uzzaman, S.; Grace, V.M.B.; Guruvayoorappan, C. Nanoparticles in drug delivery and cancer therapy: The giant rats tail. J. Cancer Ther. 2011, 2, 325–334. [Google Scholar] [CrossRef]
- Guan, M.; Ge, J.; Wu, J.; Zhang, G.; Chen, D.; Zhang, W.; Zhang, Y.; Zou, T.; Zhen, M.; Wang, C.; et al. Fullerene/photosensitizer nanovesicles as highly efficient and clearable phototheranostics with enhanced tumor accumulation for cancer therapy. Biomaterials 2016, 103, 75–85. [Google Scholar] [CrossRef] [PubMed]
- Castano, A.; Mroz, P.; Hamblin, M. Photodynamic therapy and anti-tumor immunity. Nat. Rev. Cancer 2006, 6, 535–545. [Google Scholar] [CrossRef] [PubMed]
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, B.; Zhao, N. A Targeted Nanoprobe Based on Carbon Nanotubes-Natural Biopolymer Chitosan Composites. Nanomaterials 2016, 6, 216. https://doi.org/10.3390/nano6110216
Wu B, Zhao N. A Targeted Nanoprobe Based on Carbon Nanotubes-Natural Biopolymer Chitosan Composites. Nanomaterials. 2016; 6(11):216. https://doi.org/10.3390/nano6110216
Chicago/Turabian StyleWu, Baoyan, and Na Zhao. 2016. "A Targeted Nanoprobe Based on Carbon Nanotubes-Natural Biopolymer Chitosan Composites" Nanomaterials 6, no. 11: 216. https://doi.org/10.3390/nano6110216
APA StyleWu, B., & Zhao, N. (2016). A Targeted Nanoprobe Based on Carbon Nanotubes-Natural Biopolymer Chitosan Composites. Nanomaterials, 6(11), 216. https://doi.org/10.3390/nano6110216