EU Regulation of Nanobiocides: Challenges in Implementing the Biocidal Product Regulation (BPR)
Abstract
:1. Introduction
2. The BPR and the Introduction of Nanospecific Provisions
3. Information Requirements for Nanospecific Test Results and Testing Methods
4. OECD and Ecotoxicological Testing of Nanomaterials
- Material characterization;
- Exposure preparation and delivery of substance to test systems;
- Monitoring of stability and consistency of NMs during the tests; and
- Measurement and use of dose metrics.
5. Fulfilling the Requirements of the BPR for Copper Oxide
6. Discussion
6.1. Challenges for Manufacturers When Testing the Ecotoxicity of Nanomaterials
6.2. Challenges for Authorities with Regards to Approval of Active Substances under the BPR
6.3. The Biocidal Product Regulation Will Provide Valuable Data
7. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- European Parliament and Council. Regulation EC No 1223/2009 of the European Parliament and of the Council of 30 November 2009 on cosmetic products. Off. J. Eur. Union 2009, 342, 59–209. [Google Scholar]
- European Parliament and Council. Regulation EU No 1169/2011 of the European Parliament and of the Council of 25 October 2011 on the provision of food information to consumers, amending Regulations (EC) No 1924/2006 and (EC) No 1925/2006 of the European Parliament and of the Council. Off. J. Eur. Union 2011, 304, 18–63. [Google Scholar]
- Sokull-Kluetggen, B. The European regulatory perspective on engineered nanomaterials. Toxicol. Lett. 2012, 211S, S4–S23. [Google Scholar] [CrossRef]
- European Parliament and Council. Regulation EU No 528/2012 of the European Parliament and of the Council of 22 May 2012 concerning the making available on the market and use of biocidal products. Off. J. Eur. Union 2012, 167, 1–123. [Google Scholar]
- European Commission. Biocides—Introduction. 2014. Available online: http://ec.europa.eu/environment/chemicals/biocides/index_en.htm (accessed on 2 September 2014).
- Baun, A.; Hartmann, N.B.; Grieger, K.D.; Hansen, S.F. Setting the Limits for Engineered Nanoparticles in European Surface Waters. J. Environ. Monitor. 2009, 11, 1774–1781. [Google Scholar] [CrossRef] [PubMed]
- SCENIHR. Risk assessment of products of nanotechnologies. Brussels, Scientific Committee on Emerging and Newly Identified Health Risks, European Commission. 2009. Available online: http://ec.europa.eu/health/ph_risk/committees/04_scenihr/docs/scenihr_o_023.pdf (accessed on 2 September 2014).
- Handy, R.; van den Brink, N.; Chappell, M.; Mühling, M.; Behra, R.; Dušinská, M.; Simpson, P.; Ahtiainen, J.; Jha, A.; Seiter, J.; et al. Practical considerations for conducting ecotoxicity test methods with manufactured nanomaterials: what have we learnt so far? Ecotoxicology 2012, 21, 933–972. [Google Scholar] [CrossRef] [PubMed]
- Hankin, S.M.; Peters, S.A.K.; Poland, C.A.; Hansen, S.F.; Holmqvist, J.; Ross, B.L.; Varet, J.; Aitken, R.J. Specific Advice on Fulfilling Information Requirements for Nanomaterials under REACH (RIP-oN 2)—Final Project Report. Document reference RNC/RIP-oN2/FPR/1/FINAL. European Commission: Brussels, 2011. Available online: http://ec.europa.eu/environment/chemicals/nanotech/pdf/report_ripon2.pdf (accessed on 2 September 2014).
- Hartmann, N.B.; Engelbrekt, C.; Zhang, J.; Ulstrup, J.; Kusk, K.O.; Baun, A. The challenges of testing metal and metal oxide nanoparticles in algal bioassays: Titanium dioxide and gold nanoparticles as case studies. Nanotoxicology 2013, 7, 1082–1094. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Honkela, N.; Toikka, A.; Hukkinen, J.; Honkela, T. Coming to grips with scientific ignorance in the governance of endocrine disrupting chemicals and nanoparticles. Environ. Sci. Policy 2014, 38, 154–163. [Google Scholar] [CrossRef]
- Petersen, E.J.; Diamond, S.A.; Kennedy, A.J.; Goss, G.G.; Ho, K.; Lead, J.; Hanna, S.K.; Hartmann, N.B.; Hund-Rinke, K.; Mader, B.; et al. Adapting OECD aquatic toxicity tests for use with manufactured nanomaterials: Key issues and consensus recommendations. Environ. Sci. Technol. 2015, 49, 9532–9547. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- European Commission. Proposal for a Regulation of the European Parliament and of the Council Concerning the Placing on the Market and Use of Biocidal Products; COM2009 267 Final. Available online: http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A52009PC0267 (accessed on 1 February 2016).
- European Parliament. Report on the proposal for a regulation of the European Parliament and of the Council concerning the placing on the market and use of biocidal products COM20090267—C7-0036/2009—2009/0076COD. Committee on the Environment. Available online: http://www.europarl.europa.eu/sides/getDoc.do?pubRef=-//EP//TEXT+REPORT+A7-2013-0354+0+DOC+XML+V0//EN (accessed on 1 February 2016).
- European Commission. Commission Recommendation of 18 October 2011 on the definition of nanomaterial. Off. J. Eur. Union 2011, 275, 38–40. [Google Scholar]
- European Chemicals Agency. Guidance on Information Requirements; Guidance on Regulation EU No 528/2012 Concerning the Making Available on the Market and Use of Biocidal Product BPR Version 1.0; European Chemicals Agency: Helsinki, Finland, 2013. [Google Scholar]
- European Parliament and of the Council. Commission Regulation EC No 761/2009 of 23 July 2009 amending, for the purpose of its adaptation to technical progress, Regulation (EC) No 440/2008 laying down test methods pursuant to Regulation (EC) No 1907/2006 of the European Parliament and of the Council on the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH). Off. J. Eur. Union 2009, 220, 1–94. [Google Scholar]
- OECD. Guidance on Sample Preparation and Dosimetry for the Safety Testing of Manufactured Nanomaterials; Series on the Safety of Manufactured Nanomaterials; ENV/JM/MONO2012/40; OECD Environment, Health and Safety Publications: Paris, France, 2012. [Google Scholar]
- OECD. Guidance Manual for the Testing of Manufactured Nanomaterials: OECD’s Sponsorship Programme, First Revision; Series on the Safety of Manufactured Nanomaterials; ENV/JM/MONO2009/20/REV; OECD Environment, Health and Safety Publications: Paris, France, 2009; Available: http://www.oecd.org/officialdocuments/publicdisplaydocumentpdf/?cote=env/jm/mono(2009)20/rev&doclanguage=en (accessed on 1 February 2016).
- OECD. Preliminary Review of OECD Test Guidelines for their Applicability to Manufactured Nanomaterials; Series on the Safety of Manufactured Nanomaterials; ENV/JM/MONO2009/21; OECD Environment, Health and Safety Publications: Paris, France, 2009. [Google Scholar]
- OECD. Ecotoxicology and Environmental Fate of Manufactured Nanomaterials: Test Guidelines; Series on the Safety of Manufactured Nanomaterials; ENV/JM/MONO2014/1; OECD Environment, Health and Safety Publications: Paris, France, 2014. [Google Scholar]
- Kühnel, D.; Nickel, C. The OECD expert meeting on ecotoxicology and environmental fate—towards the development of improved OECD guidelines for the testing of nanomaterials. Sci. Total Environ. 2014, 472, 347–353. [Google Scholar] [CrossRef] [PubMed]
- Bondarenko, O.; Juganson, K.; Ivask, A.; Kasemets, K.; Mortimer, M.; Kahru, A. Toxicity of Ag, CuO and ZnO nanoparticles to selected environmentally relevant test organisms and mammalian cells in vitro: a critical review. Arch. Toxicol. 2013, 87, 1181–1200. [Google Scholar] [CrossRef] [PubMed]
- The Nanodatabase. Available online: http://nanodb.dk/da/ (accessed on 24 November 2015).
- Dastjerdi, R.; Montazer, M. A review on the application of inorganic nano-structured materials in the modification of textiles: Focus on anti-microbial properties. Coll. Surfaces B 2010, 791, 5–18. [Google Scholar] [CrossRef] [PubMed]
- Heinlaan, M.; Ivask, A.; Blinova, I.; Dubourguier, H.-C.; Kahru, A. Toxicity of nanosized and bulk ZnO, CuO and TiO2 to bacteria Vibrio fischeri and crustaceans Daphnia magna and Thamnocephalus platyurus. Chemosphere 2008, 717, 1308–1316. [Google Scholar] [CrossRef] [PubMed]
- Sousa, V.S.; Teixeira, M.R. Aggregation kinetics and surface charge of CuO nanoparticles: The influence of pH, ionic strength and humic acids. Environ. Chem. 2013, 104, 313–322. [Google Scholar] [CrossRef]
- Anita, S.; Ramachandran, T.; Rajendran, R.; Koushik, C.; Mahalakshmi, M. A study of the antimicrobial property of encapsulated copper oxide nanoparticles on cotton fabric. Text Res. J. 2011, 8110, 1081–1088. [Google Scholar] [CrossRef]
- Delgado, K.; Quijada, R.; Palma, R.; Palza, H. Polypropylene with embedded copper metal or copper oxide nanoparticles as a novel plastic antimicrobial agent. Lett. Appl. Microbiol. 2011, 531, 50–54. [Google Scholar] [CrossRef] [PubMed]
- Perreault, F.; Samadani, M.; Dewez, D. Effect of soluble copper released from copper oxide nanoparticles solubilisation on growth and photosynthetic processes of Lemna gibba L. Nanotoxicology 2014, 84, 374–382. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Zhang, D.; Yu, J.C.; Chan, K.M. Effects of Cu2O nanoparticle and CuCl2 on zebrafish larvae and a liver cell-line. Aquat. Toxicol. 2011, 105, 344–354. [Google Scholar] [CrossRef] [PubMed]
- Griffitt, R.J.; Luo, J.; Gao, J.; Bonzongo, J.-C.; Barber, D.S. Effects of particle composition and species on toxicity of metallic nanomaterials in aquatic organisms. Environ. Toxicol. Chem. 2008, 27, 1972–1978. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.; Youn, S.; Hovsepyan, A.; Llaneza, V.L.; Wang, Y.; Bitton, G.; Bonzongo, J.-C. Dispersion and toxicity of selected manufactured nanomaterials in natural river water samples: effects of water chemical composition. Environ. Sci. Technol. 2009, 439, 3322–3328. [Google Scholar] [CrossRef]
- Aruoja, V.; Dubourguier, H.-C.; Kasemets, K.; Kahru, A. Toxicity of nanoparticles of CuO, ZnO and TiO2 to microalgae Pseudokirchneriella subcapitata. Sci. Total Environ. 2009, 407, 1461–1468. [Google Scholar] [CrossRef] [PubMed]
- Rossetto, A.L.; Melegari, S.P.; Ouriques, L.C.; Matias, W.G. Comparative evaluation of acute and chronic toxicities of CuO nanoparticles and bulk using Daphnia magna and Vibrio fischeri. Sci. Total Environ. 2014, 490, 807–814. [Google Scholar] [CrossRef] [PubMed]
- Jo, H.J.; Choi, J.W.; Lee, S.H.; Hong, S.W. Acute toxicity of Ag and CuO nanoparticle suspensions against Daphnia magna: The importance of their dissolved fraction varying with preparation methods. J. Hazard. Mater. 2012, 227–228, 301–308. [Google Scholar] [CrossRef] [PubMed]
- Mortimer, M.; Kasemets, K.; Kahru, A. Toxicity of ZnO and CuO nanoparticles to ciliated protozoa Tetrahymena thermophila. Toxicology 2010, 269, 182–189. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Wang, Z.; Liu, X.; Xie, X.; Zhang, K.; Xing, B. Distribution of CuO nanoparticles in juvenile carp Cyprinus carpio and their potential toxicity. J. Hazard. Mater. 2011, 197, 304–310. [Google Scholar] [CrossRef] [PubMed]
- Griffitt, R.J.; Weil, R.; Hyndman, K.; Denslow, N.D.; Powers, K.; Taylor, D.; Barber, D.S. Exposure to copper nanoparticles causes gill injury and acute lethality in zebrafish (Danio rerio). Environ. Sci. Technol. 2007, 41, 8178–8186. [Google Scholar] [CrossRef] [PubMed]
- Griffitt, R.J.; Hyndman, K.; Denslow, N.D.; Barber, D.S. Comparison of molecular and histological changes in zebrafish gills exposed to metallic nanoparticles. Toxicol. Sci. 2009, 107, 404–415. [Google Scholar] [CrossRef] [PubMed]
- Bai, W.; Tian, W.; Zhang, Z.; He, X.; Ma, Y.; Liu, N.; Chai, Z. Effects of Copper Nanoparticles on the Development of Zebrafish Embryos. J. Nanosci. Nanotechnol. 2010, 10, 8670–8676. [Google Scholar] [CrossRef] [PubMed]
- Blinova, I.; Ivaska, A.; Heinlaan, M.; Mortimer, M.; Kahru, A. Ecotoxicity of nanoparticles of CuO and ZnO in natural water. Environ. Pollut. 2010, 158, 41–47. [Google Scholar] [CrossRef] [PubMed]
- Ivask, A.; Bondarenko, O.; Jepihhina, N.; Kahru, A. Profiling of the reactive oxygen species-related ecotoxicity of CuO, ZnO, TiO2, silver and fullerene nanoparticles using a set of recombinant luminescent Escherichia coli strains: Differentiating the impact of particles and solubilised metals. Ann. Bioanal. Chem. 2010, 398, 701–716. [Google Scholar] [CrossRef] [PubMed]
- Saison, C.; Perreault, F.; Daigle, J.-C.; Fortin, C.; Claverie, J.; Morin, M.; Popovic, R. Effect of core-shell copper oxide nanoparticles on cell culture morphology and photosynthesis (photosystem II energy distribution) in the green alga, Chlamydomonas reinhardtii. Aqual. Toxicol. 2010, 96, 109–114. [Google Scholar] [CrossRef] [PubMed]
- Buffet, P.-E.; Tankoua, O.F.; Pan, J.-F.; Berhanu, D.; Herrenknecht, C.; Poirier, L.; Amiard-Triquet, C.; Amiard, J.-C.; Bérard, J.-B.; Risso, C.; et al. Behavioural and biochemical responses of two marine invertebrates Scrobicularia plana and Hediste diversicolor to copper oxide nanoparticles. Chemosphere 2011, 84, 166–174. [Google Scholar] [CrossRef] [PubMed]
- Gomes, T.; Pinheiro, J.P.; Cancio, I.; Pereira, C.G.; Cardoso, C.; Bebianno, M.J. Effects of Copper Nanoparticles Exposure in the Mussel Mytilus galloprovincialis. Environ. Sci. Technol. 2011, 45, 9356–9362. [Google Scholar] [CrossRef] [PubMed]
- Heinlaan, M.; Kahru, A.; Kasemets, K.; Arbeille, B.; Prensier, G.; Dubourguier, H.-C. Changes in the Daphnia magna midgut upon ingestion of copper oxide nanoparticles: A transmission electron microscopy study. Water Res. 2011, 45, 179–190. [Google Scholar] [CrossRef] [PubMed]
- Nations, S.; Wages, M.; Cañas, J.E.; Maul, J.; Theodorakis, C.; Cobb, G.P. Acute effects of Fe2O3, TiO2, ZnO and CuO nanomaterials on Xenopus laevis. Chemosphere 2011, 83, 1053–1061. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Aker, W.G.; Hwang, H.-M.; Yedjou, C.G.; Yu, H.; Tchounwou, P.B. A study of the mechanism of in vitro cytotoxicity of metal oxide nanoparticles using catfish primary hepatocytes and human HepG2 cells. Sci. Total. Environ. 2011, 409, 4753–4762. [Google Scholar] [CrossRef] [PubMed]
- Bacchetta, R.; Santo, N.; Fascio, U.; Moschini, E.; Freddi, S.; Chirici, G.; Camatini, M.; Mantecca, P. Nano-sized CuO, TiO2 and ZnO affect Xenopus laevis development. Nanotoxicology 2012, 6, 381–398. [Google Scholar] [CrossRef] [PubMed]
- Fan, W.; Shi, Z.; Yang, X.; Cui, M.; Wang, X.; Zhang, D.; Liu, H.; Guo, L. Bioaccumulation and biomarker responses of cubic and octahedral Cu2O micro/nanocrystals in Daphnia magna. Water Res. 2012, 46, 5981–5988. [Google Scholar] [CrossRef] [PubMed]
- Golobic, M.; Jemec, A.; Drobne, D.; Romih, T.; Kasemets, K.; Kahru, A. Upon exposure to Cu nanoparticles, accumulation of copper in the isopod Porcellio scaber is due to the dissolved Cu ions inside the digestive tract. Environ. Sci. Technol. 2012, 46, 12112–12119. [Google Scholar] [CrossRef] [PubMed]
- Li, K.; Chen, Y.; Zhang, W.; Pu, Z.; Jiang, L.; Chen, Y. Surface interactions affect the toxicity of engineered metal oxide nanoparticles toward Paramecium. Chem. Res. Toxicol. 2012, 25, 1675–1681. [Google Scholar] [CrossRef] [PubMed]
- Manusadžianas, L.; Caillet, C.; Fachetti, L.; Gylytė, B.; Grigutytė, R.; Jurkonienė, S.; Karitonas, R.; Sadauskas, K.; Thomas, F.; Vitkus, R.; et al. Toxicity of copper oxide nanoparticle suspensions to aquatic biota. Environ. Toxicol. Chem. 2011, 1, 108–114. [Google Scholar] [CrossRef] [PubMed]
- Perreault, F.; Oukarroum, A.; Melegari, S.P.; Matias, W.G.; Popovic, R. Polymer coating of copper oxide nanoparticles increases nanoparticles uptake and toxicity in the green alga Chlamydomonas reinhardtii. Chemosphere 2012, 8711, 1388–1394. [Google Scholar] [CrossRef] [PubMed]
- Pradhan, A.; Seena, S.; Pascoal, C.; Cássio, F. Copper oxide nanoparticles can induce toxicity to the freshwater shredder Allogamus ligonifer. Chemosphere 2012, 89, 1142–1150. [Google Scholar] [CrossRef] [PubMed]
- Shaw, B.J.; Al-Bairuty, G.; Handy, R.D. Effects of waterborne copper nanoparticles and copper sulphate on rainbow trout, (Oncorhynchus mykiss): Physiology and accumulation. Aqual. Toxicol. 2012, 2012, 116–117, 90–101. [Google Scholar] [CrossRef] [PubMed]
- Frenk, S.; Ben-Moshe, T.; Dror, I.; Berkowitz, B.; Minz, D. Effect of Metal Oxide Nanoparticles on Microbial Community Structure and Function in Two Different Soil Types. PLoS ONE 2013, 8. [Google Scholar] [CrossRef] [PubMed]
- Isani, G.; Falcioni, M.L.; Barucca, G.; Sekar, D.; Andreani, G.; Carpenè, E.; Falcioni, G. Comparative toxicity of CuO nanoparticles and CuSO4 in rainbow trout. Ecotoxicol. Environ. Safe 2013, 97, 40–46. [Google Scholar] [CrossRef] [PubMed]
- Kasemets, K.; Suppi, S.; Künnis-Beres, K.; Kahru, A. Toxicity of CuO nanoparticles to yeast Saccharomyces cerevisiae BY4741 wild-type and its nine isogenic single-gene deletion mutants. Chem. Res. Toxicol. 2013, 26, 356–367. [Google Scholar] [CrossRef] [PubMed]
- Kennedy, A.J.; Melby, N.L.; Moser, R.D.; Bednar, A.J.; Son, S.F.; Lounds, C.D.; Laird, J.G.; Nellums, R.R.; Johnson, D.R.; Steevens, J.R. Fate and toxicity of CuO nanospheres and nanorods used in Al/CuO nanothermites before and after combustion. Environ. Sci. Technol. 2013, 47, 11258–11267. [Google Scholar] [CrossRef] [PubMed]
- Kovrižnych, J.A.; Sotníková, R.; Zeljenková, D.; Rollerová, E.; Szabová, E.; Wimmerov, S. Acute toxicity of 31 different nanoparticles to zebrafish (Danio rerio) tested in adulthood and in early life stages—Comparative study. Interdisc. Toxicol. 2013, 6, 67–73. [Google Scholar] [CrossRef] [PubMed]
- Melegari, S.P.; Perreault, F.; Costa, R.H.R.; Popovic, R.; Matias, W.G. Evaluation of toxicity and oxidative stress induced by copper oxide nanoparticles in the green alga Chlamydomonas reinhardtii. Aqual. Toxicol. 2013, 142–143, 431–440. [Google Scholar] [CrossRef] [PubMed]
- Pang, C.; Selck, H.; Banta, G.; Misra, S.K.; Berhanu, D.; Dybowska, A.; Valsami-Jones, E.; Forbes, V.E. Bioaccumulation, toxicokinetics, and effects of copper from sediment Spiked with aqueous Cu, nano-CuO, or micro-CuO in the deposit-feeding snail, Potamopyrgus Antipodarum. Environ. Toxicol. Chem. 2014, 32, 1561–1573. [Google Scholar] [CrossRef] [PubMed]
- Concha-Guerrero, S.I.; Brito, E.M.S.; Piñón-Castillo, H.A.; Tarango-Rivero, S.H.; Caretta, C.A.; Luna-Velasco, A.; Duran, R.; Orrantia-Borunda, E. Effect of CuO Nanoparticles over Isolated Bacterial Strains from Agricultural Soil. J. Nanomater. 2014, 2014. [Google Scholar] [CrossRef]
- Hanna, S.K.; Miller, R.J.; Lenihan, H.S. Accumulation and toxicity of Copper Oxide engineered nanoparticles in a marine mussel. Nanomaterials 2014, 4, 535–547. [Google Scholar] [CrossRef]
- Mohanty, S.R.; Rajput, P.; Kollah, B.; Chourasiya, D.; Tiwari, A.; Singh, M.; Rao, A.S. Methane oxidation and abundance of methane oxidizers in tropical agricultural soil (vertisol) in response to CuO and ZnO nanoparticles contamination. Environ. Monit. Assess. 2014, 186, 3743–3753. [Google Scholar] [CrossRef] [PubMed]
- Ramskov, T.; Selck, H.; Banta, G.; Misra, S.K.; Berhanu, D.; Valsami-Jones, E.; Forbes, V.E. Bioaccumulation and effects of different-shaped copper oxide nanoparticles in the deposit-feeding snail Potamopyrgus Antipodarum. Environ. Toxicol. Chem. 2014, 33, 1976–1987. [Google Scholar] [CrossRef] [PubMed]
- Seo, J.; Kim, S.; Choi, S.; Kwon, D.; Yoon, T.-H.; Kim, W.-K.; Park, J.-W.; Jung, J. Effects of physiochemical properties of test media on nanoparticle toxicity to Daphnia magna Straus. Bull. Environ. Contam. Toxicol. 2014, 93, 257–262. [Google Scholar] [CrossRef] [PubMed]
- Vicario-Parés, U.; Castanaga, L.; Lacave, J.M.; Oron, M.; Reip, P.; Berhanu, D.; Valsami-Jones, E.; Cajaraville, M.P.; Orbea, A. Comparative toxicity of metal oxide nanoparticles (CuO, ZnO and TiO2) to developing zebrafish embryos. J. Nanoparticle Res. 2014, 16. [Google Scholar] [CrossRef]
- Villarreal, F.D.; Das, G.K.; Abid, A.; Kennedy, I.M.; Kültz, D. Sublethal effects of CuO nanoparticles on Mozambique Tilapia (Oreochromis mossambicus) are modulated by environmental salinity. PLoS ONE 2014, 9. [Google Scholar] [CrossRef] [PubMed]
- Kaweeteerawat, C.; Chang, C.H.; Roy, K.R.; Liu, R.; Li, R.; Toso, D.; Fischer, H.; Ivask, A.; Ji, Z.; Zink, J.I.; et al. Cu nanoparticles have different impacts in Escherichia coli and Lactobacillus brevis than their microsized and ionic analogues. ACS Nano 2015, 9, 7215–7225. [Google Scholar] [CrossRef] [PubMed]
- Song, I.; Vijver, M.G.; Peijnenburg, W.J.G.M. Comparative toxicity of copper nanoparticles across three Lemnaceae species. Sci. Total Environ. 2015, 518–519, 217–224. [Google Scholar] [CrossRef] [PubMed]
- von Moos, N.; Maillard, L.; Slaveykova, V.I. Dynamics of sub-lethal effects of nano-CuO on the microalga Chlamydomonas reinhardtii during short-term exposure. Aqual. Toxicol. 2015, 161, 267–275. [Google Scholar] [CrossRef] [PubMed]
- European Commission. Horizon 2020 Official Documents. 2015. Available online: http://ec.europa.eu/programmes/horizon2020/en/official-documents (accessed on 22 November 2015).
- European Commission. List of Approved Substances. 2014. Available online: http://ec.europa.eu/environment/chemicals/biocides/active-substances/approvedsubstances_en.htm (accessed on 7 September 2014).
- Standing Committee on Biocidal Products. Evaluation of Active Substances: Assessment Report Synthetic Amorphous Silicon Dioxide Rentokil Initial Product-Type 18 Insecticide. Available online: http://dissemination.echa.europa.eu/Biocides/ActiveSubstances/1378-18/1378-18_Assessment_Report.pdf (accessed on 1 February 2016).
Test | Specification | Data set | Test method according to regulation EC 440/2008 [17] |
---|---|---|---|
Toxicity to Aquatic Organisms | |||
Short-term toxicity testing on fish | CDS * | Test method C1 | |
Short-term toxicity testing on aquatic invertebrates | Test species: Daphnia magna | CDS | Equivalent to OECD TG 202 (2004) |
Other species | ADS | ||
Growth inhibition study on algae | Effects on growth rate of green algae | CDS | Equivalent to OECD TG 201 (2006) ** |
Effects on growth rate of cyanobacteria or diatoms | CDS | Equivalent to OECD TG 201 (2006) ** | |
Bioconcentration | Estimation methods Experimental determination | CDS *** | Equivalent to OECD TG 305 (1996) |
Inhibition of microbial activity | CDS | Method C.11. | |
Further Toxicity Studies on Aquatic Organisms **** | |||
Long term toxicity tests on Fish | Fish Early Life Stage (FELS) test; Fish short term toxicity test in embryo and sack fry stages Fish juvenile growth test Fish full life circle test | ADS | (b) Equivalent to OECD 212 (1998) (c) Equivalent to OECD TG 215 (2000) |
Long term toxicity testing on invertebrate | Daphnia growth and reproductive study Other species reproduction and growth (e.g., Mysid) Other species development and emergence (e.g., Chironomus) | ADS | (a) Equivalent to OECD TG 211 (1998) |
Bioaccumulation in any appropriate aquatic species | ADS | ||
Effects on any other specific, non-target organisms | Non-target organisms: flora and fauna believed to be at risk | ADS | |
Studies on sediment-dwelling organisms | ADS | ||
Effects on aquatic macrophytes | ADS |
Issues | Considerations | Recommendations |
---|---|---|
Method of suspension (e.g., stirring, sonication, grinding, use of solvents and stabilizing agents) | Different suspension methods may significantly alter the NMs per se or the toxic properties of the NM. | Best scientific judgment should be used. If there is evidence of altered toxicity, the effects should be controlled or quantified. |
Quantification of media quality (e.g., pH, ionic strength and concentration of dissolved organic matter) | Variability in NM properties (e.g., agglomeration/aggregation) depend significantly on media pH, ionic strength and concentration and form of dissolved organic matter. | Media quality determination should be made at intervals sufficient to determine their variability (both in stock suspension and test media); Physical-chemical characterization of NM should be made in the actual test media (whenever possible). |
Physical-chemical characterization | Agglomeration/aggregation is likely to occur, which may alter the exposure due to reduced particle counts, surface area or loss of bulk concentration. | Particle size and/or agglomerate size distribution and material concentration must be assessed at intervals during the tests (or at a minimum immediately prior to and after media renewal). Measurements of particle size distribution using two or more methods are desirable. Characterization should be made in the test media in the presence of test organisms (and food if feeding is required). |
Reference | [39] | [32] | [26] | [34] | [33] | [40] | [41] | [42] | [43] | [37] | [44] | [45] | [31] | [46] | [47] | [48] | [49] | [38] | [50] | [51] | [52] | [36] | [53] | [54] | [55] | [56] | [57] | [58] | [59] | [60] | [61] |
Information requirement in accordance with BPR | |||||||||||||||||||||||||||||||
Short-term toxicity test on fish | x | x | x | x | |||||||||||||||||||||||||||
Short term toxicity testing on aquatic invertebrates | x | x | x | x | x | x | x | x | x | x | x | x | |||||||||||||||||||
Growth inhibition study on algae | x | x | x | x | x | x | x | ||||||||||||||||||||||||
Bioconcentration | |||||||||||||||||||||||||||||||
Inhibition of microbial activity | x | x | x | x | |||||||||||||||||||||||||||
Long term toxicity tests on Fish | x | x | |||||||||||||||||||||||||||||
Long term toxicity testing on invertebrate | |||||||||||||||||||||||||||||||
Bioaccumulation in any appropriate aquatic species | x | x | |||||||||||||||||||||||||||||
Effects on any other specific, non-target organisms | x | x | x | ||||||||||||||||||||||||||||
Studies on sediment-dwelling organisms | x | x | |||||||||||||||||||||||||||||
Effects on aquatic macrophytes | |||||||||||||||||||||||||||||||
Test Guideline followed | a | b | c | c | a | a | d | c | d | ||||||||||||||||||||||
OECD ENV/JM/MONO (2012) 40 recommendations | |||||||||||||||||||||||||||||||
Method of suspension | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | |||||
Suspension media | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | ||||
Quantification/control of potentially altered toxicity? | x | x | x | ||||||||||||||||||||||||||||
pH | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | |||||||||||||
Dissolved organic matter | x | x | x | x | x | x | |||||||||||||||||||||||||
Ionic strength | x | x | x | x | x | x | x | ||||||||||||||||||||||||
Determinations made at intervals in the stock solution | x | x | x | ||||||||||||||||||||||||||||
Determinations made at intervals in the test media | x | x | x | x | x | ||||||||||||||||||||||||||
Characterization made of (dry) particles | x | x | x | x | x | x | x | x | x | x | x | x | x | x | |||||||||||||||||
Characterization made in actual test media | x | x | x | x | x | x | x | x | x | x | x | x | x | x | |||||||||||||||||
Characterization made in stock solution | x | x | x | x | x | x | x | x | x | x | x | x | x | ||||||||||||||||||
Characterization made in presence of test organisms? | x | x | x | x | |||||||||||||||||||||||||||
Particle/agglomeration size distribution and material concentration assessed at intervals? | x | x | x | x | x | x | x | x | x | x | |||||||||||||||||||||
Particle/aggregate/agglomeration size distribution measured using two or more methods? [method(s)] | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | ||||||||||||||||
Degradation of nanomaterial investigated? (release of Cu+ ions) | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | |||||||||||
Reference | [62] | [63] | [64] | [65] | [66] | [67] | [30] | [68] | [35] | [69] | [70] | [71] | [72] | [73] | [74] | ||||||||||||||||
Information requirement in accordance with BPR | |||||||||||||||||||||||||||||||
Short-term toxicity test on fish | x | ||||||||||||||||||||||||||||||
Short term toxicity testing on aquatic invertebrates | x | x | x | ||||||||||||||||||||||||||||
Growth inhibition study on algae | x | ||||||||||||||||||||||||||||||
Bioconcentration | |||||||||||||||||||||||||||||||
Inhibition of microbial activity | x | x | x | x | |||||||||||||||||||||||||||
Long term toxicity tests on Fish | x | x | x | x | |||||||||||||||||||||||||||
Long term toxicity testing on invertebrate | x | ||||||||||||||||||||||||||||||
Bioaccumulation in any appropriate aquatic species | x | ||||||||||||||||||||||||||||||
Effects on any other specific, non-target organisms | x | ||||||||||||||||||||||||||||||
Studies on sediment-dwelling organisms | x | x | x | ||||||||||||||||||||||||||||
Effects on aquatic macrophytes | |||||||||||||||||||||||||||||||
Test Guideline followed | e | a | f, g, h, i | f | j | ||||||||||||||||||||||||||
OECD ENV/JM/MONO (2012) 40 recommendations | |||||||||||||||||||||||||||||||
Method of suspension | x | x | x | x | x | x | x | x | x | x | |||||||||||||||||||||
Suspension media | x | x | x | x | x | x | x | x | x | x | |||||||||||||||||||||
Quantification/control of potentially altered toxicity? | |||||||||||||||||||||||||||||||
pH | x | x | x | x | x | x | x | x | x | ||||||||||||||||||||||
Dissolved organic matter | x | x | x | x | |||||||||||||||||||||||||||
Ionic strength | x | x | x | x | x | ||||||||||||||||||||||||||
Determinations made at intervals in the stock solution | |||||||||||||||||||||||||||||||
Determinations made at intervals in the test media | x | ||||||||||||||||||||||||||||||
Characterization made of (dry) particles | x | x | x | x | x | x | x | ||||||||||||||||||||||||
Characterization made in actual test media | x | x | x | x | x | x | x | ||||||||||||||||||||||||
Characterization made in stock solution | x | x | x | x | x | ||||||||||||||||||||||||||
Characterization made in presence of test organisms? | |||||||||||||||||||||||||||||||
Particle/agglomeration size distribution and material concentration assessed at intervals? | x | x | x | ||||||||||||||||||||||||||||
Particle/aggregate/agglomeration size distribution measured using two or more methods? [method(s)] | x | x | x | x |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brinch, A.; Hansen, S.F.; Hartmann, N.B.; Baun, A. EU Regulation of Nanobiocides: Challenges in Implementing the Biocidal Product Regulation (BPR). Nanomaterials 2016, 6, 33. https://doi.org/10.3390/nano6020033
Brinch A, Hansen SF, Hartmann NB, Baun A. EU Regulation of Nanobiocides: Challenges in Implementing the Biocidal Product Regulation (BPR). Nanomaterials. 2016; 6(2):33. https://doi.org/10.3390/nano6020033
Chicago/Turabian StyleBrinch, Anna, Steffen Foss Hansen, Nanna B. Hartmann, and Anders Baun. 2016. "EU Regulation of Nanobiocides: Challenges in Implementing the Biocidal Product Regulation (BPR)" Nanomaterials 6, no. 2: 33. https://doi.org/10.3390/nano6020033
APA StyleBrinch, A., Hansen, S. F., Hartmann, N. B., & Baun, A. (2016). EU Regulation of Nanobiocides: Challenges in Implementing the Biocidal Product Regulation (BPR). Nanomaterials, 6(2), 33. https://doi.org/10.3390/nano6020033