Synthesis of Lithium Metal Oxide Nanoparticles by Induction Thermal Plasmas
Abstract
:1. Introduction
2. Results and Discussion
2.1. Experimental Results
2.2. Nanoparticle Formation Mechanism
3. Experimental Section
3.1. Experimental Setup and Conditions
3.2. Characterization of Prepared Nanoparticles
4. Conclusions
- (a)
- Lithium metal oxide nanoparticles were synthesized in different Li–Me (Mn, Cr, Co, and Ni) systems. In the case of Li–Mn, Li–Cr, and Li–Co, lithium-metal oxide nanoparticles were successfully synthesized, while Li–Ni oxides were not synthesized in the Li–Ni system.
- (b)
- The spinel-structured LiMn2O4 with a truncated octahedral shape was synthesized in Li–Mn system, although the stable shape of the spinel structure was an octahedral shape.
- (c)
- The relationship between nucleation temperature and boiling and melting points of the considered metals and their oxides suggests the following formation mechanism: Metal oxide starts to nucleate at first. Then, vapors of metal and lithium oxide co-condense on the metal nuclei with an oxidation reaction.
- (d)
- Melting point of metal oxides is an important factor in determining the final product of the Li–Me composite. A lower melting point of metal oxide leads to a longer reaction time, resulting in higher yields of the Li–Me composite.
- (e)
- Nanomaterial fabrication with induction thermal plasma enables the production of high-purity nanoparticles of Li–Me oxide at high productivity.
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Janot, R.; Guerard, D. One-step synthesis of maghemite nanometric powders by ball-milling. J. Alloys Compd. 2002, 333, 302–307. [Google Scholar] [CrossRef]
- Pithawalla, Y.B.; El Shall, M.S.; Deevi, S.C. Synthesis and characterization of nanocrystalline iron aluminide particles. Intermetallics 2000, 8, 1225–1231. [Google Scholar] [CrossRef]
- Peterson, S.; Barickowski, S. In situ bioconjugation: Single step approach to tailored nanoparticle-bioconjugates by ultrashort pulsed laser ablation. Adv. Funct. Mater. 2009, 19, 1167–1172. [Google Scholar] [CrossRef]
- Mafune, F.; Khono, J.Y.; Takeda, Y.; Kondow, T. Formation of gold nanoparticles by laser ablation in aqueous solution of surfactant. J. Phys. Chem. B 2001, 105, 5114–5120. [Google Scholar] [CrossRef]
- Yasukuni, R.; Horinaka, T.; Asahi, T. Preparation of perylenediimide nanoparticle colloids by laser ablation in water and their optical properties. Jpn. J. Appl. Phys. 2010, 49. [Google Scholar] [CrossRef]
- Shigeta, M.; Watanabe, T. Numerical analysis for co-condensation processes in silicide nanoparticle synthesis using induction thermal plasmas at atmospheric pressure conditions. J. Mater. Res. 2005, 20, 2801–2811. [Google Scholar] [CrossRef]
- Shigeta, M.; Watanabe, T. Growth mechanism of silicon-based functional nanoparticles fabricated by inductively coupled thermal plasmas. J. Phys. D 2007, 40, 2407–2419. [Google Scholar] [CrossRef]
- Shigeta, M.; Watanabe, T. Numerical investigation of cooling effect on platinum nanoparticle formation in inductively coupled thermal plasmas. J. Appl. Phys. 2008, 103. [Google Scholar] [CrossRef]
- Shigeta, M.; Murphy, A.B. Thermal plasmas for nanofabrication. J. Phys. D 2011, 44. [Google Scholar] [CrossRef]
- Tanaka, M.; Noda, J.; Watanabe, T.; Matsuno, J.; Tsuchiyama, A. Formation mechanism of metal embedded amorphous silicate nanoparticles by induction thermal plasmas. J. Phys. Conf. Ser. 2014, 518. [Google Scholar] [CrossRef]
- Cheng, Y.; Tanaka, M.; Watanabe, T.; Choi, S.-Y.; Shin, M.-S.; Lee, K.-H. Synthesis of Ni2B nanoparticles by RF thermal plasma for fuel cell catalyst. J. Phys. Conf. Ser. 2014, 518. [Google Scholar] [CrossRef]
- Shigeta, M.; Watanabe, T. Effect of precursor fraction on silicide nanopowder growth under a thermal plasma condition: A computational study. Powder Technol. 2015, 288, 191–201. [Google Scholar] [CrossRef]
- Watanabe, T.; Liu, Y.; Tanaka, M. Investigation of electrode phenomena in an innovative thermal plasma for glass melting. Plasma Chem. Plasma Proc. 2014, 34, 443–456. [Google Scholar] [CrossRef]
- Liang, F.; Tanaka, M.; Watanabe, T. Measurement of anode surface temperature in carbon nanomaterial production by arc discharge method. Mater. Res. Bull. 2014, 60, 158–165. [Google Scholar] [CrossRef]
- Tanaka, M.; Watanabe, T. Enhanced vaporization from molten metal surface by argon-hydrogen arc plasma. Jpn. J. Appl. Phys. 2013, 52. [Google Scholar] [CrossRef]
- Xiao, X.; Wang, L.; Wang, D.; He, Q.; Peng, Q.; Li, Y. Hydrothermal synthesis of orthorhombic LiMnO2 nano-particles and LiMnO2 nanorods and comparison of their electrochemical performances. Nano. Res. 2009, 2, 923–930. [Google Scholar] [CrossRef]
- Kalyani, P.; Kalaiselvi, N. Various aspects of LiNiO2 chemistry: A review. Sci. Technol. Adv. Mater. 2005, 6, 689–703. [Google Scholar] [CrossRef]
- Curtis, C.J.; Wang, J.; Schulz, D.L. Preparation and characterization of LiMn2O4 spinel nanoparticles as cathode materials in secondary Li batteries. J. Electrochem. Soc. 2004, 151, A590–A598. [Google Scholar] [CrossRef]
- Ida, J.; Lin, Y.S. Mechanism of high-temperature CO2 sorption on lithium zirconate. Environ. Sci. Technol. 2003, 37, 1999–2004. [Google Scholar] [CrossRef] [PubMed]
- Shaju, K.M.; Bruce, P.G. Macroporous Li(Ni1/3Co1/3Mn1/3)O2: A high power and high energy cathode for rechargeable lithium batteries. Adv. Mater. 2006, 18. [Google Scholar] [CrossRef]
- Canulescu, S.; Papadopoulou, E.L.; Anglos, D.; Lippert, T.; Schneider, W.; Wokaun, A. Mechanism of the laser plume expansion during the ablation of LiMn2O4. J. Appl. Phys. 2009, 105. [Google Scholar] [CrossRef]
- Kim, D.K.; Muralidharan, P.; Lee, H.-W.; Ruffo, R.; Yang, Y.; Chan, C.K.; Peng, H.; Huggins, R.A.; Cui, Y. Spinel LiMn2O4 nanorods as lithium ion battery cathodes. Nano Lett. 2008, 8, 3948–3952. [Google Scholar] [CrossRef] [PubMed]
- Ohzuku, T.; Ueda, A.; Nagayama, M. Electrochemistry and structural chemistry of LiNiO2 (R3m) for 4 volt secondary lithium cells. J. Electrochem. Soc. 1993, 140, 1862–1870. [Google Scholar] [CrossRef]
- Swaminathan, R.; Willard, M.A.; McHenry, M.E. Experimental observations and nucleation and growth theory of polyhedral magnetic ferrite nanoparticles synthesized using an RF plasma torch. Acta Mater. 2006, 54, 807–816. [Google Scholar] [CrossRef]
- Girshick, S.L.; Chiu, C.-P.; McMurry, P.H. Time-dependent aerosol models and homogenous nucleation rates. Aerosol Sci. Technol. 1990, 13, 465–477. [Google Scholar] [CrossRef]
Plasma Conditions | ||||
---|---|---|---|---|
Input power | 20 kW | |||
Frequency | 4 MHz | |||
Pressure | 101.3 kPa | |||
Sheath gas | Ar: 57.5 L/min | O2: 2.5 L/min | ||
Inner gas | Ar: 5 L/min | |||
Carrier gas | Ar: 3 L/min | |||
Discharge time | 5 min | |||
Feed rate | 400 mg/min | |||
Raw Materials | ||||
System | Li–Mn | Li–Cr | Li–Co | Li–Ni |
Raw powders | Li2CO3, MnO2 | Li2CO3, Cr | Li2CO3, Co | Li2CO3, Ni |
Li/Me ratio | 0.5 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tanaka, M.; Kageyama, T.; Sone, H.; Yoshida, S.; Okamoto, D.; Watanabe, T. Synthesis of Lithium Metal Oxide Nanoparticles by Induction Thermal Plasmas. Nanomaterials 2016, 6, 60. https://doi.org/10.3390/nano6040060
Tanaka M, Kageyama T, Sone H, Yoshida S, Okamoto D, Watanabe T. Synthesis of Lithium Metal Oxide Nanoparticles by Induction Thermal Plasmas. Nanomaterials. 2016; 6(4):60. https://doi.org/10.3390/nano6040060
Chicago/Turabian StyleTanaka, Manabu, Takuya Kageyama, Hirotaka Sone, Shuhei Yoshida, Daisuke Okamoto, and Takayuki Watanabe. 2016. "Synthesis of Lithium Metal Oxide Nanoparticles by Induction Thermal Plasmas" Nanomaterials 6, no. 4: 60. https://doi.org/10.3390/nano6040060
APA StyleTanaka, M., Kageyama, T., Sone, H., Yoshida, S., Okamoto, D., & Watanabe, T. (2016). Synthesis of Lithium Metal Oxide Nanoparticles by Induction Thermal Plasmas. Nanomaterials, 6(4), 60. https://doi.org/10.3390/nano6040060