Mechanisms of Nanophase-Induced Desorption in LDI-MS. A Short Review
Abstract
:1. Introduction
2. Ion-Desorption Efficiencies and Internal Energy Transfer in Laser Desorption/Ionization from Nanostructured Surfaces
3. Other Aspects Influencing Desorption/Ionization Mechanisms
4. Promising Methods to Study Laser Radiation-Nanophase Interactions
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Karas, M.; Hillenkamp, F. Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons. Anal. Chem. 1988, 60, 2299–2301. [Google Scholar] [CrossRef] [PubMed]
- Webster, J.; Oxley, D. Protein Identification by MALDI-TOF Mass Spectrometry. In Chemical Genomics and Proteomics: Reviews and Protocols; Zanders, E.D., Ed.; Humana Press: Totowa, NJ, USA, 2012; pp. 227–240. [Google Scholar]
- Montaudo, G.; Samperi, F.; Montaudo, M.S. Characterization of synthetic polymers by MALDI-MS. Prog. Polym. Sci. 2006, 31, 277–357. [Google Scholar] [CrossRef]
- Sunner, J.; Dratz, E.; Chen, Y.-C. Graphite surface-assisted laser desorption/ionization time-of-flight mass spectrometry of peptides and proteins from liquid solutions. Anal. Chem. 1995, 67, 4335–4342. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, K.; Waki, H.; Ido, Y.; Akita, S.; Yoshida, Y.; Yoshida, T.; Matsuo, T. Protein and polymer analyses up to m/z 100 000 by laser ionization time-of-flight mass spectrometry. Rapid Commun. Mass Spectrom. 1988, 2, 151–153. [Google Scholar] [CrossRef]
- Wei, J.; Buriak, J.M.; Siuzdak, G. Desorption-ionization mass spectrometry on porous silicon. Nature 1999, 399, 243–246. [Google Scholar] [PubMed]
- Northen, T.R.; Yanes, O.; Northen, M.T.; Marrinucci, D.; Uritboonthai, W.; Apon, J.; Golledge, S.L.; Nordstrom, A.; Siuzdak, G. Clathrate nanostructures for mass spectrometry. Nature 2007, 449, 1033–1036. [Google Scholar] [CrossRef] [PubMed]
- Feuerstein, I.; Najam-ul-Haq, M.; Rainer, M.; Trojer, L.; Bakry, R.; Aprilita, N.H.; Stecher, G.; Huck, C.W.; Bonn, G.K.; Klocker, H.; et al. Material-Enhanced Laser Desorption/Ionization (MELDI)—A New Protein Profiling Tool Utilizing Specific Carrier Materials for Time of Flight Mass Spectrometric Analysis. J. Am. Soc. Mass Spectrom. 2006, 17, 1203–1208. [Google Scholar] [CrossRef] [PubMed]
- Wen, X.; Dagan, S.; Wysocki, V.H. Small-Molecule Analysis with Silicon-Nanoparticle-Assisted Laser Desorption/Ionization Mass Spectrometry. Anal. Chem. 2007, 79, 434–444. [Google Scholar] [CrossRef] [PubMed]
- Cha, S.; Yeung, E.S. Colloidal Graphite-Assisted Laser Desorption/Ionization Mass Spectrometry and MSn of Small Molecules. 1. Imaging of Cerebrosides Directly from Rat Brain Tissue. Anal. Chem. 2007, 79, 2373–2385. [Google Scholar] [CrossRef] [PubMed]
- Kang, M.-J.; Pyun, J.-C.; Lee, J.-C.; Choi, Y.-J.; Park, J.-H.; Park, J.-G.; Lee, J.-G.; Choi, H.-J. Nanowire-assisted laser desorption and ionization mass spectrometry for quantitative analysis of small molecules. Rapid Commun. Mass Spectrom. 2005, 19, 3166–3170. [Google Scholar] [CrossRef]
- Taira, S.; Sugiura, Y.; Moritake, S.; Shimma, S.; Ichiyanagi, Y.; Setou, M. Nanoparticle-Assisted Laser Desorption/Ionization Based Mass Imaging with Cellular Resolution. Anal. Chem. 2008, 80, 4761–4766. [Google Scholar] [CrossRef] [PubMed]
- Waki, M.; Sugiyama, E.; Kondo, T.; Sano, K.; Setou, M. Nanoparticle-Assisted Laser Desorption/Ionization for Metabolite Imaging. In Mass Spectrometry Imaging of Small Molecules; He, L., Ed.; Springer: New York, NY, USA, 2015; pp. 159–173. [Google Scholar]
- Sekuła, J.; Nizioł, J.; Rode, W.; Ruman, T. Gold nanoparticle-enhanced target (AuNPET) as universal solution for laser desorption/ionization mass spectrometry analysis and imaging of low molecular weight compounds. Anal. Chim. Acta 2015, 875, 61–72. [Google Scholar] [CrossRef] [PubMed]
- Law, K.P.; Larkin, J. Recent advances in SALDI-MS techniques and their chemical and bioanalytical applications. Anal. Bioanal. Chem. 2011, 399, 2597–2622. [Google Scholar] [CrossRef] [PubMed]
- Black, C.; Poile, C.; Langley, J.; Herniman, J. The use of pencil lead as a matrix and calibrant for matrix-assisted laser desorption/ionisation. Rapid Commun. Mass Spectrom. 2006, 20, 1053–1060. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.-C.; Shiea, J.; Sunner, J. Thin-layer chromatography–mass spectrometry using activated carbon, surface-assisted laser desorption/ionization. J. Chromatogr. A 1998, 826, 77–86. [Google Scholar] [CrossRef]
- Xu, S.; Li, Y.; Zou, H.; Qiu, J.; Guo, Z.; Guo, B. Carbon Nanotubes as Assisted Matrix for Laser Desorption/Ionization Time-of-Flight Mass Spectrometry. Anal. Chem. 2003, 75, 6191–6195. [Google Scholar] [CrossRef] [PubMed]
- Dong, X.; Cheng, J.; Li, J.; Wang, Y. Graphene as a Novel Matrix for the Analysis of Small Molecules by MALDI-TOF MS. Anal. Chem. 2010, 82, 6208–6214. [Google Scholar] [CrossRef] [PubMed]
- Chung, C.; Kim, Y.-K.; Shin, D.; Ryoo, S.-R.; Hong, B.H.; Min, D.-H. Biomedical Applications of Graphene and Graphene Oxide. Acc. Chem. Res. 2013, 46, 2211–2224. [Google Scholar] [CrossRef] [PubMed]
- Go, E.P.; Apon, J.V.; Luo, G.; Saghatelian, A.; Daniels, R.H.; Sahi, V.; Dubrow, R.; Cravatt, B.F.; Vertes, A.; Siuzdak, G. Desorption/Ionization on Silicon Nanowires. Anal. Chem. 2005, 77, 1641–1646. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Vertes, A. Adjustable Fragmentation in Laser Desorption/Ionization from Laser-Induced Silicon Microcolumn Arrays. Anal. Chem. 2006, 78, 5835–5844. [Google Scholar] [CrossRef] [PubMed]
- Cuiffi, J.D.; Hayes, D.J.; Fonash, S.J.; Brown, K.N.; Jones, A.D. Desorption−Ionization Mass Spectrometry Using Deposited Nanostructured Silicon Films. Anal. Chem. 2001, 73, 1292–1295. [Google Scholar] [CrossRef] [PubMed]
- Alimpiev, S.; Grechnikov, A.; Sunner, J.; Karavanskii, V.; Simanovsky, Y.; Zhabin, S.; Nikiforov, S. On the role of defects and surface chemistry for surface-assisted laser desorption ionization from silicon. J. Chem. Phys. 2008, 128, 014711. [Google Scholar] [CrossRef] [PubMed]
- Cioffi, N.; Colaianni, L.; Pilolli, R.; Calvano, C.D.; Palmisano, F.; Zambonin, P.G. Silver nanofractals: electrochemical synthesis, XPS characterization and application in LDI-MS. Anal. Bioanal. Chem. 2009, 394, 1375–1383. [Google Scholar] [CrossRef] [PubMed]
- Kawasaki, H.; Yonezawa, T.; Watanabe, T.; Arakawa, R. Platinum Nanoflowers for Surface-Assisted Laser Desorption/Ionization Mass Spectrometry of Biomolecules. J. Phys. Chem. C 2007, 111, 16278–16283. [Google Scholar] [CrossRef]
- McLean, J.A.; Stumpo, K.A.; Russell, D.H. Size-Selected (2 nm–10 nm) Gold Nanoparticles for Matrix Assisted Laser Desorption Ionization of Peptides. J. Am. Chem. Soc. 2005, 127, 5304–5305. [Google Scholar] [CrossRef] [PubMed]
- Pilolli, R.; Palmisano, F.; Cioffi, N. Gold nanomaterials as a new tool for bioanalytical applications of laser desorption ionization mass spectrometry. Anal. Bioanal. Chem. 2012, 402, 601–623. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.-H.; Chiang, C.-K.; Lin, Z.-H.; Chang, H.-T. Determining enediol compounds in tea using surface-assisted laser desorption/ionization mass spectrometry with titanium dioxide nanoparticle matrices. Rapid Commun. Mass Spectrom. 2007, 21, 2023–2030. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, T.; Kawasaki, H.; Yonezawa, T.; Arakawa, R. Surface-assisted laser desorption/ionization mass spectrometry (SALDI-MS) of low molecular weight organic compounds and synthetic polymers using zinc oxide (ZnO) nanoparticles. J. Mass Spectrom. 2008, 43, 1063–1071. [Google Scholar] [CrossRef] [PubMed]
- Silina, Y.E.; Fink-Straube, C.; Hayen, H.; Volmer, D.A. Analysis of fatty acids and triacylglycerides by Pd nanoparticle-assisted laser desorption/ionization mass spectrometry. Anal. Methods 2015, 7, 3701–3707. [Google Scholar] [CrossRef]
- Kailasa, S.K.; Wu, H.-F. Multifunctional ZrO2 nanoparticles and ZrO2-SiO2 nanorods for improved MALDI-MS analysis of cyclodextrins, peptides, and phosphoproteins. Anal. Bioanal. Chem. 2010, 396, 1115–1125. [Google Scholar] [CrossRef] [PubMed]
- Shrivas, K.; Kailasa, S.K.; Wu, H.-F. Quantum dots laser desorption/ionization MS: multifunctional CdSe quantum dots as the matrix, concentrating probes and acceleration for microwave enzymatic digestion for peptide analysis and high resolution detection of proteins in a linear MALDI-TOF MS. Proteomics 2009, 9, 2656–2667. [Google Scholar] [CrossRef] [PubMed]
- Tarui, A.; Kawasaki, H.; Taiko, T.; Watanabe, T.; Yonezawa, T.; Arakawa, R. Gold-Nanoparticle-Supported Silicon Plate with Polymer Micelles for Surface-Assisted Laser Desorption/Ionization Mass Spectrometry of Peptides. J. Nanosci. Nanotechnol. 2009, 9, 159–164. [Google Scholar] [CrossRef] [PubMed]
- Komori, H.; Hashizaki, R.; Osaka, I.; Hibi, T.; Katano, H.; Taira, S. Nanoparticle-assisted laser desorption/ionization using sinapic acid-modified iron oxide nanoparticles for mass spectrometry analysis. Analyst 2015, 140, 8134–8137. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.-T.; Chen, Y.-C. Fe3O4/TiO2 Core/Shell Nanoparticles as Affinity Probes for the Analysis of Phosphopeptides Using TiO2 Surface-Assisted Laser Desorption/Ionization Mass Spectrometry. Anal. Chem. 2005, 77, 5912–5919. [Google Scholar] [CrossRef] [PubMed]
- Cioffi, N.; Picca, R.A.; Lo Faro, M.J.; Calvano, C.D.; Fazio, B.; Sportelli, M.C.; Trusso, S.; Ossi, P.M.; Neri, F.; D’Andrea, C.; et al. Metal-decorated silicon nanowires for laser desorption-ionization mass spectrometry. SPIE Newsroom 2015. [Google Scholar] [CrossRef]
- Picca, R.A.; Calvano, C.D.; Lo Faro, M.J.; Fazio, B.; Trusso, S.; Ossi, P.M.; Neri, F.; D’Andrea, C.; Irrera, A.; Cioffi, N. Functionalization of silicon nanowire arrays by silver nanoparticles for the laser desorption ionization mass spectrometry analysis of vegetable oils. J. Mass Spectrom. 2016, 51, 849–856. [Google Scholar] [CrossRef] [PubMed]
- Yonezawa, T.; Tsukamoto, H.; Hayashi, S.; Myojin, Y.; Kawasaki, H.; Arakawa, R. Suitability of GaP nanoparticles as a surface-assisted laser desorption/ionization mass spectroscopy inorganic matrix and their soft ionization ability. Analyst 2013, 138, 995–999. [Google Scholar] [CrossRef] [PubMed]
- Duan, J.; Linman, M.J.; Chen, C.Y.; Cheng, Q.J. CHCA-modified Au nanoparticles for laser desorption ionization mass spectrometric analysis of peptides. J. Am. Soc. Mass Spectrom. 2009, 20, 1530–1539. [Google Scholar] [CrossRef] [PubMed]
- Tseng, M.-C.; Obena, R.; Lu, Y.-W.; Lin, P.-C.; Lin, P.-Y.; Yen, Y.-S.; Lin, J.-T.; Huang, L.-D.; Lu, K.-L.; Lai, L.-L.; et al. Dihydrobenzoic Acid Modified Nanoparticle as a MALDI-TOF MS Matrix for Soft Ionization and Structure Determination of Small Molecules with Diverse Structures. J. Am. Soc. Mass Spectrom. 2010, 21, 1930–1939. [Google Scholar] [CrossRef] [PubMed]
- Kuzema, P.A. Small-molecule analysis by surface-assisted laser desorption/ionization mass spectrometry. J. Anal. Chem. 2011, 66, 1227–1242. [Google Scholar] [CrossRef]
- Guo, Z.; Ganawi, A.A.A.; Liu, Q.; He, L. Nanomaterials in mass spectrometry ionization and prospects for biological application. Anal. Bioanal. Chem. 2006, 384, 584–592. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.L.; Wang, C.C.; Lai, Y.H.; Lee, H.; Lin, J.D.; Lee, Y.T.; Wang, Y.S. Selective Enhancement of Carbohydrate Ion Abundances by Diamond Nanoparticles for Mass Spectrometric Analysis. Anal. Chem. 2013, 85, 3836–3841. [Google Scholar] [CrossRef] [PubMed]
- Huang, M.-F.; Chang, H.-T. Detection of carbohydrates using surface-assisted laser desorption/ionization mass spectrometry with HgTe nanostructures. Chem. Sci. 2012, 3, 2147–2152. [Google Scholar] [CrossRef]
- Kailasa, S.K.; Wu, H.-F. Surface-assisted laser desorption-ionization mass spectrometry of oligosaccharides using magnesium oxide nanoparticles as a matrix. Microchim. Acta 2013, 180, 405–413. [Google Scholar] [CrossRef]
- Chen, S.; Zheng, H.; Wang, J.; Hou, J.; He, Q.; Liu, H.; Xiong, C.; Kong, X.; Nie, Z. Carbon Nanodots As a Matrix for the Analysis of Low-Molecular-Weight Molecules in Both Positive- and Negative-Ion Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry and Quantification of Glucose and Uric Acid in Real Samples. Anal. Chem. 2013, 85, 6646–6652. [Google Scholar] [CrossRef] [PubMed]
- Kurita, M.; Arakawa, R.; Kawasaki, H. Silver nanoparticle functionalized glass fibers for combined surface-enhanced Raman scattering spectroscopy (SERS)/surface-assisted laser desorption/ionization (SALDI) mass spectrometry via plasmonic/thermal hot spots. Analyst 2016, 141, 5835–5841. [Google Scholar] [CrossRef] [PubMed]
- Vidová, V.; Novák, P.; Strohalm, M.; Pól, J.; Havlíček, V.; Volný, M. Laser Desorption-Ionization of Lipid Transfers: Tissue Mass Spectrometry Imaging without MALDI Matrix. Anal. Chem. 2010, 82, 4994–4997. [Google Scholar] [CrossRef] [PubMed]
- Kawasaki, H.; Ozawa, T.; Hisatomi, H.; Arakawa, R. Platinum vapor deposition surface-assisted laser desorption/ionization for imaging mass spectrometry of small molecules. Rapid Commun. Mass Spectrom. 2012, 26, 1849–1858. [Google Scholar] [CrossRef] [PubMed]
- Stolee, J.A.; Walker, B.N.; Zorba, V.; Russo, R.E.; Vertes, A. Laser-nanostructure interactions for ion production. Phys. Chem. Chem. Phys. 2012, 14, 8453–8471. [Google Scholar] [CrossRef] [PubMed]
- Grechnikov, A.A. Analytical capabilities of surface-assisted laser desorption/ionization in the determination of low-molecular-weight volatile compounds. J. Anal. Chem. 2015, 70, 1047–1054. [Google Scholar] [CrossRef]
- Silina, Y.E.; Koch, M.; Volmer, D.A. Influence of surface melting effects and availability of reagent ions on LDI-MS efficiency after UV laser irradiation of Pd nanostructures. J. Mass Spectrom. 2015, 50, 578–585. [Google Scholar] [CrossRef] [PubMed]
- Luo, G.; Chen, Y.; Daniels, H.; Dubrow, R.; Vertes, A. Internal Energy Transfer in Laser Desorption/Ionization from Silicon Nanowires. J. Phys. Chem. B 2006, 110, 13381–13386. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Chen, H.; Aleksandrov, A.; Orlando, T.M. Roles of Water, Acidity, and Surface Morphology in Surface-Assisted Laser Desorption/Ionization of Amino Acids. J. Phys. Chem. C 2008, 112, 6953–6960. [Google Scholar] [CrossRef]
- Leisner, A.; Rohlfing, A.; Röhling, U.; Dreisewerd, K.; Hillenkamp, F. Time-Resolved Imaging of the Plume Dynamics in Infrared Matrix-Assisted Laser Desorption/Ionization with a Glycerol Matrix. J. Phys. Chem. B 2005, 109, 11661–11666. [Google Scholar] [CrossRef] [PubMed]
- Tang, H.-W.; Ng, K.-M.; Lu, W.; Che, C.-M. Ion Desorption Efficiency and Internal Energy Transfer in Carbon-Based Surface-Assisted Laser Desorption/Ionization Mass Spectrometry: Desorption Mechanism(s) and the Design of SALDI Substrates. Anal. Chem. 2009, 81, 4720–4729. [Google Scholar] [CrossRef] [PubMed]
- Ng, K.-M.; Chau, S.-L.; Tang, H.-W.; Wei, X.-G.; Lau, K.-C.; Ye, F.; Ng, A.M.-C. Ion-Desorption Efficiency and Internal-Energy Transfer in Surface-Assisted Laser Desorption/Ionization: More Implication(s) for the Thermal-Driven and Phase-Transition-Driven Desorption Process. J. Phys. Chem. C 2015, 119, 23708–23720. [Google Scholar] [CrossRef]
- Yamada, K.; Miyajima, K.; Mafuné, F. Thermionic Emission of Electrons from Gold Nanoparticles by Nanosecond Pulse-Laser Excitation of Interband. J. Phys. Chem. C 2007, 111, 11246–11251. [Google Scholar] [CrossRef]
- Yonezawa, T.; Kawasaki, H.; Tarui, A.; Watanabe, T.; Arakawa, R.; Shimada, T.; Mafune, F. Detailed Investigation on the Possibility of Nanoparticles of Various Metal Elements for Surface-Assisted Laser Desorption/Ionization Mass Spectrometry. Anal. Sci. 2009, 25, 339–346. [Google Scholar] [CrossRef] [PubMed]
- Dagan, S.; Hua, Y.; Boday, D.J.; Somogyi, A.; Wysocki, R.J.; Wysocki, V.H. Internal energy deposition with silicon nanoparticle-assisted laser desorption/ionization (SPALDI) mass spectrometry. Int. J. Mass Spectrom. 2009, 283, 200–205. [Google Scholar] [CrossRef]
- Lai, S.K.-M.; Tang, H.-W.; Lau, K.-C.; Ng, K.-M. Nanosecond UV Laser Ablation of Gold Nanoparticles: Enhancement of Ion Desorption by Thermal-Driven Desorption, Vaporization, or Phase Explosion. J. Phys. Chem. C 2016, 120, 20368–20377. [Google Scholar] [CrossRef]
- Greisch, J.-F.; Gabelica, V.; Remacle, F.; De Pauw, E. Thermometer ions for matrix-enhanced laser desorption/ionization internal energy calibration. Rapid Commun. Mass Spectrom. 2003, 17, 1847–1854. [Google Scholar] [CrossRef] [PubMed]
- Kawasaki, H.; Yao, T.; Suganuma, T.; Okumura, K.; Iwaki, Y.; Yonezawa, T.; Kikuchi, T.; Arakawa, R. Platinum Nanoflowers on Scratched Silicon by Galvanic Displacement for an Effective SALDI Substrate. Chem. Eur. J. 2010, 16, 10832–10843. [Google Scholar] [CrossRef] [PubMed]
- Luo, G.; Marginean, I.; Vertes, A. Internal Energy of Ions Generated by Matrix-Assisted Laser Desorption/Ionization. Anal. Chem. 2002, 74, 6185–6190. [Google Scholar] [CrossRef] [PubMed]
- Bernier, M.C.; Wysocki, V.H.; Dagan, S. Laser desorption ionization of small molecules assisted by tungsten oxide and rhenium oxide particles. J. Mass Spectrom. 2015, 50, 891–898. [Google Scholar] [CrossRef] [PubMed]
- Kawasaki, H.; Nakai, K.; Arakawa, R.; Athanassiou, E.K.; Grass, R.N.; Stark, W.J. Functionalized Graphene-Coated Cobalt Nanoparticles for Highly Efficient Surface-Assisted Laser Desorption/Ionization Mass Spectrometry Analysis. Anal. Chem. 2012, 84, 9268–9275. [Google Scholar] [CrossRef] [PubMed]
- Schürenberg, M.; Dreisewerd, K.; Hillenkamp, F. Laser Desorption/Ionization Mass Spectrometry of Peptides and Proteins with Particle Suspension Matrixes. Anal. Chem. 1999, 71, 221–229. [Google Scholar] [CrossRef] [PubMed]
- Wada, Y.; Yanagishita, T.; Masuda, H. Ordered Porous Alumina Geometries and Surface Metals for Surface-Assisted Laser Desorption/Ionization of Biomolecules: Possible Mechanistic Implications of Metal Surface Melting. Anal. Chem. 2007, 79, 9122–9127. [Google Scholar] [CrossRef] [PubMed]
- Luo, G.; Chen, Y.; Siuzdak, G.; Vertes, A. Surface Modification and Laser Pulse Length Effects on Internal Energy Transfer in DIOS. J. Phys. Chem. B 2005, 109, 24450–24456. [Google Scholar] [CrossRef] [PubMed]
- Yagnik, G.B.; Hansen, R.L.; Korte, A.R.; Reichert, M.D.; Vela, J.; Lee, Y.J. Large Scale Nanoparticle Screening for Small Molecule Analysis in Laser Desorption Ionization Mass Spectrometry. Anal. Chem. 2016, 88, 8926–8930. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.-K.; Min, D.-H. The Structural Influence of Graphene Oxide on Its Fragmentation during Laser Desorption/Ionization Mass Spectrometry for Efficient Small-Molecule Analysis. Chem. Eur. J. 2015, 21, 7217–7223. [Google Scholar] [CrossRef] [PubMed]
- Nagoshi, K.; Sakata, K.; Shibamoto, K.; Korenaga, T. Ionization Mechanism in Surface Plasmon Enhanced Laser Desorption/Ionization. E-J. Surf. Sci. Nanotechnol. 2009, 7, 93–96. [Google Scholar] [CrossRef]
- Shibamoto, K.; Sakata, K.; Nagoshi, K.; Korenaga, T. Laser Desorption Ionization Mass Spectrometry by Using Surface Plasmon Excitation on Gold Nanoparticle. J. Phys. Chem. C 2009, 113, 17774–17779. [Google Scholar] [CrossRef]
- Gámez, F.; Hurtado, P.; Castillo, P.M.; Caro, C.; Hortal, A.R.; Zaderenko, P.; Martínez-Haya, B. UV-Vis-NIR Laser Desorption/Ionization of Synthetic Polymers Assisted by Gold Nanospheres, Nanorods and Nanostars. Plasmonics 2010, 5, 125–133. [Google Scholar] [CrossRef]
- Chen, L.C.; Yonehama, J.; Ueda, T.; Hori, H.; Hiraoka, K. Visible-laser desorption/ionization on gold nanostructures. J. Mass Spectrom. 2007, 42, 346–353. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.C.; Mori, K.; Hori, H.; Hiraoka, K. Au-assisted visible laser MALDI. Int. J. Mass Spectrom. 2009, 279, 41–46. [Google Scholar] [CrossRef]
- Hashimoto, S.; Werner, D.; Uwada, T. Studies on the interaction of pulsed lasers with plasmonic gold nanoparticles toward light manipulation, heat management, and nanofabrication. J. Photochem. Photobiol. C Photochem. Rev. 2012, 13, 28–54. [Google Scholar] [CrossRef]
- Silina, Y.E.; Koch, M.; Volmer, D.A. The role of physical and chemical properties of Pd nanostructured materials immobilized on inorganic carriers on ion formation in atmospheric pressure laser desorption/ionization mass spectrometry. J. Mass Spectrom. 2014, 49, 468–480. [Google Scholar] [CrossRef] [PubMed]
- Okuno, S.; Arakawa, R.; Okamoto, K.; Matsui, Y.; Seki, S.; Kozawa, T.; Tagawa, S.; Wada, Y. Requirements for Laser-Induced Desorption/Ionization on Submicrometer Structures. Anal. Chem. 2005, 77, 5364–5369. [Google Scholar] [CrossRef] [PubMed]
- Dupré, M.; Enjalbal, C.; Cantel, S.; Martinez, J.; Megouda, N.; Hadjersi, T.; Boukherroub, R.; Coffinier, Y. Investigation of Silicon-Based Nanostructure Morphology and Chemical Termination on Laser Desorption Ionization Mass Spectrometry Performance. Anal. Chem. 2012, 84, 10637–10644. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zeng, Z.; Li, J.; Chi, L.; Guo, X.; Lu, N. Biomimetic Antireflective Silicon Nanocones Array for Small Molecules Analysis. J. Am. Soc. Mass Spectrom. 2013, 24, 66–73. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Luo, G.; Diao, J.; Chornoguz, O.; Reeves, M.; Vertes, A. Laser desorption/ionization from nanostructured surfaces: nanowires, nanoparticle films and silicon microcolumn arrays. J. Phys. Conf. Ser. 2007, 59, 548–554. [Google Scholar] [CrossRef]
- Duan, J.; Linman, M.J.; Cheng, Q. Ultrathin Calcinated Films on a Gold Surface for Highly Effective Laser Desorption/Ionization of Biomolecules. Anal. Chem. 2010, 82, 5088–5094. [Google Scholar] [CrossRef] [PubMed]
- Duan, J.; Wang, H.; Cheng, Q. On-Plate Desalting and SALDI-MS Analysis of Peptides with Hydrophobic Silicate Nanofilms on a Gold Substrate. Anal. Chem. 2010, 82, 9211–9220. [Google Scholar] [CrossRef] [PubMed]
- Popović, I.; Milovanović, D.; Miletić, J.; Nešić, M.; Vranješ, M.; Šaponjić, Z.; Petković, M. Dependence of the quality of SALDI TOF MS analysis on the TiO2 nanocrystals’ size and shape. Opt. Quantum Electron. 2016, 48, 113. [Google Scholar] [CrossRef]
- Yao, T.; Kawasaki, H.; Watanabe, T.; Arakawa, R. Effectiveness of platinum particle deposition on silicon surfaces for surface-assisted laser desorption/ionization mass spectrometry of peptides. Int. J. Mass Spectrom. 2010, 291, 145–151. [Google Scholar] [CrossRef]
- Nitta, S.; Kawasaki, H.; Suganuma, T.; Shigeri, Y.; Arakawa, R. Desorption/Ionization Efficiency of Common Amino Acids in Surface-Assisted Laser Desorption/Ionization Mass Spectrometry (SALDI-MS) with Nanostructured Platinum. J. Phys. Chem. C 2013, 117, 238–245. [Google Scholar] [CrossRef]
- Chen, W.Y.; Huang, J.T.; Cheng, Y.C.; Chien, C.C.; Tsao, C.W. Fabrication of nanostructured silicon by metal-assisted etching and its effects on matrix-free laser desorption/ionization mass spectrometry. Anal. Chim. Acta 2011, 687, 97–104. [Google Scholar] [CrossRef] [PubMed]
- Jokinen, V.; Aura, S.; Luosujärvi, L.; Sainiemi, L.; Kotiaho, T.; Franssila, S.; Baumann, M. Surface assisted laser desorption/ionization on two-layered amorphous silicon coated hybrid nanostructures. J. Am. Soc. Mass Spectrom. 2009, 20, 1723–1730. [Google Scholar] [CrossRef] [PubMed]
- Alimpiev, S.; Nikiforov, S.; Karavanskii, V.; Minton, T.; Sunner, J. On the mechanism of laser-induced desorption–ionization of organic compounds from etched silicon and carbon surfaces. J. Chem. Phys. 2001, 115, 1891–1901. [Google Scholar] [CrossRef]
- Hinman, S.S.; Chen, C.-Y.; Duan, J.; Cheng, Q. Calcinated gold nanoparticle arrays for on-chip, multiplexed and matrix-free mass spectrometric analysis of peptides and small molecules. Nanoscale 2016, 8, 1665–1675. [Google Scholar] [CrossRef] [PubMed]
- Obena, R.P.; Lin, P.-C.; Lu, Y.W.; Li, I.C.; del Mundo, F.; Arco, S.D.; Nuesca, G.M.; Lin, C.C.; Chen, Y.J. Iron Oxide Nanomatrix Facilitating Metal Ionization in Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry. Anal. Chem. 2011, 83, 9337–9343. [Google Scholar] [CrossRef] [PubMed]
- Marsico, A.L.M.; Creran, B.; Duncan, B.; Elci, S.G.; Jiang, Y.; Onasch, T.B.; Wormhoudt, J.; Rotello, V.M.; Vachet, R.W. Inkjet-Printed Gold Nanoparticle Surfaces for the Detection of Low Molecular Weight Biomolecules by Laser Desorption/Ionization Mass Spectrometry. J. Am. Soc. Mass Spectrom. 2015, 26, 1931–1937. [Google Scholar] [CrossRef] [PubMed]
- Bibi, A.; Ju, H. Quantum dots assisted laser desorption/ionization mass spectrometric detection of carbohydrates: qualitative and quantitative analysis. J. Mass Spectrom. 2016, 51, 291–297. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.C.; Chang, H.T.; Chiang, C.K.; Huang, C.C. Pulsed-Laser Desorption/Ionization of Clusters from Biofunctional Gold Nanoparticles: Implications for Protein Detections. ACS Appl. Mater. Interfaces 2012, 4, 5241–5248. [Google Scholar] [CrossRef] [PubMed]
- Shrivas, K.; Wu, H.-F. Applications of silver nanoparticles capped with different functional groups as the matrix and affinity probes in surface-assisted laser desorption/ionization time-of-flight and atmospheric pressure matrix-assisted laser desorption/ionization ion trap mass spectrometry for rapid analysis of sulfur drugs and biothiols in human urine. Rapid Commun. Mass Spectrom. 2008, 22, 2863–2872. [Google Scholar] [PubMed]
- Huang, Y.F.; Chang, H.T. Analysis of Adenosine Triphosphate and Glutathione through Gold Nanoparticles Assisted Laser Desorption/Ionization Mass Spectrometry. Anal. Chem. 2007, 79, 4852–4859. [Google Scholar] [CrossRef] [PubMed]
- Chiu, W.J.; Ling, T.K.; Chiang, H.P.; Lin, H.J.; Huang, C.C. Monitoring Cluster Ions Derived from Aptamer-Modified Gold Nanofilms under Laser Desorption/Ionization for the Detection of Circulating Tumor Cells. ACS Appl. Mater. Interfaces 2015, 7, 8622–8630. [Google Scholar] [CrossRef] [PubMed]
- Amendola, V.; Litti, L.; Meneghetti, M. LDI-MS Assisted by Chemical-Free Gold Nanoparticles: Enhanced Sensitivity and Reduced Background in the Low-Mass Region. Anal. Chem. 2013, 85, 11747–11754. [Google Scholar] [CrossRef] [PubMed]
- Silina, Y.E.; Meier, F.; Nebolsin, V.A.; Koch, M.; Volmer, D.A. Novel Galvanic Nanostructures of Ag and Pd for Efficient Laser Desorption/Ionization of Low Molecular Weight Compounds. J. Am. Soc. Mass Spectrom. 2014, 25, 841–851. [Google Scholar] [CrossRef] [PubMed]
- Colaianni, L.; Kung, S.C.; Taggart, D.K.; Picca, R.A.; Greaves, J.; Penner, R.M.; Cioffi, N. Reduction of spectral interferences using ultraclean gold nanowire arrays in the LDI-MS analysis of a model peptide. Anal. Bioanal. Chem. 2014, 406, 4571–4583. [Google Scholar] [CrossRef] [PubMed]
- Sherrod, S.D.; Diaz, A.J.; Russell, W.K.; Cremer, P.S.; Russell, D.H. Silver Nanoparticles as Selective Ionization Probes for Analysis of Olefins by Mass Spectrometry. Anal. Chem. 2008, 80, 6796–6799. [Google Scholar] [CrossRef] [PubMed]
- Östman, P.; Pakarinen, J.M.H.; Vainiotalo, P.; Franssila, S.; Kostiainen, R.; Kotiaho, T. Minimum proton affinity for efficient ionization with atmospheric pressure desorption/ionization on silicon mass spectrometry. Rapid Commun. Mass Spectrom. 2006, 20, 3669–3673. [Google Scholar] [CrossRef] [PubMed]
- Krasny, L.; Benada, O.; Strnadova, M.; Lemr, K.; Havlicek, V. Lateral resolution in NALDI MSI: back to the future. Anal. Bioanal. Chem. 2015, 407, 2141–2147. [Google Scholar] [CrossRef] [PubMed]
- Silina, Y.E.; Herbeck-Engel, P.; Koch, M. A study of enhanced ion formation from metal-semiconductor complexes in atmospheric pressure laser desorption/ionization mass spectrometry. J. Mass Spectrom. 2017, 52, 43–53. [Google Scholar] [CrossRef] [PubMed]
- Pustovalov, V.K. Modeling of the processes of laser-nanoparticle interaction taking into account temperature dependences of parameters. Laser Phys. 2011, 21, 906–912. [Google Scholar] [CrossRef]
- Strasser, M.; Setoura, K.; Langbein, U.; Hashimoto, S. Computational Modeling of Pulsed Laser-Induced Heating and Evaporation of Gold Nanoparticles. J. Phys. Chem. C 2014, 118, 25748–25755. [Google Scholar] [CrossRef]
- De Giacomo, A.; Gaudiuso, R.; Koral, C.; Dell’Aglio, M.; De Pascale, O. Nanoparticle-Enhanced Laser-Induced Breakdown Spectroscopy of Metallic Samples. Anal. Chem. 2013, 85, 10180–10187. [Google Scholar] [CrossRef] [PubMed]
- Fortes, F.J.; Moros, J.; Lucena, P.; Cabalín, L.M.; Laserna, J.J. Laser-Induced Breakdown Spectroscopy. Anal. Chem. 2013, 85, 640–669. [Google Scholar] [CrossRef] [PubMed]
- Chen, A.; Jiang, Y.; Wang, T.; Shao, J.; Jin, M. Comparison of plasma temperature and electron density on nanosecond laser ablation of Cu and nano-Cu. Phys. Plasmas 2015, 22, 033301. [Google Scholar] [CrossRef]
- De Giacomo, A.; Gaudiuso, R.; Koral, C.; Dell’Aglio, M.; De Pascale, O. Nanoparticle Enhanced Laser Induced Breakdown Spectroscopy: Effect of nanoparticles deposited on sample surface on laser ablation and plasma emission. Spectrochim. Acta Part B At. Spectrosc. 2014, 98, 19–27. [Google Scholar] [CrossRef]
- De Giacomo, A.; Koral, C.; Valenza, G.; Gaudiuso, R.; Dell’Aglio, M. Nanoparticle Enhanced Laser-Induced Breakdown Spectroscopy for Microdrop Analysis at subppm Level. Anal. Chem. 2016, 88, 5251–5257. [Google Scholar] [CrossRef] [PubMed]
- Albert, O.; Roger, S.; Glinec, Y.; Loulergue, J.C.; Etchepare, J.; Boulmer-Leborgne, C.; Perrière, J.; Millon, E. Time-resolved spectroscopy measurements of a titanium plasma induced by nanosecond and femtosecond lasers. Appl. Phys. A 2003, 76, 319–323. [Google Scholar] [CrossRef]
Metal NPs | Specific Heat Capacity (J·g−1·K−1) | Density at 298 K (g·cm−3) | ε′ | ε″ | (Qabs) | Laser-Induced Heating Temperature (K) |
---|---|---|---|---|---|---|
AgNPs | 0.235 | 10.5 | −2.04 | 0.28 | 0.18525 | 18,836 |
AuNPs | 0.129 | 19.3 | −1.24 | 5.60 | 0.00551 | 943 |
PdNPs | 0.244 | 12.0 | −5.54 | 6.53 | 0.00365 | 569 |
PtNPs | 0.133 | 21.5 | −3.96 | 8.18 | 0.00353 | 542 |
CNT | C60 | G | ND | |
---|---|---|---|---|
Specific heat capacity (J·g−1 K−1) at ~300 K | 0.45 | 0.7 | −0.71 | 0.68 |
Thermal conductivity (Wcm−1K−1) at ~300 K | 0.25 | 0.004 | 19.5 | 0.12 |
Melting point (K) | 1600–3200 | 1000 (sublimation) | 3800–4762 | ~5000 (at 8.5 GPa) |
Laser Fluence Threshold for damaging carbon substrates by using Nd:YAG laser (λ = 620 nm), pulse width = 90 fs) (J cm−2) | Not available | Not available | 0.13 | 0.63 |
Ionization potential (eV) | 5.3 | 7.6 | 4.39 | 6.9–8.07 |
Critical Energy, E0 (eV) | Calculated Lowest Internal Energy of BP Ions (eV) | |||||
---|---|---|---|---|---|---|
C10 Modified Si | C6 Modified Si | C3 Modified Si | Untreated Si | CHCA | ||
4-CL BP | 1.73 | 3.5 | - | 4.5 | 3.7 | |
2-ME BP | 1.64 | 3.4 | - | 4.2 | 3.6 | |
4-ME BP | 1.6 | 3.4 | - | 4.1 | 3.0 | |
3-MEO BP | 1.68 | 3.7 | - | 4.8 | 4.3 | |
4-MEO BP | 1.3 | 2.8 | 3.0 | 3.5 | 3.9 | 3.2 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Picca, R.A.; Calvano, C.D.; Cioffi, N.; Palmisano, F. Mechanisms of Nanophase-Induced Desorption in LDI-MS. A Short Review. Nanomaterials 2017, 7, 75. https://doi.org/10.3390/nano7040075
Picca RA, Calvano CD, Cioffi N, Palmisano F. Mechanisms of Nanophase-Induced Desorption in LDI-MS. A Short Review. Nanomaterials. 2017; 7(4):75. https://doi.org/10.3390/nano7040075
Chicago/Turabian StylePicca, Rosaria Anna, Cosima Damiana Calvano, Nicola Cioffi, and Francesco Palmisano. 2017. "Mechanisms of Nanophase-Induced Desorption in LDI-MS. A Short Review" Nanomaterials 7, no. 4: 75. https://doi.org/10.3390/nano7040075
APA StylePicca, R. A., Calvano, C. D., Cioffi, N., & Palmisano, F. (2017). Mechanisms of Nanophase-Induced Desorption in LDI-MS. A Short Review. Nanomaterials, 7(4), 75. https://doi.org/10.3390/nano7040075