An Assessment of the Potential Use of BNNTs for Boron Neutron Capture Therapy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of BNNTs
2.2. Physicochemical Characterization of BNNTs
2.3. Quantification of 10B Activation
2.4. Cytocompatibility Assays
2.4.1. Cell Culture
2.4.2. Cell Viability Assay of the BNNTs
2.5. Performance Test
2.5.1. Groups Arrangement
2.5.2. Cells Irradiation
2.5.3. Cell Death Assay
2.6. Statistical Analysis
3. Results and Discussion
3.1. BNNTs Characterization
3.2. 10B(n,α)7Li Reaction Rate
3.3. Quantification CR-39
3.4. Cell Viability Assay of BNNT
3.5. Cell Irradiation Assay
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Juzenas, P.; Chen, W.; Sun, Y.-P.; Coelho, M.A.N.; Generalov, R.; Generalova, N.; Christensen, I.L. Quantum dots and nanoparticles for photodynamic and radiation therapies of cancer. Adv. Drug Deliv. Rev. 2008, 60, 1600–1614. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharya, R.; Mukherjee, P. Biological properties of “naked” metal nanoparticles. Adv. Drug Deliv. Rev. 2008, 60, 1289–1306. [Google Scholar] [CrossRef] [PubMed]
- Khazaei, A.; Rad, M.N.S.; Borazjani, M.K. Organic functionalization of single-walled carbon nanotubes (SWCNTs) with some chemotherapeutic agents as a potential method for drug delivery. Int. J. Nanomed. 2010, 5, 639–645. [Google Scholar] [CrossRef] [PubMed]
- Ciofani, G.; Raffa, V.; Menciassi, A.; Cuschieri, A. Boron nitride nanotubes: An innovative tool for nanomedicine. Nano Today 2009, 4, 8–10. [Google Scholar] [CrossRef]
- Golberg, D.; Bando, Y.; Tang, C.C.; Zhi, C.Y. Boron Nitride Nanotubes. Adv. Mater. 2007, 19, 2413–2432. [Google Scholar] [CrossRef]
- Ciofani, G.; Danti, S.; Genchi, G.G.; Mazzolai, B.; Mattoli, V. Boron Nitride Nanotubes: Biocompatibility and Potential Spill-Over in Nanomedicine. Small 2013, 9, 1672–1685. [Google Scholar] [CrossRef] [PubMed]
- Ciofani, G.; Raffa, V.; Menciassi, A.; Cuschieri, A. Cytocompatibility, interactions, and uptake of polyethyleneimine-coated boron nitride nanotubes by living cells: Confirmation of their potential for biomedical applications. Biotechnol. Bioeng. 2008, 101, 850–858. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Wu, P.; Rousseas, M.; Okawa, D.; Gartner, Z.; Zettl, A.; Bertozzi, C.R. Boron nitride nanotubes are noncytotoxic and can be functionalized for interaction with proteins and cells. J. Am. Chem. Soc. 2009, 131, 890–891. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, T.H.; Hollanda, L.M.; Lancellotti, M.; de Sousa, E.M.B. Boron nitride nanotubes chemically functionalized with glycol chitosan for gene transfection in eukaryotic cell lines. J. Biomed. Mater. Res. Part A 2014, 103, 2176–2185. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, T.H.; Rocca, A.; Marino, A.; Mattoli, V.; de Sousa, E.M.B.; Ciofani, G. Evaluation of the effects of boron nitride nanotubes functionalized with gum arabic on the differentiation of rat mesenchymal stem cells. RSC Adv. 2015, 5, 45431–45438. [Google Scholar] [CrossRef]
- Hilder, T.A.; Hill, J. Encapsulation of the anticancer drug cisplatin into nanotubes. Nanosci. Nanotechnol. 2008, 2008, 25–29. [Google Scholar]
- Yinghuai, Z.; Hosmane, N.S. Applications and perspectives of boron-enriched nanocomposites in cancer therapy. Future Med. Chem. 2013, 5, 705–714. [Google Scholar] [CrossRef] [PubMed]
- Dagrosa, M.A.; Crivello, M.; Perona, M.; Thorp, S.; Santa Cruz, G.A.; Pozzi, E.; Casal, M.; Thomasz, L.; Cabrini, R.; Kahl, S.; et al. First evaluation of the biologic effectiveness factors of boron neutron capture therapy (BNCT) in a human colon carcinoma cell line. Int. J. Radiat. Oncol. Biol. Phys. 2011, 79, 262–268. [Google Scholar] [CrossRef] [PubMed]
- Wu, G.; Barth, R.; Yang, W.; Lee, R.; Tjarks, W.; Backer, M.; Backer, J. Boron Containing Macromolecules and Nanovehicles as Delivery Agents for Neutron Capture Therapy. Anticancer Agents Med. Chem. 2006, 6, 167–184. [Google Scholar] [CrossRef] [PubMed]
- Yih, T.C.; Al-Fandi, M. Engineered nanoparticles as precise drug delivery systems. J. Cell. Biochem. 2006, 97, 1184–1190. [Google Scholar] [CrossRef] [PubMed]
- Ciofani, G.; Mattoli, V. Boron Nitride Nanotubes in Nanomedicine; Elsevier: Oxford, UK, 2016. [Google Scholar]
- Ciani, L.; Ristori, S. Boron as a platform for new drug design. Expert Opin. Drug Discov. 2012, 7, 1017–1027. [Google Scholar] [CrossRef] [PubMed]
- Ciofani, G.; Raffa, V.; Menciassi, A.; Cuschieri, A. Folate Functionalized Boron Nitride Nanotubes and their Selective Uptake by Glioblastoma Multiforme Cells: Implications for their Use as Boron Carriers in Clinical Boron Neutron Capture Therapy. Nanoscale Res. Lett. 2008, 4, 113–121. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, H.; Koganei, H.; Miyoshi, T.; Sakurai, Y.; Ono, K.; Suzuki, M. Antitumor effect of boron nitride nanotubes in combination with thermal neutron irradiation on BNCT. Bioorg. Med. Chem. Lett. 2015, 25, 172–174. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, T.H.; Marino, A.; Rocca, A.; Liakos, I.; Nitti, S.; Athanassiou, A.; Mattoli, V.; Mazzolai, B.; de Sousa, E.M.B.; Ciofani, G. Folate-grafted boron nitride nanotubes: Possible exploitation in cancer therapy. Int. J. Pharm. 2015, 481, 56–63. [Google Scholar] [CrossRef] [PubMed]
- Su, Z.; Yang, Z.; Xu, Y.; Chen, Y.; Yu, Q. Apoptosis, autophagy, necroptosis, and cancer metastasis. Mol. Cancer 2015, 14, 48. [Google Scholar] [CrossRef] [PubMed]
- Eriksson, D.; Stigbrand, T. Radiation-induced cell death mechanisms. Tumor Biol. 2010, 31, 363–372. [Google Scholar] [CrossRef] [PubMed]
- Fernald, K.; Kurokawa, M. Evading apoptosis in cancer. Trends Cell Biol. 2013, 23, 620–633. [Google Scholar] [CrossRef] [PubMed]
- Tabassum, D.P.; Polyak, K. Tumorigenesis: It takes a village. Nat. Rev. Cancer 2015, 15, 473–483. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, T.H.; Silva, P.; Santos, R.G.D.; de Sousa, E.M.B. A Novel Synthesis Route to Produce Boron Nitride Nanotubes for Bioapplications. J. Biomater. Nanobiotechnol. 2011, 2, 426–434. [Google Scholar] [CrossRef]
- Ciofani, G.; Genchi, G.G.; Liakos, I.; Athanassiou, A.; Dinucci, D.; Chiellini, F.; Mattoli, V. A simple approach to covalent functionalization of boron nitride nanotubes. J. Colloid Interface Sci. 2012, 374, 308–314. [Google Scholar] [CrossRef] [PubMed]
- Deevband, M.R.; Abdolmaleki, P.; Kardan, M.R.; Khosravi, H.R.; Taheri, M. An investigation on the response of PADC detectors to neutrons. Appl. Radiat. Isot. 2011, 69, 340–345. [Google Scholar] [CrossRef] [PubMed]
- Durham, J.S.; Blue, T.E.; Wehring, B.W.; Ragheb, M.H.; Blue, J.W. Microdosimetry in fast-neutron therapy by automatic readout of CR-39 solid state nuclear track detectors. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms. 1989, 36, 319–331. [Google Scholar] [CrossRef]
- Ishiyama, M.; Tominaga, H.; Shiga, M.; Sasamoto, K.; Ohkura, Y.; Ueno, K. A combined assay of cell viability and in vitro cytotoxicity with a highly water-soluble tetrazolium salt, neutral red and crystal violet. Biol. Pharm. Bull. 1996, 19, 1518–1520. [Google Scholar] [CrossRef] [PubMed]
- Zheng, M.; Liu, Y.; Gu, Y.; Xu, Z. Synthesis and characterization of boron nitride sponges as a novel support for metal nanoparticles. Sci. China Ser. B Chem. 2008, 51, 205–210. [Google Scholar] [CrossRef]
- Smilgys, B.; Guedes, S.; Morales, M.; Alvarez, F.; Hadler, J.C.; Coelho, P.R.P.; Siqueira, P.T.D.; Alencar, I. Boron thin fi lms and CR-39 detectors in BNCT: A method to measure the 10 B (n, α) 7 Li reaction rate. Radiat. Meas. 2013, 50, 181–186. [Google Scholar] [CrossRef]
- Ferreira, T.H.; Soares, D.C.F.; Moreira, L.M.C.; da Silva, P.R.O.; dos Santos, R.G.; de Sousa, E.M.B. Boron nitride nanotubes coated with organic hydrophilic agents: Stability and cytocompatibility studies. Mater. Sci. Eng. C 2013, 33, 4616–4623. [Google Scholar] [CrossRef] [PubMed]
- Ciofani, G.; Danti, S.; D’Alessandro, D.; Moscato, S.; Menciassi, A. Assessing cytotoxicity of boron nitride nanotubes: Interference with the MTT assay. Biochem. Biophys. Res. Commun. 2010, 394, 405–411. [Google Scholar] [CrossRef] [PubMed]
Samples | Number of Traces | Traces/μm2 |
---|---|---|
10 μg (A) | 13,396 | 1.710 × 10−4 |
50 μg (B) | 18,226 | 2.314 × 10−4 |
100 μg (C) | 32,201 | 4.046 × 10−4 |
Control (D) | 11,577 | 1.432 × 10−4 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferreira, T.H.; Miranda, M.C.; Rocha, Z.; Leal, A.S.; Gomes, D.A.; Sousa, E.M.B. An Assessment of the Potential Use of BNNTs for Boron Neutron Capture Therapy. Nanomaterials 2017, 7, 82. https://doi.org/10.3390/nano7040082
Ferreira TH, Miranda MC, Rocha Z, Leal AS, Gomes DA, Sousa EMB. An Assessment of the Potential Use of BNNTs for Boron Neutron Capture Therapy. Nanomaterials. 2017; 7(4):82. https://doi.org/10.3390/nano7040082
Chicago/Turabian StyleFerreira, Tiago H., Marcelo C. Miranda, Zildete Rocha, Alexandre S. Leal, Dawidson A. Gomes, and Edesia M. B. Sousa. 2017. "An Assessment of the Potential Use of BNNTs for Boron Neutron Capture Therapy" Nanomaterials 7, no. 4: 82. https://doi.org/10.3390/nano7040082
APA StyleFerreira, T. H., Miranda, M. C., Rocha, Z., Leal, A. S., Gomes, D. A., & Sousa, E. M. B. (2017). An Assessment of the Potential Use of BNNTs for Boron Neutron Capture Therapy. Nanomaterials, 7(4), 82. https://doi.org/10.3390/nano7040082