Preparation of Ce- and La-Doped Li4Ti5O12 Nanosheets and Their Electrochemical Performance in Li Half Cell and Li4Ti5O12/LiFePO4 Full Cell Batteries
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Materials
Synthesis of Ce- and La-Doped LTO Nanosheets
3.2. Characterization
3.3. Electrochemical Measurements
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Aurbach, D.; Markovsky, B.; Weissman, I.; Levi, E.; Ein-Eli, Y. On the correlation between surface chemistry and performance of graphite negative electrodes for li ion batteries. Electrochim. Acta 1999, 45, 67–86. [Google Scholar] [CrossRef]
- Zhao, B.; Ran, R.; Liu, M.; Shao, Z. A comprehensive review of Li4Ti5O12-based electrodes for lithium-ion batteries: The latest advancements and future perspectives. Mater. Sci. Eng. R 2015, 98, 1–71. [Google Scholar] [CrossRef]
- Li, H.; Shen, L.; Yin, K.; Ji, J.; Wang, J.; Wang, X.; Zhang, X. Facile synthesis of n-doped carbon-coated Li4Ti5O12 microspheres using polydopamine as a carbon source for high rate lithium ion batteries. J. Mater. Chem. A 2013, 1, 7270–7276. [Google Scholar] [CrossRef]
- Kang, S.H.; Abraham, D.P.; Xiao, A.; Lucht, B.L. Investigating the solid electrolyte interphase using binder-free graphite electrodes. J. Power Sources 2008, 175, 526–532. [Google Scholar] [CrossRef]
- Lee, S.-E.; Kim, E.; Cho, J. Improvement of electrochemical properties of natural graphite anode materials with an ovoid morphology by AlPO4 coating. Electrochem. Solid-State Lett. 2007, 10, A1–A4. [Google Scholar] [CrossRef]
- Xu, G.B.; Li, W.; Yang, L.W.; Wei, X.L.; Ding, J.W.; Zhong, J.X.; Chu, P.K. Highly-crystalline ultrathin Li4Ti5O12 nanosheets decorated with silver nanocrystals as a high-performance anode material for lithium ion batteries. J. Power Sources 2015, 276, 247–254. [Google Scholar] [CrossRef]
- Chen, J.Z.; Yang, L.; Fang, S.H.; Tang, Y.F. Synthesis of sawtooth-like Li4Ti5O12 nanosheets as anode materials for li-ion batteries. Electrochim. Acta 2010, 55, 6596–6600. [Google Scholar] [CrossRef]
- Wang, B.F.; Wang, J.S.; Cao, J.; Ge, H.H.; Tang, Y.F. Nitrogen-doped Li4Ti5O12 nanosheets with enhanced lithium storage properties. J. Power Sources 2014, 266, 150–154. [Google Scholar] [CrossRef]
- Hao, X.G.; Bartlett, B.M. Li4Ti5O12 nanocrystals synthesized by carbon templating from solution precursors yield high performance thin film li-ion battery electrodes. Adv. Energy Mater. 2013, 3, 753–761. [Google Scholar] [CrossRef]
- Chen, S.; Xin, Y.; Zhou, Y.; Ma, Y.; Zhou, H.; Qi, L. Self-supported Li4Ti5O12 nanosheet arrays for lithium ion batteries with excellent rate capability and ultralong cycle life. Energy Environ. Sci. 2014, 7, 1924–1930. [Google Scholar] [CrossRef]
- Lin, C.F.; Fan, X.Y.; Xin, Y.L.; Cheng, F.Q.; Lai, M.O.; Zhou, H.H.; Lu, L. Monodispersed mesoporous Li4Ti5O12 submicrospheres as anode materials for lithium-ion batteries: Morphology and electrochemical performances. Nanoscale 2014, 6, 6651–6660. [Google Scholar] [CrossRef] [PubMed]
- Sha, Y.; Zhao, B.; Ran, R.; Cai, R.; Shao, Z. Synthesis of well-crystallized Li4Ti5O12 nanoplates for lithium-ion batteries with outstanding rate capability and cycling stability. J. Mater. Chem. A 2013, 1, 13233–13243. [Google Scholar] [CrossRef]
- Shen, L.F.; Uchaker, E.; Zhang, X.G.; Cao, G.Z. Hydrogenated Li4Ti5O12 nanowire arrays for high rate lithium ion batteries. Adv. Mater. 2012, 24, 6502–6506. [Google Scholar] [CrossRef] [PubMed]
- Song, K.; Seo, D.H.; Jo, M.R.; Kim, Y.I.; Kang, K.; Kang, Y.M. Tailored oxygen framework of Li4Ti5O12 nanorods for high-power li ion battery. J. Phys. Chem. Lett. 2014, 5, 1368–1373. [Google Scholar] [CrossRef] [PubMed]
- Ge, H.; Hao, T.T.; Osgood, H.; Zhang, B.; Chen, L.; Cui, L.X.; Song, X.M.; Ogoke, O.; Wu, G. Advanced mesoporous spinel Li4Ti5O12/RGO composites with increased surface lithium storage capability for high-power lithium-ion batteries. ACS Appl. Mater. Interfaces 2016, 8, 9162–9169. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.Y.; Zhang, R.X.; Bao, K.Y.; Xie, H.Q.; Zheng, S.L.; Guo, J.L.; Liu, G.Q. Synthesis of nano-Li4Ti5O12 anode material for lithium ion batteries by a biphasic interfacial reaction route. Ceram. Int. 2016, 42, 11468–11472. [Google Scholar] [CrossRef]
- Zhang, Q.Y.; Liu, Y.; Lu, H.S.; Tang, D.P.; Ouyang, C.Y.; Zhang, L.Z. Ce3+-doped Li4Ti5O12 with CeO2 surface modification by a sol-gel method for high-performance lithium-ion batteries. Electrochim. Acta 2016, 189, 147–157. [Google Scholar] [CrossRef]
- Yan, Y.; Ben, L.B.; Zhan, Y.J.; Liu, Y.Y.; Jin, Y.; Wang, S.J.; Huang, X.J. A designed core-shell structural composite of lithium terephthalate coating on Li4Ti5O12 as anode for lithium ion batteries. Prog. Nat. Sci. Mater. Int. 2016, 26, 368–374. [Google Scholar] [CrossRef]
- Jung, H.-G.; Kim, J.; Scrosati, B.; Sun, Y.-K. Micron-sized, carbon-coated Li4Ti5O12 as high power anode material for advanced lithium batteries. J. Power Sources 2011, 196, 7763–7766. [Google Scholar] [CrossRef]
- Zhao, L.; Hu, Y.-S.; Li, H.; Wang, Z.; Chen, L. Porous Li4Ti5O12 coated with n-doped carbon from ionic liquids for li-ion batteries. Adv. Mater. 2011, 23, 1385–1388. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Liao, Y.H.; Li, W.S.; Tang, X.W.; Li, X.F. Carbon coating of Li4Ti5O12-TiO2 anode by using cetyl trimethyl ammonium bromide as dispersant and phenolic resin as carbon precursor. Ionics 2015, 21, 1539–1544. [Google Scholar] [CrossRef]
- Mu, D.B.; Chen, Y.J.; Wu, B.R.; Huang, R.; Jiang, Y.; Li, L.Y.; Wu, F. Nano-sized Li4Ti5O12/C anode material with ultrafast charge/discharge capability for lithium ion batteries. J. Alloys Compd. 2016, 671, 157–163. [Google Scholar] [CrossRef]
- Li, X.; Xu, J.; Huang, P.X.; Yang, W.; Wang, Z.Q.; Wang, M.S.; Huang, Y.; Zhou, Y.; Qu, M.Z.; Yu, Z.L.; et al. In-situ carbon coating to enhance the rate capability of the Li4Ti5O12 anode material and suppress the electrolyte reduction decomposition on the electrode. Electrochim. Acta 2016, 190, 69–75. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhang, C.; Li, B.; Jiang, D.; Kang, S.; Li, X.; Wang, Y. Preparation and characterization of W-doped Li4Ti5O12 anode material for enhancing the high rate performance. Electrochim. Acta 2013, 107, 139–146. [Google Scholar] [CrossRef]
- Li, Y.; Liu, X. Activated carbon/ZnO composites prepared using hydrochars as intermediate and their electrochemical performance in supercapacitor. Mater. Chem. Phys. 2014, 148, 380–386. [Google Scholar] [CrossRef]
- Li, Y.; Shen, J.; Li, J.; Liu, S.; Yu, D.; Xu, R.; Fu, W.-F.; Lv, X.-J. Constructing a novel strategy for carbon-doped TiO2 multiple-phase nanocomposites toward superior electrochemical performance for lithium ion batteries and the hydrogen evolution reaction. J. Mater. Chem. A 2017, 5, 7055–7063. [Google Scholar] [CrossRef]
- Yi, T.-F.; Jiang, L.-J.; Shu, J.; Yue, C.-B.; Zhu, R.-S.; Qiao, H.-B. Recent development and application of Li4Ti5O12 as anode material of lithium ion battery. J. Phys. Chem. Solids 2010, 71, 1236–1242. [Google Scholar] [CrossRef]
- Bai, Y.-J.; Gong, C.; Qi, Y.-X.; Lun, N.; Feng, J. Excellent long-term cycling stability of La-doped Li4Ti5O12 anode material at high current rates. J. Mater. Chem. 2012, 22, 19054–19060. [Google Scholar] [CrossRef]
- Zhang, Q.; Verde, M.G.; Seo, J.K.; Li, X.; Meng, Y.S. Structural and electrochemical properties of Gd-doped Li4Ti5O12 as anode material with improved rate capability for lithium-ion batteries. J. Power Sources 2015, 280, 355–362. [Google Scholar] [CrossRef]
- Zhou, T.P.; Feng, X.Y.; Guo, X.; Wu, W.W.; Cheng, S.; Xiang, H.F. Solid-state synthesis and electrochemical performance of Ce-doped Li4Ti5O12 anode materials for lithium-ion batteries. Electrochim. Acta 2015, 174, 369–375. [Google Scholar] [CrossRef]
- Wang, Y.-Q.; Gu, L.; Guo, Y.-G.; Li, H.; He, X.-Q.; Tsukimoto, S.; Ikuhara, Y.; Wan, L.-J. Rutile-TiO2 nanocoating for a high-rate Li4Ti5O12 anode of a lithium-ion battery. J. Am. Chem. Soc. 2012, 134, 7874–7879. [Google Scholar] [CrossRef] [PubMed]
- Gao, L.; Li, S.H.; Huang, D.K.; Shen, Y.; Wang, M.K. Porous Li4Ti5O12-TiO2 nanosheet arrays for high-performance lithium-ion batteries. J. Mater. Chem. A 2015, 3, 10107–10113. [Google Scholar] [CrossRef]
- Feng, J.; Wang, Y. Ce-doped Li4Ti5O12/C nanoparticles embedded in multiwalled carbon nanotube network as a high-rate and long cycle-life anode for lithium-ion batteries application. Ceram. Int. 2016, 42, 19172–19178. [Google Scholar] [CrossRef]
- Gao, J.; Ying, J.; Jiang, C.; Wan, C. Preparation and characterization of spherical La-doped Li4Ti5O12 anode material for lithium ion batteries. Ionics 2009, 15, 597–601. [Google Scholar] [CrossRef]
- Wang, D.; Zhang, C.; Zhang, Y.; Wang, J.; He, D. Synthesis and electrochemical properties of La-doped Li4Ti5O12 as anode material for li-ion battery. Ceram. Int. 2013, 39, 5145–5149. [Google Scholar] [CrossRef]
- Lutterotti, L.; Scardi, P. Simultaneous structure and size-strain refinement by the rietveld method. J. Appl. Crystallogr. 1990, 23, 246–252. [Google Scholar] [CrossRef]
- Larachi, F.C.; Pierre, J.; Adnot, A.; Bernis, A. Ce 3d xps study of composite cexmn1-xo2-y wet oxidation catalysts. Appl. Surf. Sci. 2002, 195, 236–250. [Google Scholar] [CrossRef]
- Liu, J.; Song, K.; van Aken, P.A.; Maier, J.; Yu, Y. Self-supported Li4Ti5O12-C nanotube arrays as high-rate and long-life anode materials for flexible li-ion batteries. Nano Lett. 2014, 14, 2597–2603. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Han, C.; He, Y.-B.; Yang, C.; Du, H.; Yang, Q.-H.; Kang, F. Facile synthesis of Li4Ti5O12/C composite with super rate performance. Energy Environ. Sci. 2012, 5, 9595–9602. [Google Scholar] [CrossRef]
- Song, H.; Yun, S.-W.; Chun, H.-H.; Kim, M.-G.; Chung, K.Y.; Kim, H.S.; Cho, B.-W.; Kim, Y.-T. Anomalous decrease in structural disorder due to charge redistribution in Cr-doped Li4Ti5O12 negative-electrode materials for high-rate li-ion batteries. Energy Environ. Sci. 2012, 5, 9903–9913. [Google Scholar] [CrossRef]
- Shen, L.; Zhang, X.; Uchaker, E.; Yuan, C.; Cao, G. Li4Ti5O12 nanoparticles embedded in a mesoporous carbon matrix as a superior anode material for high rate lithium ion batteries. Adv. Energy Mater. 2012, 2, 691–698. [Google Scholar] [CrossRef]
- Li, Y.; Wang, Z.; Zhao, D.; Zhang, L. Gd doped single-crystalline Li4Ti5O12/TiO2 nanosheets composites as superior anode material in lithium ion batteries. Electrochim. Acta 2015, 182, 368–375. [Google Scholar] [CrossRef]
- Yang, Y.; Qiao, B.; Yang, X.; Fang, L.; Pan, C.; Song, W.; Hou, H.; Ji, X. Lithium titanate tailored by cathodically induced graphene for an ultrafast lithium ion battery. Adv. Funct. Mater. 2014, 24, 4349–4356. [Google Scholar] [CrossRef]
- He, Y.-B.; Li, B.; Liu, M.; Zhang, C.; Lv, W.; Yang, C.; Li, J.; Du, H.; Zhang, B.; Yang, Q.-H.; et al. Gassing in Li4Ti5O12-based batteries and its remedy. Sci. Rep. 2012, 2, 913. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhou, A.; Dai, X.; Feng, L.; Li, J.; Li, J. Solid-state synthesis of submicron-sized Li4Ti5O12/Li2TiO3 composites with rich grain boundaries for lithium ion batteries. J. Power Sources 2014, 266, 114–120. [Google Scholar] [CrossRef]
- Tanaka, S.; Kitta, M.; Tamura, T.; Maeda, Y.; Akita, T.; Kohyama, M. Atomic and electronic structures of Li4Ti5O12/Li7Ti5O12 (001) interfaces by first-principles calculations. J. Mater. Sci. 2014, 49, 4032–4037. [Google Scholar] [CrossRef]
- Zaghib, K.; Dontigny, M.; Guerfi, A.; Trottier, J.; Hamel-Paquet, J.; Gariepy, V.; Galoutov, K.; Hovington, P.; Mauger, A.; Groult, H.; et al. An improved high-power battery with increased thermal operating range: C-LiFePO4//C-LiFePO4. J. Power Sources 2012, 216, 192–200. [Google Scholar] [CrossRef]
- Wang, P.; Zhang, G.; Cheng, J.; You, Y.; Li, Y.-K.; Ding, C.; Gu, J.-J.; Zheng, X.-S.; Zhang, C.-F.; Cao, F.-F. Facile synthesis of carbon-coated spinel Li4Ti5O12/rutile-TiO2 composites as an improved anode material in full lithium-ion batteries with LiFePO4@N-doped carbon cathode. ACS Appl. Mater. Interfaces 2017, 9, 6138–6143. [Google Scholar] [CrossRef] [PubMed]
Electrode Materials | Specific Capacity (mAh·g−1) | Current Density (A·g−1) | References |
---|---|---|---|
Li4Ti5O12@C nanotube | 81 | 17.5 | [38] |
N-Carbon-coated LTO | 129 | 1.75 | [20] |
Rutile-coated LTO | 110 | 10.5 | [31] |
LTO nanowire arrays | 118 | 5.25 | [13] |
Carbon-coated LTO | 110 | 3.5 | [39] |
Cr-doped LTO | 120 | 1.75 | [40] |
Mesoporous LTO@C | 62 | 14 | [41] |
Gd-doped LTO/TiO2 | 111 | 20 | [42] |
Ce3+-doped LTO | 105.2 | 1.75 | [17] |
Ce-doped LTO/C | 145.3 | 1.75 | [33] |
La-doped LTO | 113.8 | 8.75 | [28] |
Ce-doped LTO | 155 147 137 123 | 2 5 10 20 | This work |
La-doped LTO | 130 125 120 113 | 2 5 10 20 | This work |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qin, M.; Li, Y.; Lv, X.-J. Preparation of Ce- and La-Doped Li4Ti5O12 Nanosheets and Their Electrochemical Performance in Li Half Cell and Li4Ti5O12/LiFePO4 Full Cell Batteries. Nanomaterials 2017, 7, 150. https://doi.org/10.3390/nano7060150
Qin M, Li Y, Lv X-J. Preparation of Ce- and La-Doped Li4Ti5O12 Nanosheets and Their Electrochemical Performance in Li Half Cell and Li4Ti5O12/LiFePO4 Full Cell Batteries. Nanomaterials. 2017; 7(6):150. https://doi.org/10.3390/nano7060150
Chicago/Turabian StyleQin, Meng, Yueming Li, and Xiao-Jun Lv. 2017. "Preparation of Ce- and La-Doped Li4Ti5O12 Nanosheets and Their Electrochemical Performance in Li Half Cell and Li4Ti5O12/LiFePO4 Full Cell Batteries" Nanomaterials 7, no. 6: 150. https://doi.org/10.3390/nano7060150
APA StyleQin, M., Li, Y., & Lv, X. -J. (2017). Preparation of Ce- and La-Doped Li4Ti5O12 Nanosheets and Their Electrochemical Performance in Li Half Cell and Li4Ti5O12/LiFePO4 Full Cell Batteries. Nanomaterials, 7(6), 150. https://doi.org/10.3390/nano7060150