CeO2 Nanorods Embedded in Ni(OH)2 Matrix for the Non-Enzymatic Detection of Glucose
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Gao, A.; Zhang, X.; Peng, X.; Wu, H.; Bai, L.; Jin, W.; Wu, G.; Hang, R.; Chu, P.K. In situ synthesis of Ni(OH)2/TiO2 composite film on NiTi alloy for non-enzymatic glucose sensing. Sens. Actuators B Chem. 2016, 232, 150–157. [Google Scholar] [CrossRef]
- Rinaldi, A.L.; Carballo, R. Impedimetric non-enzymatic glucose sensor based on nickel hydroxide thin film onto gold electrode. Sens. Actuators B Chem. 2016, 228, 43–52. [Google Scholar] [CrossRef]
- Jiang, D.; Liu, Q.; Wang, K.; Qian, J.; Dong, X.; Yang, Z.; Du, X.; Qiu, B. Enhanced non-enzymatic glucose sensing based on copper nanoparticles decorated nitrogen-doped graphene. Biosens. Bioelectron. 2014, 54, 273–278. [Google Scholar] [CrossRef] [PubMed]
- Mu, Y.; Jia, D.; He, Y.; Miao, Y.; Wu, H.L. Nano nickel oxide modified non-enzymatic glucose sensors with enhanced sensitivity through an electrochemical process strategy at high potential. Biosens. Bioelectron. 2011, 26, 2948–2952. [Google Scholar] [CrossRef] [PubMed]
- Luo, L.; Li, F.; Zhu, L.; Ding, Y.; Zhang, Z.; Deng, D.; Lu, B. Nonenzymatic glucose sensor based on nickel(II)oxide/ordered mesoporous carbon modified glassy carbon electrode. Colloid Surf. B Biointerfaces 2013, 102, 307–311. [Google Scholar] [CrossRef] [PubMed]
- Guo, C.; Wang, Y.; Zhao, Y.; Xu, C. Non-enzymatic glucose sensor based on three dimensional nickel oxide for enhanced sensitivity. Anal. Methods 2013, 5, 1644–1647. [Google Scholar] [CrossRef]
- Toghill, K.E.; Xiao, L.; Phillips, M.A.; Compton, R.G. The non-enzymatic determination of glucose using an electrolytically fabricated nickel microparticle modified boron-doped diamond electrode or nickel foil electrode. Sens. Actuators B Chem. 2010, 147, 642–652. [Google Scholar] [CrossRef]
- Tee, S.Y.; Ye, E.; Pan, P.H.; Lee, C.J.J.; Hui, H.K.; Zhang, S.Y.; Koh, L.D.; Dong, Z.; Han, M.Y. Fabrication of bimetallic Cu/Au nanotubes and their sensitive, selective, reproducible and reusable electrochemical sensing of glucose. Nanoscale 2015, 7, 11190–11198. [Google Scholar] [CrossRef] [PubMed]
- Gao, Z.D.; Guo, J.; Shrestha, N.K.; Hahn, R.; Song, Y.Y.; Schmuki, P. Nickel hydroxide nanoparticle activated semi-metallic TiO2 nanotube arrays for non-enzymatic glucose sensing. Chem. Eur. J. 2013, 19, 15530–15534. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, Z.; Su, X.; Yuan, H.; Sun, Q.; Xiao, D.; Choi, M.M.F. An improved sensitivity non-enzymatic glucose sensor based on a CuO nanowire modified Cu electrode. Analyst 2008, 133, 126–132. [Google Scholar] [CrossRef] [PubMed]
- Shearer, C.J.; Cherevan, A.; Eder, D. Application and future challenges of functional nanocarbon hybrids. Adv. Mater. 2014, 26, 2295–2318. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Zheng, J. A highly sensitive non-enzymatic glucose sensor based on tremella-like Ni(OH)2 and Au nanohybrid films. J. Electroanal. Chem. 2015, 749, 83–88. [Google Scholar] [CrossRef]
- Ding, Y.; Liu, Y.; Parisi, J.; Zhang, L.; Lei, Y. A novel NiO-Au hybrid nanobelts based sensor for sensitive and selective glucose detection. Biosens. Bioelectron. 2011, 28, 393–398. [Google Scholar] [CrossRef] [PubMed]
- Dung, N.Q.; Patil, D.; Jung, H.; Kim, D. A high-performance nonenzymatic glucose sensor made of CuO-SWCNT nanocomposites. Biosens. Bioelectron. 2013, 42, 280–286. [Google Scholar] [CrossRef] [PubMed]
- Dung, N.Q.; Patil, D.; Jung, H.; Kim, J.; Kim, D. NiO-decorated single-walled carbon nanotubes for high-performance nonenzymatic glucose sensing. Sens. Actuators B Chem. 2013, 183, 381–387. [Google Scholar] [CrossRef]
- Yang, J.; Jiang, L.C.; Zhang, W.D.; Guansekaran, S. A highly sensitive non-enzymatic glucose sensor based on a simple two-step electrodeposition of cupric oxide (CuO) nanoparticles onto multi-walled carbon nanotube arrays. Talanta 2010, 82, 25–33. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.; Jeong, J.M.; Lee, K.G.; Kim, D.H.; Lee, S.J.; Choi, B.G. Hierarchical porous microspheres of the Co3O4@graphene with enhanced electrocatalytic performance for electrochemical biosensors. Biosens. Bioelectron. 2017, 89, 612–619. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Wang, Y.; Bao, X.; Li, H. Electrochemical deposition of Ni nanoparticles decorated ZnO hexagonal prisms as an effective platform for non-enzymatic detection of glucose. J. Electroanal. Chem. 2016, 775, 163–170. [Google Scholar] [CrossRef]
- SoYoon, S.; Ramadoss, A.; Saravanakumar, B.; Kim, S.J. Novel Cu/CuO/ZnO hybrid hierarchical nanostructures for non-enzymatic glucose sensor application. J. Electroanal. Chem. 2014, 717, 90–95. [Google Scholar] [CrossRef]
- Cai, B.; Zhou, Y.; Zhao, M.; Cai, H.; Ye, Z.; Wang, L.; Huang, J. Synthesis of ZnO-CuO porous core-shell spheres and their application for non-enzymatic glucose sensor. Appl. Phys. A 2015, 118, 989–996. [Google Scholar] [CrossRef]
- Karuppiah, C.; Velmurugan, M.; Chen, S.M.; Tsai, S.H.; Lou, B.S.; Ali, M.A.; Al-Hemaid, F.M.A. A simple hydrothermal synthesis and fabrication of zinc oxide-copper oxide heterostructure for the sensitive determination of nonenzymatic glucose biosensor. Sens. Actuators B Chem. 2015, 221, 1299–1306. [Google Scholar] [CrossRef]
- Strano, V.; Mirabella, S. Hierarchical ZnO nanorods/Ni(OH)2 nanoflakes for room-temperature, cheap fabrication of nonenzymatic glucose sensors. RSC Adv. 2016, 6, 111374–111379. [Google Scholar] [CrossRef]
- Zhou, C.; Xu, L.; Song, J.; Xing, R.; Xu, S.; Liu, D.; Song, H. Ultrasensitive non-enzymatic glucose sensor based on three-dimensional network of ZnO-CuO hierarchical nanocomposites by electrospinning. Sci. Rep. 2014, 4, 7382. [Google Scholar] [CrossRef] [PubMed]
- Patil, D.; Dung, N.Q.; Jung, H.; Ahn, S.Y.; Jang, D.M.; Kim, D. Enzymatic glucose biosensor based on CeO2 nanorods synthesized by non-isothermal precipitation. Biosens. Bioelectron. 2012, 31, 176–181. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.M.; Ahammad, A.J.S.; Jin, J.H.; Ahn, S.J.; Lee, J.J. A comprehensive review of glucose biosensors based on nanostructured metal-oxides. Sensors 2010, 10, 4855–4886. [Google Scholar] [CrossRef] [PubMed]
- Guan, P.; Li, Y.; Zhang, J.; Li, W. Non-enzymatic glucose biosensor based on CuO-decorated CeO2 nanoparticles. Nanomaterials 2016, 6, 159. [Google Scholar] [CrossRef] [PubMed]
- Miao, Y.; Ouyang, L.; Zhou, S.; Xu, L.; Yang, Z.; Xiao, M.; Ouyang, R. Electrocatalysis and electroanalysis of nickel, its oxides, hydroxides and oxyhydroxides toward small molecules. Biosens. Bioelectron. 2014, 53, 428–439. [Google Scholar] [CrossRef] [PubMed]
- Tee, S.Y.; Teng, C.P.; Ye, E. Metal nanostructures for non-enzymatic glucose sensing. Mater. Sci. Eng. C 2017, 70, 1018–1030. [Google Scholar] [CrossRef] [PubMed]
- Iwu, K.O.; Lombardo, A.; Sanz, R.; Scirè, S.; Mirabella, S. Facile synthesis of Ni nanofoam for flexible and low-cost non-enzymatic glucose sensing. Sens. Actuators B Chem. 2016, 224, 764–771. [Google Scholar] [CrossRef]
- Qu, F.; Sun, H.; Zhang, S.; You, J.; Yang, M. Electrochemical sensing platform based on palladium modified ceria nanoparticles. Electrochim. Acta 2012, 61, 173–178. [Google Scholar] [CrossRef]
- Jiao, X.; Song, H.; Zhao, H.; Bai, W.; Zhang, L.; Lv, Y. Well-redispersed ceria nanoparticles: Promising peroxidase mimetics for H2O2 and glucose detection. Anal. Methods 2012, 4, 3261–3267. [Google Scholar] [CrossRef]
- Miao, F.; Tao, B.; Chu, P.K. Ordered-standing nickel hydroxide microchannel arrays: Synthesis and application for highly sensitive non-enzymatic glucose sensors. Microelectron. Eng. 2015, 133, 11–15. [Google Scholar] [CrossRef]
- Lu, P.; Liu, Q.; Xiong, Y.; Wang, Q.; Lei, Y.; Lu, S.; Lu, L.; Yao, L. Nanosheets-assembled hierarchical microstructured Ni(OH)2 hollow spheres for highly sensitive enzyme-free glucose sensors. Electrochim. Acta 2015, 168, 148–156. [Google Scholar] [CrossRef]
- Yang, S.; Li, G.; Wang, G.; Zhao, J.; Gao, X.; Qu, L. Synthesis of Mn3O4 nanoparticles/nitrogen-doped graphene hybrid composite for nonenzymatic glucose sensor. Sens. Actuators B Chem. 2015, 221, 172–178. [Google Scholar] [CrossRef]
- Tan, C.; Zhang, W.; Zheng, J.; You, X.; Lin, X.; Li, S. Fabrication of metal-organic single crystalline nanowires and reduced graphene oxide enhancement for an ultrasensitive electrochemical biosensor. J. Mater. Chem. B 2015, 3, 7117–7124. [Google Scholar] [CrossRef]
- Mu, J.; He, Y.; Wang, Y. Copper-incorporated SBA-15 with peroxidase-like activity and its application for colorimetric detection of glucose in human serum. Talanta 2016, 148, 22–28. [Google Scholar] [CrossRef] [PubMed]
Electrode | Sensitivity (μA mM−1 cm−2) | Linearity (mM) | LOD c (μM) | Potential (V) | References |
---|---|---|---|---|---|
CeO2 NRs a | 0.165 | 2~26 | 100 | 0.80 | [24] |
CeO2/Pd a | - | 0.1~10 | 10 | −0.20 | [30] |
CeO2 NPs a | - | 0.007~0.13 | 0.003 | - | [31] |
Ni(OH)2/SiMCP b | 250 | 0~8 | 3.5 | 0.50 | [32] |
Ni(OH)2-HS b | 223.39 | 0.0009~7.781 | 0.1 | 0.45 | [33] |
Ni(OH)2/TiO2 b | 192 | 0.03~14 | 8 | 0.50 | [1] |
Au/Ni(OH)2 b | - | ~2 | - | 0.50 | [2] |
Ni(OH)2/TiOxCy b | 240 | 0.02~1.7 | 5.0 | 0.70 | [9] |
Ni(OH)2/Au b | 371.2 | 0.005~2.2 | 0.92 | 0.55 | [12] |
CeO2/Ni(OH)2 b | 594 | 0.002~6.6 | 1.13 | 0.55 | This work |
Spiked (μM) | Found (μM) | Recovery (%) | RSD (%) |
---|---|---|---|
0 | 40.3 | - | - |
25 | 64.1 | 95.2 | 2.9 |
50 | 90.3 | 100 | 2.6 |
75 | 112.7 | 96.5 | 1.9 |
100 | 135.3 | 95.0 | 3.0 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Guan, P.; Yu, F.; Li, W.; Xie, X. CeO2 Nanorods Embedded in Ni(OH)2 Matrix for the Non-Enzymatic Detection of Glucose. Nanomaterials 2017, 7, 205. https://doi.org/10.3390/nano7080205
Li Y, Guan P, Yu F, Li W, Xie X. CeO2 Nanorods Embedded in Ni(OH)2 Matrix for the Non-Enzymatic Detection of Glucose. Nanomaterials. 2017; 7(8):205. https://doi.org/10.3390/nano7080205
Chicago/Turabian StyleLi, Yongjian, Panpan Guan, Fucheng Yu, Wei Li, and Xiaoling Xie. 2017. "CeO2 Nanorods Embedded in Ni(OH)2 Matrix for the Non-Enzymatic Detection of Glucose" Nanomaterials 7, no. 8: 205. https://doi.org/10.3390/nano7080205
APA StyleLi, Y., Guan, P., Yu, F., Li, W., & Xie, X. (2017). CeO2 Nanorods Embedded in Ni(OH)2 Matrix for the Non-Enzymatic Detection of Glucose. Nanomaterials, 7(8), 205. https://doi.org/10.3390/nano7080205