Effects of PLA Film Incorporated with ZnO Nanoparticle on the Quality Attributes of Fresh-Cut Apple
Abstract
:1. Introduction
2. Results and Discussion
2.1. Scanning Electron Microscope (SEM)
2.2. X-ray Diffraction (XRD)
2.3. Water Vapor Permeability (WVP)
2.4. Oxygen Permeability
2.5. Mechanical Properties
2.6. Opacity
2.7. Differential Scanning Calorimetry (DSC)
2.8. Thermogravimetric Analysis (TGA)
2.9. Weight Loss
2.10. Tissue Firmness
2.11. Polyphenol Oxidase (PPO) Activity
2.12. Total Phenolic Content
2.13. Color
2.14. Microbial Analyses
2.15. Sensory Evaluation
3. Materials and Methods
3.1. Technology Roadmap
3.2. Materials
3.3. Film Preparation
3.4. Scanning Electron Microscopy (SEM) of the Film
3.5. X-ray Diffraction (XRD)
3.6. Water Vapor Permeability (WVP) of the Film
3.7. Oxygen Permeability
3.8. Mechanical Properties
3.9. Opacity
3.10. Differential Scanning Calorimetry (DSC)
3.11. Thermogravimetric Analysis (TGA)
3.12. Sample Preparation
3.13. Weight Loss
3.14. Tissue Firmness Measurement
3.15. Measurement of Polyphenol Oxidase (PPO) Activity
3.16. Total Phenolics
3.16.1. Samples Extraction
3.16.2. Total Phenolic Measurement
3.17. Color Measurement
3.18. Microbiological Analysis
3.19. Sensory Evaluation
3.20. Statistical Analysis
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Rico, D.; Martín-Diana, A.B.; Barat, J.M.; Barry-Ryan, C. Extending and measuring the quality of fresh-cut fruit and vegetables: A review. Trends Food Sci. Technol. 2007, 18, 373–386. [Google Scholar] [CrossRef]
- Guan, W.Q.; Fan, X.T. Combination of sodium chlorite and calcium propionate reduces enzymatic browning and microbial population of fresh-cut “Granny Smith” apples. J. Food Sci. 2010, 75, M72–M77. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Cruz, S.; Acedo-Félix, E.; Díaz-Cinco, M.; Islas-Osuna, M.A.; González-Aguilar, G.A. Efficacy of sanitizers in reducing Escherichia coli O157:H7, Salmonella spp. and Listeria monocytogenes populations on fresh-cut carrots. Food Control 2007, 18, 1383–1390. [Google Scholar] [CrossRef]
- Rojasgrau, M.A.; Sobrinolopez, A.; Tapia, M.S.; Martinbelloso, O. Browning inhibition in fresh-cut ‘Fuji’ apple slices by natural antibrowning agents. J. Food Sci. 2006, 71, S59–S65. [Google Scholar] [CrossRef]
- Moreira, M.R.; Tomadoni, B.; Martín-Belloso, O.; Soliva-Fortuny, R. Preservation of fresh-cut apple quality attributes by pulsed light in combination with gellan gum-based prebiotic edible coatings. LWT Food Sci. Technol. 2015, 64, 1130–1137. [Google Scholar] [CrossRef]
- Pilon, L.; Spricigo, P.C.; Miranda, M.; Moura, M.R.; Assis, O.B.G.; Mattoso, L.H.C.; Ferreira, M.D. Chitosan nanoparticle coatings reduce microbial growth on fresh-cut apples while not affecting quality attributes. Int. J. Food Sci. Technol. 2015, 50, 440–448. [Google Scholar] [CrossRef]
- Olivas, G.I.I.; Barbosacánovas, G. Edible Films and Coatings for Fruits and Vegetables; Springer: New York, NY, USA, 2009; pp. 211–244. [Google Scholar]
- Gorrasi, G.; Bugatti, V.; Tammaro, L.; Vertuccio, L.; Vigliotta, G.; Vittoria, V. Active coating for storage of Mozzarella cheese packaged under thermal abuse. Food Control 2016, 64, 10–16. [Google Scholar] [CrossRef]
- Han, L.; Qin, Y.; Liu, D.; Chen, H.; Li, H.; Yuan, M. Evaluation of biodegradable film packaging to improve the shelf-life of Boletus edulis wild edible mushrooms. Innov. Food Sci. Emerg. Technol. 2015, 29, 288–294. [Google Scholar] [CrossRef]
- Ramos, M.; Jiménez, A.; Peltzer, M.; Garrigós, M.C. Characterization and antimicrobial activity studies of polypropylene films with carvacrol and thymol for active packaging. J. Food Eng. 2012, 109, 513–519. [Google Scholar] [CrossRef]
- Dong, W.; Zou, B.; Yan, Y.; Ma, P.; Chen, M. Effect of Chain-Extenders on the Properties and Hydrolytic Degradation Behavior of the Poly(lactide)/Poly(butylene adipate-co-terephthalate) Blends. Int. J. Mol. Sci. 2013, 14, 20189–20203. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.F.; Rhim, J.W.; Hong, S.I. Preparation of poly(lactide)/poly(butylene adipate-co-terephthalate) blend films using a solvent casting method and their food packaging application. LWT Food Sci. Technol. 2016, 68, 454–461. [Google Scholar] [CrossRef]
- Lizundia, E.; Petisco, S.; Sarasua, J.R. Phase-structure and mechanical properties of isothermally melt-and cold-crystallized poly (l-lactide). J. Mech. Behav. Biomed. Mater. 2013, 17, 242–251. [Google Scholar] [CrossRef] [PubMed]
- Mahboobeh, E.; Kamyar, S.; Azowa, I.N.; Wan, Y.W.M.Z. Degradability Enhancement of Poly(Lactic Acid) by Stearate-Zn3Al LDH Nanolayers. Int. J. Mol. Sci. 2012, 13, 7938–7951. [Google Scholar]
- Chen, H.; Hu, X.; Chen, E.; Wu, S.; Mcclements, D.J.; Liu, S.; Li, B.; Li, Y. Preparation, characterization, and properties of chitosan films with cinnamaldehyde nanoemulsions. Food Hydrocoll. 2016, 61, 662–671. [Google Scholar] [CrossRef]
- Balaguer, M.P.; Fajardo, P.; Gartner, H.; Gomez-Estaca, J.; Gavara, R.; Almenar, E.; Hernandez-Munoz, P. Functional properties and antifungal activity of films based on gliadins containing cinnamaldehyde and natamycin. Int. J. Food Microbiol. 2014, 173, 62–71. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.; Ichihara, G.; Hashimoto, N.; Hasegawa, Y.; Hayashi, Y.; Tadaoikawa, S.; Suzuki, Y.; Chang, J.; Kato, M.; D’Alessandrogabazza, C.N. Synergistic Effect of Bolus Exposure to Zinc Oxide Nanoparticles on Bleomycin-Induced Secretion of Pro-Fibrotic Cytokines without Lasting Fibrotic Changes in Murine Lungs. Int. J. Mol. Sci. 2015, 16, 660–676. [Google Scholar] [CrossRef] [PubMed]
- Sogvar, O.B.; Saba, M.K.; Emamifar, A.; Hallaj, R. Influence of nano-ZnO on microbial growth, bioactive content and postharvest quality of strawberries during storage. Innov. Food Sci. Emerg. Technol. 2016, 35, 168–176. [Google Scholar] [CrossRef]
- Lepot, N.; Bael, M.K.V.; Rul, H.V.D.; D’Haen, J.; Peeters, R.; Franco, D.; Mullens, J. Influence of incorporation of ZnO nanoparticles and biaxial orientation on mechanical and oxygen barrier properties of polypropylene films for food packaging applications. J. Appl. Polym. Sci. 2011, 120, 1616–1623. [Google Scholar] [CrossRef]
- Emamifar, A.; Kadivar, M.; Shahedi, M.; Soleimanianzad, S. Evaluation of nanocomposite packaging containing Ag and ZnO on shelf life of fresh orange juice. Innov. Food Sci. Emerg. Technol. 2010, 11, 742–748. [Google Scholar] [CrossRef]
- Li, X.; Li, W.; Jiang, Y.; Ding, Y.; Yun, J.; Yao, T.; Zhang, P. Effect of nano-ZnO-coated active packaging on quality of fresh-cut ‘Fuji’ apple. Int. J. Food Sci. Technol. 2011, 46, 1947–1955. [Google Scholar] [CrossRef]
- Li, W.; Zhang, C.; Chi, H.; Li, L.; Lan, T.; Han, P.; Chen, H.; Qin, Y. Development of Antimicrobial Packaging Film Made from Poly(Lactic Acid) Incorporating Titanium Dioxide and Silver Nanoparticles. Molecules 2017, 22, 1170. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Li, L.; Zhang, H.; Yuan, M.; Qin, Y. Evaluation of PLA nanocomposite films on physicochemical and microbiological properties of refrigerated cottage cheese. J. Food Process. Preserv. 2017. [Google Scholar] [CrossRef]
- Zhang, Q.; Li, D.; Zhang, H.; Su, G.; Li, G. Preparation and properties of poly(lactic acid)/sesbania gum/nano-TiO2 composites. Polym. Bull. 2017, 1–13. [Google Scholar] [CrossRef]
- Pluta, M. Morphology and properties of polylactide modified by thermal treatment, filling with layered silicates and plasticization. Polymer 2004, 45, 8239–8251. [Google Scholar] [CrossRef]
- Yang, Z.; Zong, X.; Ye, Z.; Zhao, B.; Wang, Q.; Wang, P. The application of complex multiple forklike ZnO nanostructures to rapid and ultrahigh sensitive hydrogen peroxide biosensors. Biomaterials 2010, 31, 7534–7541. [Google Scholar] [CrossRef] [PubMed]
- Chu, Z.; Zhao, T.; Li, L.; Fan, J.; Qin, Y. Characterization of Antimicrobial Poly (Lactic Acid)/Nano-Composite Films with Silver and Zinc Oxide Nanoparticles. Materials 2017, 10, 659. [Google Scholar] [CrossRef]
- Pantani, R.; Gorrasi, G.; Vigliotta, G.; Murariu, M.; Dubois, P. PLA-ZnO nanocomposite films: Water vapor barrier properties and specific end-use characteristics. Eur. Polym. J. 2013, 49, 3471–3482. [Google Scholar] [CrossRef]
- Choudalakis, G.A.; Gotsis, A.D. Permeability of Polymer/Clay Nanocomposites. Eur. Polym. J. 2009, 45, 967–984. [Google Scholar] [CrossRef]
- Marra, A.; Silvestre, C.; Duraccio, D.; Cimmino, S. Polylactic acid/zinc oxide biocomposite films for food packaging application. Int. J. Biol. Macromol. 2016, 88, 254–262. [Google Scholar] [CrossRef] [PubMed]
- Marra, A.; Rollo, G.; Cimmino, S.; Silvestre, C. Assessment on the Effects of ZnO and Coated ZnO Particles on iPP and PLA Properties for Application in Food Packaging. Coatings 2017, 7, 29. [Google Scholar] [CrossRef]
- Berthet, M.A.; Angellier-Coussy, H.; Chea, V.; Guillard, V.; Gastaldi, E.; Gontard, N. Sustainable food packaging: Valorising wheat straw fibres for tuning PHBV-based composites properties. Compos. Part A Appl. Sci. Manuf. 2015, 72, 139–147. [Google Scholar] [CrossRef]
- Limpisophon, K.; Tanaka, M.; Osako, K. Characterisation of gelatin-fatty acid emulsion films based on blue shark (Prionace glauca) skin gelatin. Food Chem. 2010, 122, 1095–1101. [Google Scholar] [CrossRef]
- Tongnuanchan, P.; Benjakul, S.; Prodpran, T. Properties and antioxidant activity of fish skin gelatin film incorporated with citrus essential oils. Food Chem. 2012, 134, 1571. [Google Scholar] [CrossRef] [PubMed]
- Ge, H.; Yang, F.; Hao, Y.; Wu, G.; Zhang, H.; Dong, L. Thermal, Mechanical, and Rheological Properties of Plasticized Poly(l-lactic acid). J. Appl. Polym. Sci. 2012, 127, 2832–2839. [Google Scholar] [CrossRef]
- Murariu, M.; Dubois, P. PLA composites: From production to properties. Adv. Drug Deliv. Rev. 2016, 107, 17–46. [Google Scholar] [CrossRef] [PubMed]
- Lizundia, E.; Pérez-Álvarez, L.; Sáenz-Pérez, M.; Patrocinio, D.; Vilas, J.L.; León, L.M. Physical aging and mechanical performance of poly (l-lactide)/ZnO nanocomposites. J. Appl. Polym. Sci. 2016, 133, 43619. [Google Scholar] [CrossRef]
- Espitia, P.J.; Soares, N.F.; Teófilo, R.F.; Coimbra, J.S.; Vitor, D.M.; Batista, R.A.; Ferreira, S.O.; de Andrade, N.J.; Medeiros, E.A. Physical-mechanical and antimicrobial properties of nanocomposite films with pediocin and ZnO nanoparticles. Carbohydr. Polym. 2013, 94, 199–208. [Google Scholar] [CrossRef] [PubMed]
- Lim, J.S.; Park, K.I.; Chung, G.S.; Kim, J.H. Effect of composition ratio on the thermal and physical properties of semicrystalline PLA/PHB-HHx composites. Mater. Sci. Eng. C Boil. Appl. 2013, 33, 2131–2137. [Google Scholar] [CrossRef] [PubMed]
- Lim, L.T.; Auras, R.; Rubino, M. Processing technologies for poly(lactic acid). Prog. Polym. Sci. 2008, 33, 820–852. [Google Scholar] [CrossRef]
- Murariu, M.; Doumbia, A.; Bonnaud, L.; Dechief, A.L.; Paint, Y.; Ferreira, M.; Campagne, C.; Devaux, E.; Dubois, P. High-performance polylactide/ZnO nanocomposites designed for films and fibers with special end-use properties. Biomacromolecules 2011, 12, 1762–1771. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Li, H.; Jiang, L.; Chuan, Y.; Yuan, M.; Chen, H. Characterization of Active Packaging Films Made from Poly (Lactic Acid)/Poly (Trimethylene Carbonate) Incorporated with Oregano Essential Oil. Molecules 2016, 21, 695. [Google Scholar] [CrossRef] [PubMed]
- Buzarovska, A.; Grozdanov, A. Biodegradable poly(l-lactic acid)/TiO2 nanocomposites: Thermal properties and degradation. J. Appl. Polym. Sci. 2011, 123, 2187–2193. [Google Scholar] [CrossRef]
- Antmann, G.; Ares, G.; Lema, P.; Lareo, C. Influence of modified atmosphere packaging on sensory quality of shiitake mushrooms. Postharvest Biol. Technol. 2008, 49, 164–170. [Google Scholar] [CrossRef]
- Chen, C.; Hu, W.; He, Y.; Jiang, A.; Zhang, R. Effect of citric acid combined with UV-C on the quality of fresh-cut apples. Postharvest Biol. Technol. 2016, 111, 126–131. [Google Scholar] [CrossRef]
- Cocci, E.; Rocculi, P.; Romani, S.; Rosa, M.D. Changes in nutritional properties of minimally processed apples during storage. Postharvest Biol. Technol. 2006, 39, 265–271. [Google Scholar] [CrossRef]
- Alkaladi, A.; Abdelazim, A.M.; Afifi, M. Antidiabetic activity of zinc oxide and silver nanoparticles on streptozotocin-induced diabetic rats. Int. J. Mol. Sci. 2014, 15, 2015–2023. [Google Scholar] [CrossRef] [PubMed]
- Sirelkhatim, A.; Mahmud, S.; Seeni, A.; Kaus, N.H.M.; Ling, C.A.; Bakhori, S.K.M.; Hasan, H.; Mohamad, D. Review on Zinc Oxide Nanoparticles: Antibacterial Activity and Toxicity Mechanism. Nano Micro Lett. 2015, 7, 219–242. [Google Scholar] [CrossRef]
- Reddy, K.M.; Feris, K.; Bell, J.; Wingett, D.G.; Hanley, C.; Punnoose, A. Selective toxicity of zinc oxide nanoparticles to prokaryotic and eukaryotic systems. Appl. Phys. Lett. 2007, 90, 2139021. [Google Scholar] [CrossRef] [PubMed]
- Oprea, O.; Andronescu, E.; Ficai, D.; Ficai, A.; Oktar, F.N.; Yetmez, M. ZnO Applications and Challenges. Curr. Org. Chem. 2014, 18, 192–203. [Google Scholar] [CrossRef]
- Qin, Y.; Li, W.; Liu, D.; Yuan, M.; Li, L. Development of active packaging film made from poly (lactic acid) incorporated essential oil. Prog. Org. Coat. 2016, 103, 76–82. [Google Scholar] [CrossRef]
- American Society of Testing Materials (ASTM). Standard Test Methods for Water Vapor Transmission of Materials—ASTM E96-95; ASTM International: West Conshohocken, PA, USA, 2004. [Google Scholar]
- Park, P.J.; Je, J.Y.; Kim, S.K. Free radical scavenging activities of differently deacetylated chitosans using an ESR spectrometer. Carbohydr. Polym. 2004, 55, 17–22. [Google Scholar] [CrossRef]
Treatment | WVP × 10−11(gm/m2·s pa) | O2 Permeability [(cm3/(24 h × m2)] × (cm/bar) |
---|---|---|
PLA | 2.033 ± 0.15 a | 2.21 ± 0.11 b |
PLA/C6 | 2.323 ± 0.20 b | 2.55 ± 0.16 c |
PLA/C6/ZnO1% | 2.832 ± 0.65 c | 1.92 ± 0.13 a |
PLA/C6/ZnO3% | 2.723 ± 0.38 c | 1.84 ± 0.15 a |
Sample | Elasticity Modulus (EM) | Tensile Strength (TS) | Elongation of Break (%) |
---|---|---|---|
PLA/C6/ZnO3% | 2528.20 ± 223.54 a,b | 14.15 ± 1.55 a | 28.40 ± 2.11 b |
PLA/C6/ZnO1% | 2604.31 ± 297.81 b | 18.16 ± 1.69 b | 32.22 ± 1.12 c |
PLA/C6 | 2210.64 ± 297.51 a | 22.96 ± 2.19 c | 27.74 ± 1.57 b |
PLA | 3027.79 ± 176.41 c | 47.78 ± 5.18 d | 5.35 ± 0.56 a |
Sample | Tg (°C) | Tc (°C) | Tm (°C) | Xc (%) |
---|---|---|---|---|
PLA/C6/ZnO3% | 53.0 | 113.0 | 171.7 | 14.3 |
PLA/C6/ZnO1% | 53.1 | 112.6 | 165.9 | 16.2 |
PLA/C6 | 52.2 | 110.7 | 165.7 | 7.3 |
PLA | 58.6 | 109.3 | 164.2 | 6.5 |
Treatments | Odor | Color | Texture | Overall Acceptability |
---|---|---|---|---|
Day 0 | 9 | 9 | 9 | 9 |
Day 2 | - | |||
PLA | 8.06 ± 0.07 a | 7.84 ± 0.05 b | 8.04 ± 0.05 a | 7.94 ± 0.12 a |
PLA/C6 | 8.14 ± 0.08 a | 7.72 ± 0.19 b | 8.16 ± 0.15 a | 8.01 ± 0.1 a |
PLA/C6/ZnO1% | 8.16 ± 0.11 a | 7.45 ± 0.12 a | 8.22 ± 0.04 a | 8.13 ± 0.11 a |
PLA/C6/ZnO3% | 8.15 ± 0.1 a | 7.38 ± 0.13 a | 8.20 ± 0.14 a | 8.15 ± 0.14 a |
Day 4 | - | |||
PLA | 7.12 ± 0.14 a | 7.03 ± 0.14 b | 7.20 ± 0.07 a | 6.96 ± 0.08 a |
PLA/C6 | 7.24 ± 0.11 a,b | 6.95 ± 0.14 b | 7.24 ± 0.16 a | 7.08 ± 0.15 a |
PLA/C6/ZnO1% | 7.32 ± 0.06 a,b | 6.86 ± 0.12 a | 7.28 ± 0.16 a | 7.12 ± 0.07 a |
PLA/C6/ZnO3% | 7.35 ± 0.07 b | 6.82 ± 0.05 a | 7.3 ± 0.08 a | 7.16 ± 0.13 a |
Day 6 | - | |||
PLA | 5.82 ± 0.04 a | 6.43 ± 0.07 b | 6.24 ± 0.09 a | 5.98 ± 0.06 a |
PLA/C6 | 6.66 ± 0.1 b | 6.21 ± 0.06 ab | 6.62 ± 0.06 b | 6.56 ± 0.13 b |
PLA/C6/ZnO1% | 6.82 ± 0.05 c | 6.18 ± 0.07 a | 6.73 ± 0.08 b | 6.74 ± 0.09 c |
PLA/C6/ZnO3% | 6.86 ± 0.12 c | 6.15 ± 0.12 a | 6.76 ± 0.08 b | 6.83 ± 0.04 c |
Day 8 | - | |||
PLA | 4.78 ± 0.14 a | 5.75 ± 0.05 b | 5.18 ± 0.09 a | 4.86 ± 0.07 a |
PLA/C6 | 5.97 ± 0.12 b | 5.63 ± 0.06 ab | 6.05 ± 0.1 b | 6.01 ± 0.04 b |
PLA/C6/ZnO1% | 6.24 ± 0.07 c | 5.58 ± 0.06 a | 6.13 ± 0.04 bc | 6.36 ± 0.11 c |
PLA/C6/ZnO3% | 6.28 ± 0.12 c | 5.50 ± 0.11 a | 6.24 ± 0.08 c | 6.38 ± 0.05 c |
Day 10 | - | |||
PLA | 4.02 ± 0.13 a | 5.26 ± 0.12 b | 4.46 ± 0.12 a | 4.16 ± 0.16 a |
PLA/C6 | 5.13 ± 0.05 b | 4.68 ± 0.47 a | 5.69 ± 0.13 b | 5.34 ± 0.12 b |
PLA/C6/ZnO1% | 5.64 ± 0.11 c | 5.07 ± 0.11 ab | 5.58 ± 0.14 b | 5.63 ± 0.09 c |
PLA/C6/ZnO3% | 5.63 ± 0.18 c | 5.08 ± 0.16 ab | 5.54 ± 0.08 b | 5.61 ± 0.13 c |
Day 12 | ||||
PLA | 3.67 ± 0.11 a | 4.83 ± 0.07 a | 4.04 ± 0.16 a | 3.73 ± 0.18 a |
PLA/C6 | 4.62 ± 0.1 b | 4.82 ± 0.04 a | 5.04 ± 0.14 b | 4.74 ± 0.08 b |
PLA/C6/ZnO1% | 5.25 ± 0.09 c | 4.95 ± 0.09 a | 5.13 ± 0.11 b | 5.16 ± 0.13 c |
PLA/C6/ZnO3% | 5.29 ± 0.17 c | 4.97 ± 0.1 a | 5.21 ± 0.09 b | 5.25 ± 0.17 c |
Day 14 | ||||
PLA | 3.31 ± 0.12 a | 4.14 ± 0.12 a | 3.25 ± 0.13 a | 3.44 ± 0.11 a |
PLA/C6 | 4.19 ± 0.15 b | 4.27 ± 0.1 a | 4.64 ± 0.15 b | 4.23 ± 0.12 b |
PLA/C6/ZnO1% | 4.74 ± 0.09 c | 4.33 ± 0.17 a | 4.76 ± 0.09 b | 5.02 ± 0.09 c |
PLA/C6/ZnO3% | 4.76 ± 0.11 c | 4.36 ± 0.07 a | 4.82 ± 0.07 b | 5.05 ± 0.09 c |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, W.; Li, L.; Cao, Y.; Lan, T.; Chen, H.; Qin, Y. Effects of PLA Film Incorporated with ZnO Nanoparticle on the Quality Attributes of Fresh-Cut Apple. Nanomaterials 2017, 7, 207. https://doi.org/10.3390/nano7080207
Li W, Li L, Cao Y, Lan T, Chen H, Qin Y. Effects of PLA Film Incorporated with ZnO Nanoparticle on the Quality Attributes of Fresh-Cut Apple. Nanomaterials. 2017; 7(8):207. https://doi.org/10.3390/nano7080207
Chicago/Turabian StyleLi, Wenhui, Lin Li, Yun Cao, Tianqing Lan, Haiyan Chen, and Yuyue Qin. 2017. "Effects of PLA Film Incorporated with ZnO Nanoparticle on the Quality Attributes of Fresh-Cut Apple" Nanomaterials 7, no. 8: 207. https://doi.org/10.3390/nano7080207
APA StyleLi, W., Li, L., Cao, Y., Lan, T., Chen, H., & Qin, Y. (2017). Effects of PLA Film Incorporated with ZnO Nanoparticle on the Quality Attributes of Fresh-Cut Apple. Nanomaterials, 7(8), 207. https://doi.org/10.3390/nano7080207