Broadband Ultra-Deep Sub-Diffraction-Limit Optical Focusing by Metallic Graded-Index (MGRIN) Lenses
Abstract
:1. Introduction
2. MGRIN Lens Design
3. Results and Discussion
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Abbe, E. Resolution of microscopes. Arch. Mikrosk. Anat. 1873, 9, 413–425. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, Z. Superlenses to overcome the diffraction limit. Nat. Mater. 2008, 7, 435–441. [Google Scholar] [CrossRef] [PubMed]
- Gramotnev, D.K.; Bozhevolnyi, S.I. Plasmonics beyond the diffraction limit. Nat. Photon. 2010, 4, 83–91. [Google Scholar] [CrossRef]
- Barnes, W.L.; Dereux, A.; Ebbesen, T.W. Surface plasmon subwavelength optics. Nature 2003, 424, 824–830. [Google Scholar] [CrossRef] [PubMed]
- Fang, N. Sub-Diffraction-Limited Optical Imaging with a Silver Superlens. Science 2005, 308, 534–537. [Google Scholar] [CrossRef] [PubMed]
- Schuller, J.A.; Barnard, E.S.; Cai, W.; Jun, Y.C.; White, J.S.; Brongersma, M.L. Plasmonics for extreme light concentration and manipulation. Nat. Mater. 2010, 9, 193–204. [Google Scholar] [CrossRef] [PubMed]
- Han, Z.; Bozhevolnyi, S.I. Radiation guiding with surface plasmon polaritons. Rep. Prog. Phys. 2013, 76, 16402. [Google Scholar] [CrossRef] [PubMed]
- Gramotnev, D.K.; Bozhevolnyi, S.I. Nanofocusing of electromagnetic radiation. Nat. Photon. 2014, 8, 13–22. [Google Scholar] [CrossRef]
- Novotny, L.; Hulst, N.V. Antennas for light. Nat. Photon. 2011, 5, 83–90. [Google Scholar] [CrossRef]
- Babadjanyan, A.J.; Margaryan, N.L.; Nerkararyan, K.V. Superfocusing of surface polaritons in the conical structure. J. Appl. Phys. 2000, 87, 3785–3788. [Google Scholar] [CrossRef]
- Stockman, M.I. Nanofocusing of optical energy in tapered plasmonic waveguides. Phys. Rev. Lett. 2004, 93, 137404. [Google Scholar] [CrossRef] [PubMed]
- Issa, N.A.; Guckenberger, R. Optical nanofocusing on tapered metallic waveguides. Plasmon. 2007, 2, 31–37. [Google Scholar] [CrossRef]
- Ropers, C.; Neacsu, C.C.; Elsaesser, T.; Albrecht, M.; Raschke, M.B.; Lienau, C. Grating-Coupling of Surface Plasmons onto Metallic Tips: A Nanoconfined Light Source. Nano Lett. 2007, 7, 2784–2788. [Google Scholar] [CrossRef] [PubMed]
- Gramotnev, D.K.; Vogel, M.W. Ultimate capabilities of sharp metal tips for plasmon nanofocusing, near-field trapping and sensing. Phys. Lett. A 2011, 375, 3464–3468. [Google Scholar] [CrossRef]
- Kravtsov, V.; Ulbricht, R.; Atkin, J.M.; Raschke, M.B. Plasmonic nanofocused four-wave mixing for femtosecond near-field imaging. Nat. Nanotechnol. 2016, 11, 459–464. [Google Scholar] [CrossRef] [PubMed]
- Nerkararyan, K.V. Superfocusing of a surface polariton in a wedge-like structure. Phys. Rev. A 1997, 237, 103–105. [Google Scholar] [CrossRef]
- Durach, M.; Rusina, A.; Stockman, M.I.; Nelson, K. Toward Full Spatiotemporal Control on the Nanoscale. Nano Lett. 2007, 7, 3145–3149. [Google Scholar] [CrossRef] [PubMed]
- Vernon, K.C.; Gramotnev, D.K.; Pile, D.F.P. Adiabatic nanofocusing of plasmons by a sharp metal wedge on a dielectric substrate. J. Appl. Phys. 2007, 101, 104312. [Google Scholar] [CrossRef] [Green Version]
- Verhagen, E.; Polman, A.; Kuipers, L.K. Nanofocusing in laterally tapered plasmonic waveguides. Opt. Express 2008, 16, 45–57. [Google Scholar] [CrossRef] [PubMed]
- Verhagen, E.; Spasenović, M.; Polman, A.; Kuipers, L.K. Nanowire plasmon excitation by adiabatic mode transformation. Phys. Rev. Lett. 2009, 102, 203904. [Google Scholar] [CrossRef] [PubMed]
- Umakoshi, T.; Saito, Y.; Verma, P. Highly efficient plasmonic tip design for plasmon nanofocusing in near-field optical microscopy. Nanoscale 2016, 8, 5564–5634. [Google Scholar] [CrossRef] [PubMed]
- Pile, D.F.P.; Gramotnev, D.K. Adiabatic and nonadiabatic nanofocusing of plasmons by tapered gap plasmon waveguides. Appl. Phys. Lett. 2006, 89, 41111. [Google Scholar] [CrossRef] [Green Version]
- Ginzburg, P.; Arbel, D.; Orenstein, M. Gap plasmon polariton structure for very efficient microscale-to-nanoscale interfacing. Opt. Lett. 2006, 31, 3288–3290. [Google Scholar] [CrossRef] [PubMed]
- Gramotnev, D.K.; Pile, D.F.; Vogel, M.W.; Zhang, X. Local electric field enhancement during nanofocusing of plasmons by a tapered gap. Phys. Rev. B 2007, 75, 035431. [Google Scholar] [CrossRef]
- Vedantam, S.; Lee, H.; Tang, J.; Conway, J.; Staffaroni, M.; Yablonovitch, E. A Plasmonic Dimple Lens for Nanoscale Focusing of Light. Nano Lett. 2009, 9, 3447–3452. [Google Scholar] [CrossRef] [PubMed]
- Choo, H.; Kim, M.; Staffaroni, M.; Seok, T.J.; Bokor, J.; Cabrini, S.; Schuck, P.J.; Wu, M.C.; Yablonovitch, E. Nanofocusing in a metal–insulator–metal gap plasmon waveguide with a three-dimensional linear taper. Nat. Photon. 2012, 6, 838–844. [Google Scholar] [CrossRef]
- Volkov, V.S.; Bozhevolnyi, S.I.; Rodrigo, S.G.; Martín-Moreno, L.; García-Vidal, F.J.; Devaux, E.; Ebbesen, T.W. Nanofocusing with Channel Plasmon Polaritons. Nano Lett. 2009, 9, 1278–1282. [Google Scholar] [CrossRef] [PubMed]
- Sorger, V.J.; Oulton, R.F.; Ma, R.M.; Zhang, X. Toward integrated plasmonic circuits. MRS Bull. 2012, 37, 728–738. [Google Scholar] [CrossRef]
- Chung, T.; Lee, S.Y.; Song, E.Y.; Chun, H.; Lee, B. Plasmonic nanostructures for nano-scale bio-sensing. Sensors 2011, 11, 10907–10929. [Google Scholar] [CrossRef] [PubMed]
- Frey, H.; Witt, S.; Felderer, K.; Guckenberger, R. Highresolution imaging of single fluorescent molecules with the optical nearfield of a metal tip. Phys. Rev. Lett. 2004, 93, 200801. [Google Scholar] [CrossRef] [PubMed]
- Juan, M.L.; Righini, M.; Quidant, R. Plasmon nano-optical tweezers. Nat. Photon. 2011, 5, 349–356. [Google Scholar] [CrossRef]
- Economou, E.N. Surface plasmons in thin films. Phys. Rev. 1969, 182, 539. [Google Scholar] [CrossRef]
- Xu, T.; Du, C.; Wang, C.; Luo, X. Subwavelength imaging by metallic slab lens with nanoslits. Appl. Phys. Lett. 2007, 91, 201501. [Google Scholar] [CrossRef]
- Verslegers, L.; Catrysse, P.B.; Yu, Z.; Fan, S. Planar metallic nanoscale slit lenses for angle compensation. Appl. Phys. Lett. 2009, 95, 071112. [Google Scholar] [CrossRef]
- Verslegers, L.; Catrysse, P.B.; Yu, Z.; White, J.S.; Barnard, E.S.; Brongersma, M.L.; Fan, S. Planar lenses based on nanoscale slit arrays in a metallic film. Nano Lett. 2009, 9, 235–238. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Cumming, D.R. Visible light focusing demonstrated by plasmonic lenses based on nano-slits in an aluminum film. Opt. Express 2010, 18, 14788–14793. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Yuan, W.; Yu, Y.; Diao, J. Metallic planar lens formed by coupled width-variable nanoslits for superfocusing. Opt. Express 2015, 23, 20124–20131. [Google Scholar] [CrossRef] [PubMed]
- Gordon, R. Proposal for superfocusing at visible wavelengths using radiationless interference of a plasmonic array. Phys. Rev. Lett. 2009, 102, 207402. [Google Scholar] [CrossRef] [PubMed]
- Verslegers, L.; Catrysse, P.B.; Yu, Z.; Fan, S. Deep-subwavelength focusing and steering of light in an aperiodic metallic waveguide array. Phys. Rev. Lett. 2009, 103, 033902. [Google Scholar] [CrossRef] [PubMed]
- Yariv, A.; Yeh, O. Photonics: Optical Electronics in Modern Communications; Oxford Univercity Press: New York, NY, USA, 2006. [Google Scholar]
- Reino, C.G.; Pérez, M.V.; Bao, C. Gradient-Index Optics: Fundamentals and Applicatioins; Springer: New York, NY, USA, 2002. [Google Scholar]
- Fan, X.; Wang, G.P.; Lee, J.C.W.; Chan, C.T. All-angle broadband negative refraction of metal waveguide arrays in the visible range: theoretical analysis and numerical demonstration. Phys. Rev. Lett. 2006, 97, 073901. [Google Scholar] [CrossRef] [PubMed]
- Babar, S.; Weaver, J.H. Optical constants of Cu, Ag, and Au revisited. Appl. Opt. 2015, 54, 477–481. [Google Scholar] [CrossRef]
- Ferrell, R.A. Characteristic energy loss of electrons passing through metal foils. ii. Dispersion relation and short wavelength cutoff for plasma oscillations. Phys. Rev. 1956, 107, 450–462. [Google Scholar] [CrossRef]
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, Y.; Yuan, W.; Sun, H.; Yu, Y. Broadband Ultra-Deep Sub-Diffraction-Limit Optical Focusing by Metallic Graded-Index (MGRIN) Lenses. Nanomaterials 2017, 7, 221. https://doi.org/10.3390/nano7080221
Zhu Y, Yuan W, Sun H, Yu Y. Broadband Ultra-Deep Sub-Diffraction-Limit Optical Focusing by Metallic Graded-Index (MGRIN) Lenses. Nanomaterials. 2017; 7(8):221. https://doi.org/10.3390/nano7080221
Chicago/Turabian StyleZhu, Yechuan, Weizheng Yuan, Hao Sun, and Yiting Yu. 2017. "Broadband Ultra-Deep Sub-Diffraction-Limit Optical Focusing by Metallic Graded-Index (MGRIN) Lenses" Nanomaterials 7, no. 8: 221. https://doi.org/10.3390/nano7080221
APA StyleZhu, Y., Yuan, W., Sun, H., & Yu, Y. (2017). Broadband Ultra-Deep Sub-Diffraction-Limit Optical Focusing by Metallic Graded-Index (MGRIN) Lenses. Nanomaterials, 7(8), 221. https://doi.org/10.3390/nano7080221