Mechano-Physical Properties and Microstructure of Carbon Nanotube Reinforced Cement Paste after Thermal Load
Abstract
:1. Introduction
2. Materials and Methods
2.1. Manufacturing of the Modified Cement Pastes
- C42—consisting of CEM I 42.5R and water,
- C42CNT—consisting of CEM I 42.5R, 0.1% CNT, and water,
- C52—consisting of CEM I 52.5R and water,
- C52CNT—consisting of CEM I 52.5R, 0.1% CNT, and water.
2.2. Preparation of Mixture and Specimens
2.3. Thermal Load
2.4. Methods
2.4.1. Determination of Physical Properties
2.4.2. Determination of Mechanical Properties
2.4.3. Microstructure Analysis
3. Results
3.1. Physical Properties of the Modified Cement Pastes
3.2. Mechanical Properties of the Material
3.3. SEM and EDS Analysis of the Material
4. Discussion
4.1. Physical Properties of the Modified Cement Pastes
4.1.1. Apparent Density
4.1.2. Linear Shrinkage
4.2. Mechanical Properties of the Examined Material
4.2.1. Compressive Strength
4.2.2. Flexural Strength
4.3. Correlations Between Parameters
4.4. Microstructure of the Material
5. Conclusions
- The use of the aqueous CNT dispersion using the SDS surfactant caused foaming of the cement paste. This is due to the fact that SDS, as an anionic surfactant, has characteristics specific to blowing agents.
- Due to the foam effect, cement pastes with CNTs were characterized by a lower apparent density, by 31% compared to the conventional cement pastes; the same density difference occurred both before and after the thermal load.
- Samples containing CNTs were characterized by a large initial growth rate of shrinkage (after 3 days of maturing, the shrinkage was as much as 140% greater than the unmodified samples); at the time of maturing, the increase in shrinkage significantly decreased.
- After the temperature load, the change in linear shrinkage of samples with and without CNT was similar, and ranged from 135–174% with respect to the reference values.
- A very high dependence between shrinkage and apparent density of modified cement pastes was observed (correlation coefficients ranged from −0.95 to −0.98).
- CNT modified cement pastes have an average of 50% less compressive strength compared to the conventional cement matrix, due to the increased porosity.
- The CNT addition increased the resistance of the cement matrix to elevated temperatures in terms of the compressive strength; in the case of CEM I 52.5R, the reduction in the compressive strength of CNT modified samples ranged between 25–30%, and for unmodified samples, 29–46%.
- Bending tensile strength of the pastes with CNT (before thermal load) was about 30% lower than the pastes without the additive.
- After exposure to the elevated temperature, in the samples containing CEM I 52.5R, CNT modified cement pastes achieved about 18% greater bending tensile strength compared to the unmodified samples. It has been found that the CNT additive forms mechanical connections with the cement hydration products in the material’s nano-structure, and improves the cohesion of the cement paste, both in terms of its stretching and compression. This is important because of the CNT application method used, where a foam effect was achieved—a significant reduction in the weight of the cementitious material.
- Increased thermal resistance of the cement pastes with CNTs in the aspect of the bending tensile strength of cement matrix was observed; the reduction of this parameter for the CNT samples ranged between 36–52%, and for the samples of the classical cement paste, 40–73%.
- SEM and EDS analysis allowed for the identification of structural differences between individual samples of the cementitious material. It has been noted that the presence of CNTs with SDS adversely affects the chemistry of the cement paste (e.g., lower content of SiO2, greater content of CaO, SO3).
- Further studies on the use of CNTs in conjunction with SDS, for the modification of cement matrix, may contribute to the development of a modified cement binder used in the manufacture of lightweight or aerated concrete.
Acknowledgments
Conflicts of Interest
References
- Neville, A.M. Properties of Concrete, 4th ed.; Arkady: Warszawa, Poland, 2000. [Google Scholar]
- Szeląg, M. Wpływ Składu Kompozytów Cementowych Na Geometrię Ich Spękań Termicznych (The Influence of Cement Composites’ Composition on the Geometry of Their Thermal Cracks); Lublin University of Technology: Lublin, Poland, 2017. [Google Scholar]
- Kurdowski, W. Chemia Cementu I Betonu (Chemistry of Cement and Concrete); Wydawnictwo Polski Cement, Wydawnictwo Naukowe PWN: Kraków, Poland, 2010. [Google Scholar]
- Zegardlo, B.; Szelag, M.; Ogrodnik, P. Ultra-high strength concrete made with recycled aggregate from sanitary ceramic wastes—The method of production and the interfacial transition zone. Constr. Build. Mater. 2016, 122, 736–742. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, H.; Li, V. Concrete reinforcement with recycled fibers. J. Mater. Civ. Eng. 2000, 12, 314–319. [Google Scholar] [CrossRef]
- Zollo, R. Fiber-reinforced concrete: An overview after 30 years of development. Cem. Concr. Compos. 1997, 19, 107–122. [Google Scholar] [CrossRef]
- Naaman, A.; Wongtanakitcharoen, T.; Hauser, G. Influence of different fibers on plastic shrinkage cracking of concrete. ACI Mater. J. 2005, 102, 49–58. [Google Scholar]
- Fic, S.; Brzyski, P.; Szeląg, M. Composite based on foam lime mortar with flax fibers for use in the building industry. Ecol. Chem. Eng. A 2013, 20, 899–907. [Google Scholar]
- Cwirzen, A.; Habermehl-Cwirzen, K.; Penttala, V. Surface decoration of carbon nanotubes and mechanical properties of cement/carbon nanotube composites. Adv. Cem. Res. 2008, 20, 65–73. [Google Scholar] [CrossRef]
- Wang, B.; Liu, S.; Han, Y.; Leng, P. Preparation and durability of cement-based composites doped with multi-walled carbon nanotubes. Nanosci. Nanotechnol. Lett. 2015, 7, 411–416. [Google Scholar] [CrossRef]
- Ibragimov, R.; Izotov, V. Effect of carbon nanotubes on the structure and properties of cement composites. Inorg. Mater. 2015, 51, 834–839. [Google Scholar] [CrossRef]
- Luo, J.; Duan, Z.; Zhao, T.; Li, Q.; Jiao, S.; Jiang, Z.; Bu, J. Effect of multi-wall carbon nanotube on fracture mechanical property of cement-based composite. Adv. Superalloys 2011, 146–147, 581. [Google Scholar] [CrossRef]
- Manzur, T.; Yazdani, N.; Emon, M. Potential of carbon nanotube reinforced cement composites as concrete repair material. J. Nanomater. 2016, 2016. [Google Scholar] [CrossRef]
- Ramsden, J. Nanotechnology: An introduction; William Andrew: Norwich, NY, USA, 2011. [Google Scholar]
- Stankiewicz, N.; Lelusz, M. Nanotechnologia w budownictwie—Przegląd zastosowań (Nanotechnology in civil engineering—Application review). Bud. I Inżynieria Środowiska 2014, 5, 101–112. [Google Scholar]
- Czarnecki, L. Nanotechnologia w budownictwie (Nanotechnology in construction). Prz. Bud. 2011, 1, 40–53. [Google Scholar]
- Kellsall, R.W.; Hamley, I.W.; Geoghegan, M. Nanotechnologie (Nanotechnologies); Wydawnictwo Naukowe PWN: Warszawa, Poland, 2009. [Google Scholar]
- Huczko, A. Nanorurki Węglowe. CZARNE Diamenty XXI Wieku (Carbon Nanotubes. Black Diamonds of the 21st Century); BEL Studio: Warszawa, Poland, 2004. [Google Scholar]
- Huczko, A. Fulereny i nanorurki (Fulerens and nanotubes). Academia 2006, 2, 16. [Google Scholar]
- Zharikov, V.V.; Yezerskii, V.A.; Kuznetsova, N.V.; Sterkhov, I.I. Tsementny kompozitsionny materialy s ispol’zovaniemotkhodovlityeĭnogoproizvodstva. Tekhnologiibetonov 2011, 11–12, 19–21. [Google Scholar]
- Konsta-Gdoutos, M.S.; Metaxa, Z.S.; Shah, S.P. Highly dispersed carbon nanotube reinforced cement based materials. Cem. Concr. Res. 2010, 40, 1052–1059. [Google Scholar] [CrossRef]
- Konsta-Gdoutos, M.S.; Metaxa, Z.S.; Shah, S.P. Multi-scale mechanical and fracture characteristics and early-age strain capacity of high performance carbon nanotube/cement nanocomposites. Cem. Concr. Compos. 2010, 32, 110–115. [Google Scholar] [CrossRef]
- Li, G.Y.; Wang, P.M.; Zhao, X. Mechanical behaviour and microstructure of cement composites incorporating surface-treated multi-walled carbon nanotubes. Carbon 2005, 43, 1239–1245. [Google Scholar] [CrossRef]
- Makar, J.; Margeson, J.; Luh, J. Carbon Nanotube/Cement Composites—Early Results and Potential Applications. In Proceedings of the 3rd International Conference on Construction Materials: Performance, Innovations and Structural Implications, Vancouver, BC, Canada, 22–24 August 2005; pp. 1–10. [Google Scholar]
- Li, G.Y.; Wang, P.M.; Zhao, X. Pressure-sensitive properties and microstructure of carbon nanotube reinforced cement composites. Cem. Concr. Res. 2007, 29, 377–382. [Google Scholar] [CrossRef]
- Vaisman, L.; Wagner, D.H.; Marom, G. The role of surfactants in dispersion of carbon nanotubes. Adv. Coll. Interface Sci. 2006, 128, 37–46. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Grossiord, N.; Koning, C.E.; Loos, J. Controlling the dispersion of multi-wall carbon nanotubes in aqueous surfactant solution. Carbon 2007, 45, 618–623. [Google Scholar] [CrossRef]
- Jiang, L.; Gao, L.; Sun, J. Production of aqueous colloidal dispersions of carbon nanotubes. J. Coll. Interface Sci. 2003, 260, 89–94. [Google Scholar] [CrossRef]
- Rausch, J.; Zhuang, R.; Mader, E. Surfactant assisted dispersion of functionalized multi-walled carbon nanotubes in aqueous media. Compos. Part A Appl. Sci. Manuf. 2010, 41, 1038–1046. [Google Scholar] [CrossRef]
- Grossiord, N.; Regev, O.; Loos, J.; Meuldijk, J.; Koning, C. Time-dependent study of the exfoliation process of carbon nanotubes in aqueous dispersions by using UV-visible spectroscopy. Anal. Chem. 2005, 77, 5135–5139. [Google Scholar] [CrossRef] [PubMed]
- Rastogi, R.; Kaushal, R.; Tripathi, S.; Sharma, A.; Kaur, I.; Bharadwaj, L. Comparative study of carbon nanotube dispersion using surfactants. J. Coll. Interface Sci. 2008, 328, 421–428. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Sun, W.; Sun, B.; Sun, X.; Jia, L.; Ma, Z. Preparation of carbon nanotubes solution and its effectson mechanical properties of cement mortar. J. Southeast Univ. (Nat. Sci. Ed.) 2014, 44, 662–667. [Google Scholar]
- Adresi, M.; Hassani, A.; Javadian, S.; Tulliani, J. Determining the surfactant consistent with concrete in order to achieve the maximum possible dispersion of multiwalled carbon nanotubes in keeping the plain concrete properties. J. Nanotechnol. 2016, 2016. [Google Scholar] [CrossRef]
- Adresi, M.; Hassani, A.; Tulliani, J.; Lacidogna, G.; Antonaci, P. A study of the main factors affecting the performance of self-sensing concrete. Adv. Cem. Res. 2017, 29, 216–226. [Google Scholar] [CrossRef]
- Han, B.; Zhang, K.; Yu, X.; Kwon, E.; Ou, J. Fabrication of piezoresistive CNT/CNF cementitious composites with superplasticizer as dispersant. J. Mater. Civ. Eng. 2012, 24, 658–665. [Google Scholar] [CrossRef]
- Bogue, R.H. The Chemistry of Portland Cement; Reinhold Publishing Corporation: Stafford, TX, USA, 1947. [Google Scholar]
- En 196-1; Methods of Testing Cement—Part 1: Determination of Strength; European Committee for standardization: Brussels, Belgium, 2016.
- Fic, S.; Szelag, M. Analysis of the development of cluster cracks caused by elevated temperatures in cement paste. Constr. Build. Mater. 2015, 83, 223–229. [Google Scholar] [CrossRef]
- Szeląg, M.; Fic, S. The use of image analysis techniques to describe a cluster cracks in the cement paste with the addition of metakaolinite. In Proceedings of the 18th International Conference on Civil, Environmental and Structural Engineering, Kuala Lumpur, Malaysia, 11–12 February 2016. [Google Scholar]
- Szeląg, M.; Fic, S. Analiza rozwoju spękań klastrowych w zaczynie cementowym modyfikowanym mikrokrzemionką. Bud. I Archit. 2015, 14, 117–127. [Google Scholar]
- Szeląg, M. The influence of microsilica on the cluster cracks’ geometry of cement paste. In Proceedings of the 18th International Conference on Civil Engineering and Building Materials, Rome, Italy, 8–9 December 2016. [Google Scholar]
- En 12390-7; Testing Hardened Concrete—Part 7: Density of Hardened Concrete; European Committee for Standardization: Brussels, Belgium, 2009.
- En 12390-5; Testing Hardened Concrete—Part 5: Flexural Strength of Test Specimens; European Committee for Standardization: Brussels, Belgium, 2009.
- En 12390-3; Testing Hardened Concrete—Part 3: Compressive Strength of Test Specimens; European Committee for Standardization: Brussels, Belgium, 2009.
- Collepardi, M.; Coppola, L.; Zaffaroni, P. Progress in concrete science and technology for maritime works. In Proceedings of the International Conference “Innovative Marine Materials and Technologies”, La Spezia, Italy, 1–3 October 1992; pp. 11–22. [Google Scholar]
- Sobolkina, A.; Mechtcherine, V.; Khavrus, V.; Maier, D.; Mende, M.; Ritschel, M.; Leonhardt, A. Dispersion of carbon nanotubes and its influence on the mechanical properties of the cement matrix. Cem. Concr. Compos. 2012, 34, 1104–1113. [Google Scholar] [CrossRef]
- Richard, C.; Balavoine, F.; Schultz, P.; Ebbesen, T.; Mioskowski, C. Supramolecular self-assembly of lipid derivatives on carbon nanotubes. Science 2003, 300, 775–778. [Google Scholar] [CrossRef] [PubMed]
- Strano, M.; Moore, V.; Miller, M.; Allen, M.; Haroz, E.; Kittrell, C.; Hauge, R.; Smalley, R. The role of surfactant adsorption during ultrasonication in the dispersion of single-walled carbon nanotubes. J. Nanosci. Nanotechnol. 2003, 3, 81–86. [Google Scholar] [CrossRef] [PubMed]
- Alexanderson, J. Relations between structure and mechanical-properties of autoclaved aerated concrete. Cem. Concr. Res. 1979, 9, 507–514. [Google Scholar] [CrossRef]
- Narayanan, N.; Ramamurthy, K. Structure and properties of aerated concrete: A review. Cem. Concr. Compos. 2000, 22, 321–329. [Google Scholar] [CrossRef]
- Kim, H.; Jeon, J.; Lee, H. Workability, and mechanical, acoustic and thermal properties of lightweight aggregate concrete with a high volume of entrained air. Constr. Build. Mater. 2012, 29, 193–200. [Google Scholar] [CrossRef]
- Chen, S.; Zou, B.; Collins, F.; Zhao, X.; Majumber, M.; Duan, W. Predicting the influence of ultrasonication energy on the reinforcing efficiency of carbon nanotubes. Carbon 2014, 77, 1–10. [Google Scholar] [CrossRef]
- Parveen, S.; Rana, S.; Fangueiro, R.; Paiva, M. Microstructure and mechanical properties of carbon nanotube reinforced cementitious composites developed using a novel dispersion technique. Cem. Concr. Res. 2015, 73, 215–227. [Google Scholar] [CrossRef]
- Xu, S.; Liu, J.; Li, Q. Mechanical properties and microstructure of multi-walled carbon nanotube-reinforced cement paste. Constr. Build. Mater. 2015, 76, 16–23. [Google Scholar] [CrossRef]
- Cwirzen, A.; Habermehl-Cwirzen, K.; Shandakov, D.; Nasibulina, L.; Nasibulin, A.; Mudimela, P.; Kauppinen, E.; Penttala, V. Properties of high yield synthesised carbon nano fibres/portland cement composite. Adv. Cem. Res. 2009, 21, 141–146. [Google Scholar] [CrossRef]
- Scrivener, K.; Crumbie, A.; Laugesen, P. The interfacial transition zone (ITZ) between cement paste and aggregate in concrete. Interface Sci. 2004, 12, 411–421. [Google Scholar] [CrossRef]
- Diamond, S. The microstructures of cement paste in concrete. In Proceedings of the 8th International Congress on the Chemistry of Cement, Rio de Janeiro, Brazil, 22–27 September 1986; Volume 2, pp. 122–147. [Google Scholar]
- Zhang, Q.; Ye, G.; Fai, L. Microstructure analysis of heated portland cement paste. In Proceedings of the Twelfth East Asia-Pacific Conference on Structural Engineering and Construction (EASEC12), Hong Kong, China, 26–28 January 2011; Volume 14. [Google Scholar]
- Naus, D.J. The Effect of Elevated Temperature on Concrete Materials and Structures—A Literature Review (No. Ornl/tm-2005/533); Oak Ridge National Laboratory: Oak Ridge, TN, USA, 2006. [Google Scholar]
- Alarcon-Ruiz, L.; Platret, G.; Massieu, E.; Ehrlacher, A. The use of thermal analysis in assessing the effect of temperature on a cement paste. Cem. Concr. Res. 2005, 35, 609–613. [Google Scholar] [CrossRef]
- Taylor, H.; Famy, C.; Scrivener, K. Delayed ettringite formation. Cem. Concr. Res. 2001, 31, 683–693. [Google Scholar] [CrossRef]
- Zhou, Q.; Glasser, F. Thermal stability and decomposition mechanisms of ettringite at <120 degrees c. Cem. Concr. Res. 2001, 31, 1333–1339. [Google Scholar]
- Hu, Y.; Luo, D.; Li, P.; Li, Q.; Sun, G. Fracture toughness enhancement of cement paste with multi-walled carbon nanotubes. Constr. Build. Mater. 2014, 70, 332–338. [Google Scholar] [CrossRef]
- Sato, H.; Sano, M. Characteristics of ultrasonic dispersion of carbon nanotubes aided by antifoam. Coll. Surf. A Physicochem. Eng. Asp. 2008, 322, 103–107. [Google Scholar] [CrossRef]
- Li, H.; Xiao, H.; Ou, J. A study on mechanical and pressure-sensitive properties of cement mortar with nanophase materials. Cem. Concr. Res. 2004, 34, 435–438. [Google Scholar] [CrossRef]
Cement’s Class | Chemical Analysis (%) | ||||||||
---|---|---|---|---|---|---|---|---|---|
SiO2 | Fe2O3 | Al2O3 | CaO | MgO | SO3 | Cl | Na2O | K2O | |
CEM I 42.5R | 20.18 | 3.39 | 4.38 | 64.79 | 1.17 | 2.91 | 0.083 | 0.26 | 0.49 |
CEM I 52.5R | 20.19 | 3.30 | 4.33 | 64.76 | 1.17 | 3.16 | 0.078 | 0.26 | 0.48 |
Mineral Composition (%) | Blaine Specific Surface Area (cm2/g) | ||||||||
Cement’s Class | C3S | C2S | C3A | C4AF | |||||
CEM I 42.5R | 63.41 | 8.92 | 5.88 | 10.31 | 4010 | ||||
CEM I 52.5R | 62.97 | 9.28 | 5.90 | 10.03 | 4596 |
Series | C42 | C42CNT | C52 | C52CNT | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
w/c | 0.4 | 0.5 | 0.6 | 0.4 | 0.5 | 0.6 | 0.4 | 0.5 | 0.6 | 0.4 | 0.5 | 0.6 |
S28(T) (mm/m) | 5.50 | 6.35 | 7.58 | 8.60 | 10.15 | 10.92 | 4.53 | 5.90 | 7.48 | 8.67 | 10.10 | 11.06 |
ΔS=S28(T) − S28(W) (mm/m) | 3.25 | 3.83 | 4.35 | 5.04 | 6.38 | 6.86 | 2.84 | 3.46 | 4.35 | 5.50 | 6.35 | 6.67 |
Increase of S28 (%) | 144.4 | 152.1 | 134.8 | 141.5 | 169.1 | 168.8 | 168.5 | 141.9 | 139.3 | 173.7 | 169.4 | 151.7 |
Decrease of D (%) | 10.6 | 9.9 | 9.8 | 10.3 | 10.0 | 9.2 | 11.5 | 11.8 | 11.6 | 12.4 | 11.5 | 11.3 |
Series | C42 | C42CNT | C52 | C52CNT | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
w/c | 0.4 | 0.5 | 0.6 | 0.4 | 0.5 | 0.6 | 0.4 | 0.5 | 0.6 | 0.4 | 0.5 | 0.6 | |
Decrease of | fc (%) | 36.1 | 46.9 | 53.5 | 39.0 | 42.5 | 45.1 | 29.1 | 38.8 | 46.0 | 25.4 | 28.5 | 30.3 |
fct,f (%) | 48.8 | 40.4 | 58.2 | 35.8 | 40.2 | 44.9 | 73.4 | 69.2 | 69.9 | 50.9 | 52.2 | 51.7 |
Series | Oxide Composition (% by Weight) | |||||||
---|---|---|---|---|---|---|---|---|
Na2O | MgO | Al2O5 | SiO2 | SO3 | K2O | CaO | Fe2O3 | |
C52 | 0.79 | 1.06 | 6.58 | 22.87 | 3.78 | 0.52 | 61.30 | 3.12 |
C52CNT | 0.58 | 0.92 | 5.06 | 18.93 | 5.20 | 0.94 | 65.02 | 3.34 |
Difference between series (%) | −26.0 | −12.8 | −23.1 | −17.2 | +37.4 | +80.9 | +6.1 | +6.8 |
Series | C42 | C42CNT | C52 | C52CNT | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
w/c | 0.4 | 0.5 | 0.6 | 0.4 | 0.5 | 0.6 | 0.4 | 0.5 | 0.6 | 0.4 | 0.5 | 0.6 |
fct,f(R)/fc(R) | 0.094 | 0.100 | 0.092 | 0.149 | 0.159 | 0.158 | 0.083 | 0.088 | 0.099 | 0.113 | 0.117 | 0.108 |
fct,f(T)/fc(T) | 0.076 | 0.112 | 0.083 | 0.157 | 0.165 | 0.159 | 0.031 | 0.044 | 0.055 | 0.074 | 0.078 | 0.075 |
Parameters | fc(R) | fc(T) | fct,f(R) | fct,f(T) | D(R) | D(T) | S28(R) | S28(T) | ΔS |
---|---|---|---|---|---|---|---|---|---|
fc(R) | 1.00 | - | - | - | - | - | - | - | - |
fc(R) | 0.96 | 1.00 | - | - | - | - | - | - | - |
fct,f(R) | 0.94 | 0.92 | 1.00 | - | - | - | - | - | - |
fct,f(T) | 0.29 | 0.26 | 0.54 | 1.00 | - | - | - | - | - |
D(R) | 0.95 | 0.84 | 0.87 | 0.27 | 1.00 | - | - | - | - |
D(T) | 0.94 | 0.82 | 0.87 | 0.29 | 1.00 | 1.00 | - | - | - |
S28(R) | −0.96 | −0.89 | −0.93 | −0.34 | −0.96 | −0.95 | 1.00 | - | - |
S28(T) | −0.95 | −0.84 | −0.91 | −0.33 | −0.98 | −0.98 | 0.98 | 1.00 | - |
ΔS | −0.92 | −0.80 | −0.88 | −0.32 | −0.98 | −0.98 | 0.95 | 0.99 | 1.00 |
© 2017 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szeląg, M. Mechano-Physical Properties and Microstructure of Carbon Nanotube Reinforced Cement Paste after Thermal Load. Nanomaterials 2017, 7, 267. https://doi.org/10.3390/nano7090267
Szeląg M. Mechano-Physical Properties and Microstructure of Carbon Nanotube Reinforced Cement Paste after Thermal Load. Nanomaterials. 2017; 7(9):267. https://doi.org/10.3390/nano7090267
Chicago/Turabian StyleSzeląg, Maciej. 2017. "Mechano-Physical Properties and Microstructure of Carbon Nanotube Reinforced Cement Paste after Thermal Load" Nanomaterials 7, no. 9: 267. https://doi.org/10.3390/nano7090267
APA StyleSzeląg, M. (2017). Mechano-Physical Properties and Microstructure of Carbon Nanotube Reinforced Cement Paste after Thermal Load. Nanomaterials, 7(9), 267. https://doi.org/10.3390/nano7090267