Recent Advances of Rare-Earth Ion Doped Luminescent Nanomaterials in Perovskite Solar Cells
Abstract
:1. Introduction
2. Application of Rare-Earth RE-Ion-Doped Upconversion (UC) Nanomaterials in Perovskite Solar Cells (PSC)
2.1. Structure of PSC
2.2. Introduction of RE-Ion-Doped Upconversion Material
2.3. RE-Doped Upconversion Material in External Function Layer of PSCs
2.4. RE-Doped Upconversion Material in ETL of PSCs
2.5. RE-Doped Upconversion Nanomaterial in Active Layer of PSCs
2.6. Application of RE-Doped DC Nanomaterials in PSC
3. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Gratzel, M. Photoelectrochemical cells. Nature 2001, 414, 338. [Google Scholar] [CrossRef] [PubMed]
- Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 2009, 131, 14–21. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.S.; Park, B.W.; Jung, E.H. Iodide management in formamidinium-lead-halide-based perovskite layers for efficient solar cells. Science 2017, 356, 1376. [Google Scholar] [CrossRef] [PubMed]
- De Wolf, S.; Holovsky, J.; Moon, S.J. Organometallic halide perovskites: Sharp optical absorption edge and its relation to photovoltaic performance. J. Phys. Chem. Lett. 2014, 5, 1035–1039. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.M.; Teuscher, J.; Miyasaka, T. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 2012, 338, 643–647. [Google Scholar] [CrossRef] [PubMed]
- Etgar, L.; Gao, P.; Xue, Z. Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells. J. Am. Chem. Soc. 2012, 134, 17396–17399. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baikie, T. Synthesis and crystal chemistry of the hybrid perovskite (CH3NH3)PbI3 for solid-state sensitised solar cell applications. J. Mater. Chem. A 2013, 1, 5628–5641. [Google Scholar] [CrossRef]
- Li, S.; Hu, J.; Yang, Y. Ag/nano-TiO2 composite compact film for enhanced performance of perovskite solar cells based on carbon counter electrodes. Appl. Phys. A 2017, 123, 628. [Google Scholar] [CrossRef]
- Hu, J.; Liu, W.; Yang, Y. TiO2 nanotube/TiO2 nanoparticle hybrid photoanode for hole-conductor-free perovskite s-olar cells based on carbon counter electrodes. Opt. Mater. Express 2017, 7, 3322–3331. [Google Scholar] [CrossRef]
- Wang, H.Q.; Batentschuk, M.; Osvet, A. Rare-earth ion doped up-conversion materials for photovoltaic applcations. Adv. Mater. 2011, 23, 2675. [Google Scholar] [CrossRef] [PubMed]
- Trupke, T.; Green, M.A.; Würfel, P. Improving solar cell efficiencies by down-conversion of high-energy photons. J. Appl. Phys. 2002, 93, 1668–1674. [Google Scholar] [CrossRef]
- Auzel, F.E. Materials and devices using double-pumped-phosphors with energy transfer. Proc. IEEE 1973, 61, 758–786. [Google Scholar] [CrossRef]
- Eliseeva, S.V.; Bünzli, J.C.G. Lanthanide luminescence for functional materials and bio-sciences. Chem. Soc. Rev. 2010, 39, 189–227. [Google Scholar] [CrossRef] [PubMed]
- Auzel, F. Upconversion and anti-stokes processes with f and d ions in solids. Chem. Rev. 2004, 104, 139–174. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Xiaogang, L. Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals. Chem. Soc. Rev. 2009, 38, 976–989. [Google Scholar] [CrossRef] [PubMed]
- Liang, L.; Liu, Y.; Bu, C. Highly uniform, bifunctional core/double-shell-structured β-NaYF4:Er3+, Yb3+ @SiO2@TiO2 hexagonal sub-microprisms for high-perfor-mance dye sensitized solar cells. Adv. Mater. 2013, 25, 2174–2180. [Google Scholar] [CrossRef] [PubMed]
- Suyver, J.F.; Aebischer, A.; Biner, D. Novel materials d-oped with trivalent lanthanides and transition metal ions showing near-infrared to visible photon upconversion. Opt. Mater. 2005, 27, 1111–1130. [Google Scholar] [CrossRef]
- Krämer, K.W.; Biner, D.; Frei, G. Hexagonal sodium yttrium fluoride based green and blue emitting upconversion phosphors. Chem. Mater. 2004, 16, 1244–1251. [Google Scholar] [CrossRef]
- Suyver, J.F.; Grimm, J.; Krämer, K.W. Highly efficient near-infrared to visible up-conversion process in NaYF4: Er3+, Yb3+. J. Lumen. 2005, 114, 53–59. [Google Scholar]
- Wang, X. Enhanced photovoltaic performance of perovskite solar cells based on Er-Yb co-doped TiO2 nanorod arrays. Electrochim. Acta 2017, 245, 839–845. [Google Scholar] [CrossRef]
- Francés-Soriano, L.; Gonzalez-Carrero, S.; Navarro-Raga, E.; Galian, R.E.; González-Béjar, M.; Pérez-Prieto, J. Efficient Cementing of CH3NH3PbBr3 Nanoparticles to Upconversion Nanoparticles Visualized by Confocal Microscopy. Adv. Funct. Mater. 2016, 26, 5131–5138. [Google Scholar] [CrossRef]
- Chen, X. Highly efficient LiYF4: Yb3+, Er3+ upcon-version single crystal under solar cell spectrum excitati-on and photovoltaic application. ACS Appl. Mater. Interfaces 2016, 8, 9071–9079. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.Y.; Xia, H.P.; Peng, J.T.; Hu, H.Y.; Tang, L.; Zhang, Y.P.; Chen, B.J.; Jiang, H.C. Growth and spectral properties of Er3+/Tm3+ co-doped LiYF4 single crystal. Optoelectron. Lett. 2013, 9, 285. [Google Scholar] [CrossRef]
- He, M. Monodisperse Dual-functional upconversion nanoparticles enabled near-infrared organolead halide perovskite solar cells. Angew. Chem. Int. Ed. 2016, 55, 4280–4284. [Google Scholar] [CrossRef] [PubMed]
- Burschka, J.; Pellet, N.; Moon, S.J. Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 2013, 499, 316–319. [Google Scholar] [CrossRef] [PubMed]
- Roh, J.; Haejun, Y.; Jyongsik, J. Hexagonal β-NaYF4:Yb3+, Er3+ Nanoprism-incorporated upconverting layer in perovskite solar cells for near-infrared sunlight harvesting. ACS Appl. Mater. Interfaces 2016, 8, 19847–19852. [Google Scholar] [CrossRef] [PubMed]
- Que, M. Enhanced conversion efficiency in perovskite solar cells by effectively utilizing near infrared light. Nanoscale 2016, 8, 14432–14437. [Google Scholar] [CrossRef] [PubMed]
- Hu, J. Enhanced performance of hole-conductor-free perovskite solar cells by utilization of core/shell-structured β-NaYF4:Yb3+,Er3+@SiO2Nanoparticles in ambient air. IEEE J. Photovolt. 2018, 8, 132–136. [Google Scholar] [CrossRef]
- Zhou, D. Semiconductor plasmon-sensitized broadband upconversion and its enhancement effect on the power conversion efficiency of perovskite solar cells. J. Mater. Chem. A 2017, 5, 16559–16567. [Google Scholar] [CrossRef]
- Wang, W.; Chen, J.; Zhu, H. Study of spectral property of Er3+-doped TiO2. Spectrosc. Spectr. Anal. 2006, 26, 991. [Google Scholar]
- Fan, Y.; Xia, F.; Yu, Z. Effect of the Yb3+ Concentration in upconverting of Ho/YbCo doped TiO. Acta Photonica Sin. 2011, 40, 340–343. [Google Scholar] [CrossRef]
- Park, J.; Joo, J.; Kwon, S.G. Synthesis of monodisperse spherical nanocrystals. Angew. Chem. Int. Ed. 2007, 46, 4630–4660. [Google Scholar] [CrossRef] [PubMed]
- Dong, A.; Ye, X.; Chen, J. A generalized ligand-exchange strategy enabling sequential surface functionalization of colloidal nanocrystals. J. Am. Chem. Soc. 2010, 133, 998–1006. [Google Scholar] [CrossRef] [PubMed]
- Lai, X. Broadband dye-sensitized upconverting nanocrystals enabled near-infrared planar perovskite solar cells. J. Power Sources 2017, 372, 125–133. [Google Scholar] [CrossRef]
- Meng, F. High-efficiency near-infrared enabled planar perovskite solar cells by embedding upconversion nanocrystals. Nanoscale 2017, 9, 18535–18545. [Google Scholar] [CrossRef] [PubMed]
- Wegh, R.T.; Donker, H.; Oskam, K.D. Visible quantum cutting in LiGdF4: Eu3+ through downconversion. Science 1999, 283, 663–666. [Google Scholar] [CrossRef] [PubMed]
- Auzel, F. Up-conversions in RE-doped Solids. Spectrosc. Prop. Rare Earths Opt. Mater. 2005, 83, 266–319. [Google Scholar]
- Chen, W.; Luo, Q.; Zhang, C. Effects of down-conversion CeO2: Eu3+ nanophosphors in perovskite solar cells. J. Mater. Sci. Mater. Electron. 2017, 28, 1–12. [Google Scholar] [CrossRef]
- Jiang, L.; Chen, W.; Zheng, J. Enhancing the photovoltaic performance of perovskite solar cells with a down-conversion Eu-complex. ACS Appl. Mater. Interfaces 2017, 9, 26958–26964. [Google Scholar] [CrossRef] [PubMed]
RE-Doped Nanomaterials | Device Structure | Application Mode | PCE (%) |
---|---|---|---|
LiYF4:Yb3+, Er3+ | LiYF4:Yb3+, Er3+/FTO/TiO2/MAPbI3/HTM/Au | As external function layer, at the reverse of the FTO glass of PSCs | 11.87% [22] |
NaYF4:Yb3+, Er3+ | cmTiO2/NaYF4:Yb3+, Er3+/MAPbI3/HTM/Ag | As mesoporous layer | 17.8% [24] |
NaYF4:Yb3+, Er3+ | cm TiO2/NaYF4:Yb3+, Er3+-mp TiO2/MAPbI3/HTM/Au | As mesoporous layer (mixed with m-TiO2) | 15.98% [26] |
β-NaYF4:Yb3+, Tm3+@NaYF4 (NYTY@N) | cm TiO2/NYTY@N-mp TiO2/MAPbI3/HTM/Ag | As mesoporous layer (mixed with m-TiO2) | 16.9% [27] |
β-NaYF4:Yb3+, Er3+@SiO2 (NYEY@S) | cm TiO2/NYEY@S-mp TiO2/MAPbI3/C | As mesoporous layer (mixed with m-TiO2) | 9.92% [28] |
mCu2-xS@SiO2@Er2O3 (mCSE) | cm TiO2/mCSE-mp TiO2/MAPbI3/HTM/Au | As mesoporous layer (mixed with m-TiO2) | 17.8% [29] |
TiO2:Er3+, Yb3+ | cm TiO2/TiO2:Er3+, Yb3+NRs/MAPbI3−xClx/HTM/Au | As mesoporous layer | 13.4% [20] |
IR806-NaYF4:Yb, Er | cm ZnO/IR806-NaYF4:Yb, Er+MAPbI3/HTM/Ag | Coupled with perovskite by ligand-exchange strategy | 17.49% [34] |
β-NaYF4:Yb, Er | cm ZnO/NaYF4:Yb, Er-MAPbI3/HTM/Ag | Coupled with perovskite by ligand-exchange strategy | 19.70% [35] |
CeO2:Eu3+ | cm TiO2/CeO2:Eu3+-mp TiO2/MAPbI3/HTM/Ag | As mesoporous layer (mixed with m-TiO2) | 10.8% [38] |
Eu-complex LDL | Eu-complex LDL/FTO/cm TiO2/mp TiO2/MAPbI3/HTM/Au | As external function layer, at the reverse of the FTO glass of PSCs | 15.44% [39] |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qiao, Y.; Li, S.; Liu, W.; Ran, M.; Lu, H.; Yang, Y. Recent Advances of Rare-Earth Ion Doped Luminescent Nanomaterials in Perovskite Solar Cells. Nanomaterials 2018, 8, 43. https://doi.org/10.3390/nano8010043
Qiao Y, Li S, Liu W, Ran M, Lu H, Yang Y. Recent Advances of Rare-Earth Ion Doped Luminescent Nanomaterials in Perovskite Solar Cells. Nanomaterials. 2018; 8(1):43. https://doi.org/10.3390/nano8010043
Chicago/Turabian StyleQiao, Yu, Shuhan Li, Wenhui Liu, Meiqing Ran, Haifei Lu, and Yingping Yang. 2018. "Recent Advances of Rare-Earth Ion Doped Luminescent Nanomaterials in Perovskite Solar Cells" Nanomaterials 8, no. 1: 43. https://doi.org/10.3390/nano8010043
APA StyleQiao, Y., Li, S., Liu, W., Ran, M., Lu, H., & Yang, Y. (2018). Recent Advances of Rare-Earth Ion Doped Luminescent Nanomaterials in Perovskite Solar Cells. Nanomaterials, 8(1), 43. https://doi.org/10.3390/nano8010043