Synthesis of Reduced Graphene Oxide/Titanium Dioxide Nanotubes (rGO/TNT) Composites as an Electrical Double Layer Capacitor
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Synthesis of Reduced Graphene Oxide (rGO)
2.3. Synthesis of Titanium Dioxide Nanotubes (TNT)
2.4. Synthesis of Reduced Graphene Oxide/Titanium Dioxide Nanotubes (rGO/TNT) Composites
2.5. Characterization and Electrode Performance Assessment
2.6. Electrode Characterization and Performance
3. Results and Discussion
3.1. XRD, SEM, and CV of Precursors
3.2. Electrochemical Performance of GO/TNT Composites
3.3. Electrochemical Performance of rGO/TiO2 Composites
3.4. Electrochemical Performance of rGO/TNT Composites
3.5. SEM, TEM, and XRD of rGO/TNT
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Oren, Y. Capacitive Deionization (CDI) for Desalination and Water Treatment—Past, Present and Future (a Review). Desalination 2008, 228, 10–29. [Google Scholar] [CrossRef]
- Leclerc, M.; Gauvin, R. Functional Materials for Energy, Sustainable Development and Biomedical Sciences; De Gruyter: Göttingen, Germany, 2014. [Google Scholar]
- Bommier, C.; Ji, X. Nanoporous Carbon for Capacitive Energy Storage. In Mesoporous Materials for Advanced Energy Storage and Conversion Technologies; Taylor & Francis: Boca Raton, FL, USA, 2017. [Google Scholar]
- Srimuk, P.; Zeiger, M.; Jäckel, N.; Tolosa, A.; Krüner, B.; Fleischmann, S.; Grobelsek, I.; Aslan, M.; Shvartsev, B.; Suss, M.E.; et al. Enhanced Performance Stability of Carbon/titania Hybrid Electrodes during Capacitive Deionization of Oxygen Saturated Saline Water. Electrochim. Acta 2017, 224, 314–328. [Google Scholar] [CrossRef]
- Xie, J.; Xue, Y.; He, M.; Luo, W.; Wang, H.; Wang, R.; Yan, Y.M. Organic-Inorganic Hybrid Binder Enhances Capacitive Deionization Performance of Activated-Carbon Electrode. Carbon 2017, 123, 574–582. [Google Scholar] [CrossRef]
- Li, Y.; Liu, Y.; Wang, M.; Xu, X.; Lu, T.; Sun, C.Q.; Pan, L. Phosphorus-Doped 3D Carbon Nanofiber Aerogels Derived from Bacterial-Cellulose for Highly-Efficient Capacitive Deionization. Carbon 2018, 130, 377–383. [Google Scholar] [CrossRef]
- Feng, C.; Chen, Y.; Yu, C.; Hou, C. Highly Porous Activated Carbon with Multi-Channeled Structure Derived from Loofa Sponge as a Capacitive Electrode Material for the Deionization of Brackish Water. Chemosphere 2018, 208, 285–293. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z.; Chai, L.; Liu, M.; Shu, Y.; Li, Q.; Wang, Y.; Wang, Q.; Qiu, D. Capacitive Deionization of Chloride Ions by Activated Carbon Using a Three-Dimensional Electrode Reactor. Sep. Purif. Technol. 2018, 191, 424–432. [Google Scholar] [CrossRef]
- Zornitta, R.L.; Ruotolo, L.A.M. Simultaneous Analysis of Electrosorption Capacity and Kinetics for CDI Desalination Using Different Electrode Configurations. Chem. Eng. J. 2018, 332, 33–41. [Google Scholar] [CrossRef]
- Yasin, A.S.; Omar, H.; Mohamed, I.M.A.; Mousa, H.M.; Barakat, N.A.M. Enhanced Desalination Performance of Capacitive Deionization Using Zirconium Oxide Nanoparticles-Doped Graphene Oxide as a Novel and Effective Electrode. Sep. Purif. Technol. 2016, 171, 34–43. [Google Scholar] [CrossRef]
- Xiang, C.; Li, M.; Zhi, M.; Manivannan, A.; Wu, N. Reduced Graphene Oxide/titanium Dioxide Composites for Supercapacitor Electrodes: Shape and Coupling Effects. J. Mater. Chem. 2012, 22, 19161–19167. [Google Scholar] [CrossRef]
- Gobal, F.; Faraji, M. Electrochemical Synthesis of Reduced Graphene oxide/TiO2 nanotubes/Ti for High-Performance Supercapacitors. Ionics 2014, 21, 525–531. [Google Scholar] [CrossRef]
- Sahu, R.S.; Bindumadhavan, K.; Doong, R. Boron-Doped Reduced Graphene Oxide-Based Bimetallic Ni/Fe Nanohybrids for the Rapid Dechlorination of Trichloroethylene. Environ. Sci. Nano 2017, 4, 565–576. [Google Scholar] [CrossRef]
- Yee, T.G.; Lin, O.H.; Bindumadhavan, K.; Doong, R.A. Unveiling the Thermal Kinetics and Scissoring Mechanism of Neolatry Polyethylene/reduced Graphite Oxide Nanocomposites. J. Anal. Appl. Pyrolysis 2017, 123, 20–29. [Google Scholar] [CrossRef]
- Cui, L.; Hui, K.N.; Hui, K.S.; Lee, S.K.; Zhou, W.; Wan, Z.P.; Thuc, C.H. Facile Microwave-Assisted Hydrothermal Synthesis of TiO2 Nanotubes. Mater. Lett. 2012, 75, 175–178. [Google Scholar] [CrossRef]
- Tan, L.-L.; Ong, W.-J.; Chai, S.-P.; Mohamed, A. Reduced Graphene Oxide-TiO2 Nanocomposite as a Promising Visible-Light-Active Photocatalyst for the Conversion of Carbon Dioxide. Nanoscale Res. Lett. 2013, 8, 465. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Zhou, J.; Du, F. Synthesis of Highly Reduced Graphene Oxide for Supercapacitor. J. Nanomater. 2016, 2016, 1–7. [Google Scholar] [CrossRef]
- Umrao, S.; Gupta, T.K.; Kumar, S.; Singh, V.K.; Sultania, M.K.; Jung, J.H.; Oh, I.; Srivastava, A. Microwave-Assisted Synthesis of Boron and Nitrogen Co-Doped Reduced Graphene Oxide for the Protection of Electromagnetic Radiation in Ku-Band. ACS Appl. Mater.Interfaces 2015, 7, 19831–19842. [Google Scholar] [CrossRef] [PubMed]
- Vu, T.H.T.; Au, H.T.; Tran, L.T.; Nguyen, T.M.T.; Tran, T.T.T.; Pham, M.T.; Do, M.H.; Nguyen, D.L. Synthesis of Titanium Dioxide Nanotubes via One-Step Dynamic Hydrothermal Process. J. Mater. Sci. 2014, 49, 5617–5625. [Google Scholar] [CrossRef]
- Zheng, P.; Liu, T.; Su, Y.; Zhang, L.; Guo, S. TiO2 Nanotubes Wrapped with Reduced Graphene Oxide as a High-Performance Anode Material for Lithium-Ion Batteries. Sci. Rep. 2016, 6, 36580. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Jiang, Q.; Ma, Z.; Fu, M.; Shangguan, W. Synthesis of Titania Nanotubes by Microwave Irradiation. Solid State Commun. 2005, 136, 513–517. [Google Scholar] [CrossRef]
- Lee, K.; Mazare, A.; Schmuki, P. One-Dimensional Titanium Dioxide Nanomaterials: Nanotubes. Chem. Rev. 2014, 114, 9385–9454. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Material | Specific Capacitance (F/g) |
---|---|
rGO | 148.18 |
3:1 | 73.62 |
1:1 | 14.03 |
1:3 | 26.69 |
TNT | 59.69 |
Material | Specific Capacitance (F/g) |
---|---|
rGO | 148.18 |
3:1 | 84.36 |
1:1 | 80.36 |
1:3 | 41.93 |
TNT | 59.69 |
Material | Specific Capacitance (F/g) |
---|---|
rGO | 148.18 |
3:1 | 165.22 |
1:1 | 47.26 |
1:3 | 129.08 |
TNT | 59.69 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lazarte, J.P.L.; Dipasupil, R.C.; Pasco, G.Y.S.; Eusebio, R.C.P.; Orbecido, A.H.; Doong, R.-a.; Bautista-Patacsil, L. Synthesis of Reduced Graphene Oxide/Titanium Dioxide Nanotubes (rGO/TNT) Composites as an Electrical Double Layer Capacitor. Nanomaterials 2018, 8, 934. https://doi.org/10.3390/nano8110934
Lazarte JPL, Dipasupil RC, Pasco GYS, Eusebio RCP, Orbecido AH, Doong R-a, Bautista-Patacsil L. Synthesis of Reduced Graphene Oxide/Titanium Dioxide Nanotubes (rGO/TNT) Composites as an Electrical Double Layer Capacitor. Nanomaterials. 2018; 8(11):934. https://doi.org/10.3390/nano8110934
Chicago/Turabian StyleLazarte, John Paolo L., Regine Clarisse Dipasupil, Gweneth Ysabelle S. Pasco, Ramon Christian P. Eusebio, Aileen H. Orbecido, Ruey-an Doong, and Liza Bautista-Patacsil. 2018. "Synthesis of Reduced Graphene Oxide/Titanium Dioxide Nanotubes (rGO/TNT) Composites as an Electrical Double Layer Capacitor" Nanomaterials 8, no. 11: 934. https://doi.org/10.3390/nano8110934
APA StyleLazarte, J. P. L., Dipasupil, R. C., Pasco, G. Y. S., Eusebio, R. C. P., Orbecido, A. H., Doong, R. -a., & Bautista-Patacsil, L. (2018). Synthesis of Reduced Graphene Oxide/Titanium Dioxide Nanotubes (rGO/TNT) Composites as an Electrical Double Layer Capacitor. Nanomaterials, 8(11), 934. https://doi.org/10.3390/nano8110934